Characterizing the Floral Resources of a North American Metropolis Using

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing the Floral Resources of a North American Metropolis Using METHODS, TOOLS, AND TECHNOLOGIES Characterizing the floral resources of a North American metropolis using a honey bee foraging assay 1, 2 3 1 DOUGLAS B. SPONSLER, DON SHUMP, RODNEY T. RICHARDSON, AND CHRISTINA M. GROZINGER 1Department of Entomology, Huck Institutes of the Life Sciences, Center for Pollinator Research,Pennsylvania State University, University Park, Pennsylvania 16802 USA 2Philadelphia Bee Company, Philadelphia, Pennsylvania 19125 USA 3Department of Biology, York University, Toronto, Ontario M3J 1P3 Canada Citation: Sponsler, D. B., D. Shump, R. T. Richardson, and C. M. Grozinger. 2020. Characterizing the floral resources of a North American metropolis using a honey bee foraging assay. Ecosphere 11(4):e03102. 10.1002/ecs2.3102 Abstract. Roughly a third of described insect species visit flowers, making the flower–insect interface one of the chief pillars of global biodiversity. Studying flower–insect relationships at the scale of communi- ties and landscapes has been hindered, however, by the methodological challenges of quantifying land- scape-scale floral resources. This challenge is especially acute in urban landscapes, where traditional floral surveying techniques are ill-suited to the unique constraints of built environments. To surmount these chal- lenges, we devised a “honey bee foraging assay” approach to floral resource surveying, wherein continu- ous colony weight tracking and DNA metabarcoding of pollen samples are used to capture both the overall availability and taxonomic composition of floral resources. We deploy this methodology in the complex urban ecosystem of Philadelphia, Pennsylvania, USA. Our results reveal distinct seasonality of flo- ral resource availability, with pulses of high availability in May, June, and September, and a period of pro- longed scarcity in August. Pollen genus richness mirrored this pattern, with peak richness in May and June. The taxonomic composition of pollen samples varied seasonally, reflecting underlying floral phenol- ogy, with especially strong turnover between May and June samples and between August and September samples delineating well-defined spring, summer, and fall floral resource communities. Trait analysis also revealed seasonal structure, with spring samples characterized by trees and shrubs, summer samples including a stronger presence of herbaceous “weeds”, and fall samples dominated by woody vines. Native flora predominated in spring, giving way to a preponderance of exotic flora in summer and fall. At a basic level, this yields insight into the assembly of novel urban floral resource communities, showcasing, for example, the emergence of a woody vine-dominated fall flora. At an applied level, our data can inform urban land management, such as the design of ecologically functional ornamental plantings, while also providing practical guidance to beekeepers seeking to adapt their management activities to floral resource seasonality. Methodologically, our study demonstrates the potential of the honey bee foraging assay as a powerful technique for landscape-scale floral resource surveying, provided the inherent biases of honey bee foraging are accounted for in the interpretation of the results. Key words: biodiversity; hive scale; Internal transcribed spacer; metabarcoding; pollination; trnL; urban ecology. Received 13 November 2019; revised 23 January 2020; accepted 29 January 2020. Corresponding Editor: Mary L. Cade- nasso. Copyright: © 2020 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. E-mail: [email protected] ❖ www.esajournals.org 1 April 2020 ❖ Volume 11(4) ❖ Article e03102 METHODS, TOOLS, AND TECHNOLOGIES SPONSLER ET AL. INTRODUCTION morphology (excluding, for example, flowers requiring sonication to release pollen from It has been estimated that roughly a third of all anthers). described insect species are either directly or Here, we present a two-year study of the floral indirectly dependent on flowers for food (Ward- resource composition and dynamics of Philadel- haugh 2015). This ecological centrality of flow- phia, Pennsylvania, USA. Founded in 1682, the ers-as-food extends to systems in which historic city of Philadelphia straddles the interface of the floral communities have been dramatically Appalachian Piedmont and Atlantic Coastal altered, such as urban landscapes characterized Plain physiographic provinces (Fenneman and by novel assemblies of native and exotic flora Johnson 1946) and hosts over 2500 plant species (Aronson 2014). Urban landscapes can host (Clemants and Moore 2003). Its patchwork diverse communities of flowers and flower visi- heterogeneity of sociological composition is both tors, sometimes even functioning as refugia for a product and driver of concomitant ecological rare species (Baldock 2015) [though see (Geslin variation in abiotic substrate and biotic commu- et al. 2013)], but little is known about the overall nities, earning Philadelphia the apt moniker composition of urban floral resources and how “City of Neighborhoods”. To characterize the flo- they fluctuate phenologically through the grow- ral resources of this complex urban environment, ing season. we employ a “honey bee foraging assay” using a Studying floral resources at the landscape scale network of sentinel apiaries distributed through- is technically daunting in any context (Frankl out the city. Combining DNA metabarcoding of et al. 2005), but the challenge becomes especially pollen samples with continuous colony weight acute in urban landscapes where extreme land- monitoring, we characterize both the taxonomic scape heterogeneity, limited land access, and the composition and overall availability of floral physical obstacles of the built environment render resources in our study system, together with traditional approaches to floral surveying imprac- their temporal dynamics throughout the foraging ticable. Flower-visiting insects might be har- season. We conclude by comparing Philadel- nessed as efficient environmental samplers of phia’s floral resource landscape with patterns landscape-scale floral resources, provided the described in other study systems and discussing spatial and taxonomic scope of their interaction the implications of our data for understanding with the landscape is sufficiently understood and the ecological function of urban flora. the materials they collect can be analyzed infor- matively (Wood et al. 2018). While not an unbi- METHODS ased representation of local flora, such an approach would manifestly be relevant to the Sites and study years question of trophic function at the flower–insect We conducted fieldwork in 2017 and 2018. Our interface. study sites included 13 apiaries in Philadelphia, The western honey bee (Apis mellifera L.) is Pennsylvania, USA, owned and managed by the arguably the organism best suited for such a Philadelphia Bee Company (Fig. 1). Twelve api- sampling approach. As an extreme generalist, aries were used in each study year, with 11 honey bees have a diet breadth that overlaps shared across years, 1 used only in 2017 (RB), considerably with that of many other nectar- and and 1 used only in 2018 (NE). Each of our pollen-feeding insects (Butz Huryn 1997). A research apiaries included three honey bee colo- honey bee colony surveys the landscape around nies designated as research colonies for our its nest at a range routinely extending several study, resulting in a total of 36 research colonies kilometers, dynamically allocating foraging across 12 sites in each year. Some sites also effort to the most rewarding patches (Visscher included additional colonies not involved in our and Seeley 1982). Thus, the materials it collects study. Research colonies were initiated in April– are informatively biased toward the richest May of each study year from 4- or 5-frame resources within the colony’s foraging range and nucleus colonies installed in 10-frame Langstroth compatible with honey bee behavior and hives. Nucleus colonies were purchased together ❖ www.esajournals.org 2 April 2020 ❖ Volume 11(4) ❖ Article e03102 METHODS, TOOLS, AND TECHNOLOGIES SPONSLER ET AL. Fig. 1. Apiary locations (circles) plotted over land cover raster. The City of Philadelphia is demarcated by a dashed black line. Land cover data are from the Chesapeake Conservancy’s Land Cover Data Project (Chesa- peake Bay Conservancy 2017); only major cover types are shown in legend. Area east of the Delaware River in the State of New Jersey is not shown because it fell outside the scope of the land cover dataset. each year from a single supplier (Swarmbustin’ spikes (i.e., additive outliers), and persistent Honey, West Grove, Pennsylvania, USA). During weight shifts (i.e., level-shift outliers) caused by colony installation, each research hive was colony manipulations involving the addition or equipped with a Sundance I bottom-mounted removal of material from the hive. Because our pollen trap (Ross Rounds, Canandaigua, New colonies were part of a working apicultural busi- York, USA) and a Broodminder hive scale ness, it was not possible to avoid or standardize (Broodminder, Stoughton, Wisconsin, USA). these management artifacts. To address both types of artifacts, we first took Weight monitoring and pattern characterization the first-order difference of each colony weight We set our Broodminder hive scales to record time series, which turns level-shift outliers into hourly weights, beginning at colony installation additive
Recommended publications
  • Intro Outline
    THE REPRODUCTIVE ECOLOGY OF TWO TERRESTRIAL ORCHIDS, CALADENIA RIGIDA AND CALADENIA TENTACULATA RENATE FAAST Submitted for the degree of Doctor of Philosophy School of Earth and Environmental Sciences The University of Adelaide, South Australia December, 2009 i . DEcLARATION This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Renate Faast and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines. Published works contained within this thesis: Faast R, Farrington L, Facelli JM, Austin AD (2009) Bees and white spiders: unravelling the pollination' syndrome of C aladenia ri gída (Orchidaceae). Australian Joumal of Botany 57:315-325. Faast R, Facelli JM (2009) Grazrngorchids: impact of florivory on two species of Calademz (Orchidaceae). Australian Journal of Botany 57:361-372. Farrington L, Macgillivray P, Faast R, Austin AD (2009) Evaluating molecular tools for Calad,enia (Orchidaceae) species identification.
    [Show full text]
  • Positive and Negative Impacts of Non-Native Bee Species Around the World
    Supplementary Materials: Positive and Negative Impacts of Non-Native Bee Species around the World Laura Russo Table S1. Selected references of potential negative impacts of Apis or Bombus species. Bold, underlined, and shaded text refers to citations with an empirical component while unbolded text refers to papers that refer to impacts only from a hypothetical standpoint. Light grey shading indicates species for which neither positive nor negative impacts have been recorded. “But see” refers to manuscripts that show evidence or describe the opposite of the effect and is capitalized when only contradictory studies could be found. Note that Apis mellifera scutellata (the “Africanized” honeybee), is treated separately given the abundance of research specifically studying that subspecies. Altering Non-native Nesting Floral Pathoens/ Invasive Introgres Decrease Pollination Species Sites Resources Parasites Weeds sion Plant Fitness Webs Apis cerana [1] [2] [1–3] [4] Apis dorsata Apis florea [5] [5] [37,45] But see [8–19] but [27–35] but [36–38] [39–43] [38,46,47] Apis mellifera [9,23–26] [4] [6,7] see [6,20–22] see [6] but see [44] [48,49] but see [50] Apis mellifera [51] but see [55–57] scutellata [52–54] Bombus [58,59] hortorum Bombus But see But see [60] [61] hypnorum [60] Bombus [62] [62,63] [26,64–66] [62] impatiens Bombus lucorum Bombus [28,58,59,6 [39] but see [67,68] [69,70] [36,39] ruderatus 9,71,72] [73] Bombus [59] subterraneous [67,70,74,75, [29,58,72,9 Bombus [25,26,70,7 [38,39,68,81,97,98 [4,76,88, [47,76,49,86,97 [74–76] 77–84] but 1–95] but terrestris 6,87–90] ] 99,100] ,101–103] see [85,86] see [96] Insects 2016, 7, 69; doi:10.3390/insects7040069 www.mdpi.com/journal/insects Insects 2016, 7, 69 S2 of S8 Table S2.
    [Show full text]
  • The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution
    EN58CH04-Danforth ARI 5 December 2012 7:55 The Impact of Molecular Data on Our Understanding of Bee Phylogeny and Evolution Bryan N. Danforth,1∗ Sophie Cardinal,2 Christophe Praz,3 Eduardo A.B. Almeida,4 and Denis Michez5 1Department of Entomology, Cornell University, Ithaca, New York 14853; email: [email protected] 2Canadian National Collection of Insects, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada; email: [email protected] 3Institute of Biology, University of Neuchatel, Emile-Argand 11, 2009 Neuchatel, Switzerland; email: [email protected] 4Departamento de Biologia, FFCLRP-Universidade de Sao˜ Paulo, 14040-901 Ribeirao˜ Preto, Sao˜ Paulo, Brazil; email: [email protected] 5University of Mons, Laboratory of Zoology, 7000 Mons, Belgium; email: [email protected] Annu. Rev. Entomol. 2013. 58:57–78 Keywords First published online as a Review in Advance on Hymenoptera, Apoidea, bees, molecular systematics, sociality, parasitism, August 28, 2012 plant-insect interactions The Annual Review of Entomology is online at ento.annualreviews.org Abstract by 77.56.160.109 on 01/14/13. For personal use only. This article’s doi: Our understanding of bee phylogeny has improved over the past fifteen years 10.1146/annurev-ento-120811-153633 as a result of new data, primarily nucleotide sequence data, and new methods, Copyright c 2013 by Annual Reviews. primarily model-based methods of phylogeny reconstruction. Phylogenetic All rights reserved Annu. Rev. Entomol. 2013.58:57-78. Downloaded from www.annualreviews.org studies based on single or, more commonly, multilocus data sets have helped ∗ Corresponding author resolve the placement of bees within the superfamily Apoidea; the relation- ships among the seven families of bees; and the relationships among bee subfamilies, tribes, genera, and species.
    [Show full text]
  • FORTY YEARS of CHANGE in SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Summer 7-15-2019 FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Part of the Biology Commons Recommended Citation Cumberland, Catherine. "FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES." (2019). https://digitalrepository.unm.edu/biol_etds/321 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Catherine Cumberland Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Kenneth Whitney, Ph.D., Chairperson Scott Collins, Ph.D. Paula Klientjes-Neff, Ph.D. Diane Marshall, Ph.D. Kelly Miller, Ph.D. i FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology, Sonoma State University 2005 B.A., Environmental Studies, Sonoma State University 2005 M.S., Ecology, Colorado State University 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy BIOLOGY The University of New Mexico Albuquerque, New Mexico July, 2019 ii FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology B.A., Environmental Studies M.S., Ecology Ph.D., Biology ABSTRACT Changes in a regional bee assemblage were investigated by repeating a 1970s study from the U.S.
    [Show full text]
  • Honey Bees on TPWD Lands
    WESTERN (EUROPEAN) HONEY BEES (APIS MELLIFERA) ON TEXAS PARKS AND WILDLIFE DEPARTMENT LANDS MANAGED FOR NATIVE BIODIVERISTY ISSUE BRIEFING PAPER/ POSITION STATEMENT ISSUE: Recommendation Against Managed Colonies of Western (European) Honey Bees (Apis mellifera) on Texas Parks and Wildlife Department Lands Managed for Native Biodiversity APPROVED: Carter Smith, Executive Director, Texas Parks and Wildlife Department. March 29, 2017. STAFF CONTACT: Benjamin T. Hutchins, TPWD Nongame and Rare Species Program, 512.389.4975, [email protected] COMMUNICATION GUIDANCE: This document provides information to Texas Parks and Wildlife Department (TPWD) staff on the potential impacts of the non-native western (European) honey bee (Apis mellifera) (referred to here as ‘honey bee’) on native ecosystems and guidance regarding the exclusion of managed honey bee colonies on TPWD lands established for the conservation of native plant communities and associated native wildlife. TPWD POSITION: The placement of managed honey bee colonies on TPWD lands managed wholly or in part for native biodiversity is incompatible with the protection of native biodiversity and should be avoided. SUMMARY: Western (European) honey bees (Apis mellifera) have the potential to negatively impact populations of native pollinator species. They may also facilitate establishment, reproduction, and expansion of non- native invasive plant species. Consequently, establishment of managed honey bee colonies on TPWD lands is not compatible with the conservation and management of native plant communities and associated wildlife. Exclusion of managed hives would help reduce establishment of feral honey bee populations that can potentially pose a nuisance or threat to visitors and staff. Although the importance of non-native honey bees for honey production and agricultural pollination is certainly substantial, establishment of managed and resulting feral colonies on TPWD lands managed wholly or in part for native biodiversity should be avoided.
    [Show full text]
  • The Impact of the European Honey Bee (Apis Mellifera) on Australian
    The Impact of the European Honey Bee (Apis mellifera) on Australian Native Bees Dean Paini (B.Sc. Hons) This thesis is presented for the degree of Doctor of Philosophy University of Western Australia, School of Animal Biology Faculty of Natural and Agricultural Sciences 2004 Contents Thesis structure iv Thesis summary v Acknowledgements vii Chapter 1. The Impact of the Introduced Honey Bee (Apis mellifera) (Hymenoptera: Apidae) on Native Bees: A Review Introduction 1 Resource overlap, visitation rates and resource harvesting 8 Survival, fecundity and population density 12 Conclusion 15 Aims of this thesis 16 Chapter 2. Seasonal Sex Ratio and Unbalanced Investment Sex Ratio in the Banksia bee Hylaeus alcyoneus Introduction 19 Methods 21 Results 24 Discussion 30 Chapter 3. The Impact of Commercial Honey Bees (Apis mellifera) on an Australian Native Bee (Hylaeus alcyoneus) Introduction 35 Methods 37 Results 45 Discussion 49 ii Chapter 4. Study of the nesting biology of an Australian resin bee (Megachile sp.; Hymenoptera: Megachilidae) using trap nests Introduction 55 Methods 56 Results 59 Discussion 68 Chapter 5. The short-term impact of feral honey bees on the reproductive success of an Australian native bee Introduction 72 Methods 74 Results 79 Discussion 86 Chapter 6. Management recommendations 89 Chapter 7. References 94 iii Thesis Structure The chapters of this thesis have been written as individual scientific papers. As a result, there may be some repetition between chapters. The top of the first page of each chapter explains what stage the chapter is presently at in terms of publication. Those chapters without an explanation are yet to be submitted.
    [Show full text]
  • Using a Social-Ecological System Approach to Enhance Understanding of Structural Interconnectivities Within the Beekeeping Industry for Sustainable Decision Making
    Copyright © 2020 by the author(s). Published here under license by the Resilience Alliance. Patel, V., E. M. Biggs, N. Pauli, and B. Boruff. 2020. Using a social-ecological system approach to enhance understanding of structural interconnectivities within the beekeeping industry for sustainable decision making. Ecology and Society 25(2):24. https://doi. org/10.5751/ES-11639-250224 Research Using a social-ecological system approach to enhance understanding of structural interconnectivities within the beekeeping industry for sustainable decision making Vidushi Patel 1,2, Eloise M. Biggs 3, Natasha Pauli 1,3 and Bryan Boruff 1,2,3 ABSTRACT. The social-ecological system framework (SESF) is a comprehensive, multitiered conceptual framework often used to understand human-environment interactions and outcomes. This research employs the SESF to understand key interactions within the bee-human system (beekeeping) through an applied case study of migratory beekeeping in Western Australia (WA). Apiarists in WA migrate their hives pursuing concurrent flowering events across the state. These intrastate migratory operations are governed by biophysical factors, e.g., health and diversity of forage species, as well as legislated and negotiated access to forage resource locations. Strict biosecurity regulations, natural and controlled burning events, and changes in land use planning affect natural resource-dependent livelihoods by influencing flowering patterns and access to valuable resources. Through the lens of Ostrom’s SESF, we (i) identify the social and ecological components of the WA beekeeping industry; (ii) establish how these components interact to form a system; and (iii) determine the pressures affecting this bee-human system. We combine a review of scholarly and grey literature with information from key industry stakeholders collected through participant observation, individual semistructured interviews, and group dialog to determine and verify first-, second-, and third-tier variables as SESF components.
    [Show full text]
  • Rangelands, Western Australia
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Species List
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • The Patterns and Processes of Insect Pollinator Re-Assembly Across a Post-Mining Restoration Landscape
    Faculty of Science and Engineering School of Molecular and Life Sciences The Patterns and Processes of Insect Pollinator Re-assembly across a Post-mining Restoration Landscape Emily Paige Tudor 0000-0002-2628-3999 This thesis is presented for the Degree of Master of Research (Environmental Science) of Curtin University January 2021 Declaration To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Invertebrate collections conducted for the purposes of this thesis were made under Fauna collection (scientific or other purposes) licences FO25000073 and FO25000230 provided by the Department of Biodiversity, Conservation and Attractions (Regulation 25; Biodiversity Conservation Regulations 2018). Additional funding was generously provided by Alcoa of Australia Ltd under the student placement agreement CW2270400 and in-kind support was generously provided by Kings Park Science. Signature: Date: 18th January 2020 i General Abstract Restoration ecology is rapidly evolving and growing in global significance for recovering habitat that has been damaged, degraded or destroyed. However, fauna remain an undervalued component of restoration as it is often assumed that fauna will return to restored landscapes following the reestablishment of vegetation. Insect pollinators are among the most biologically diverse and functionally important terrestrial taxa and serve to pollinate approximately 87.5% of all flowering plants. Therefore, insect pollinators play critical roles in the subsequent recruitment and community establishment of vegetation following restoration. However, the composition, structure, and function of insect pollinators in response to restoration has been largely overlooked within the Northern Jarrah Forest (NJF), where the impacts of restoration have otherwise been conspicuously well documented.
    [Show full text]
  • Within- and Between-Group Feeding Competition in Siberut Macaques (Macaca Siberu) and Assamese Macaques (Macaca Assamensis)
    Within- and between-group feeding competition in Siberut macaques (Macaca siberu) and Assamese macaques (Macaca assamensis) Dissertation for the award of the degree "Doctor rerum naturalium" (Dr.rer.nat.) of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) submitted by Christin Richter from Leipzig Göttingen, 2014 Thesis committee First supervisor: Prof. Dr. Julia Ostner Courant Research Centre (CRC) Evolution of Social Behaviour, JRG Social Evolution in Primates, Georg-August-University Göttingen Second supervisor: Prof. Dr. Peter M. Kappeler Department for Sociobiology/ Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen Adviser (“Anleiter”): Dr. Oliver Schülke Courant Research Centre (CRC) Evolution of Social Behaviour, JRG Social Evolution in Primates, Georg-August-University Göttingen Members of the examination board Reviewer: Prof. Dr. Julia Ostner Courant Research Centre (CRC) Evolution of Social Behaviour, JRG Social Evolution in Primates, Georg-August-University Göttingen Second Reviewer: Prof. Dr. Eckhard W. Heymann Behavioral Ecology and Sociobiology Unit, German Primate Center (DPZ), Leibniz Institute for Primate Research Further members of the examination board: Dr. Oliver Schülke, Courant Research Centre (CRC) Evolution of Social Behaviour, JRG Social Evolution in Primates, Georg-August-University Göttingen Dr. Antje Engelhardt, Sexual Selection Group, German Primate Center (DPZ),
    [Show full text]
  • Diversity of Cavity Nesting Bees Within Apple Orchards and Wild Habitats In
    235 Diversity of cavity-nesting bees (Hymenoptera: Apoidea) within apple orchards and wild habitats in the Annapolis Valley, Nova Scotia, Canada Cory S. Sheffield1,2 Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5 Peter G. Kevan Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 Sue M. Westby, Robert F. Smith Agriculture and Agri-Food Canada, 32 Main Street, Kentville, Nova Scotia, Canada B4N 1J5 Abstract—Solitary cavity-nesting bees, especially trap-nesting Megachilidae, have great poten- tial as commercial pollinators. A few species have been developed for crop pollination, but the diversity, abundance, and potential pollination contributions of native cavity-nesting bees within agricultural systems have seldom been assessed. Our objectives were to compare the diversity and fecundity of cavity-nesting bees in Nova Scotia in natural ecosystems with those in apple or- chards under three levels of management, using trap nests, and to determine whether any native bees show promise for development as pollinators. Our results show that species richness and numbers of bees reared from trap nests in commercially managed orchards, abandoned orchards, and natural habitats were similar, and species’ compositional patterns were not unique to specific habitats. Trap nests can be used to increase and maintain cavity-nesting bee populations within Nova Scotia apple orchards. Osmia tersula Cockerell (Megachilidae), which accounted for al- most 45% of all bees captured and was the most abundant species nesting in all habitats evalu- ated, should be assessed for potential as a commercial pollinator of spring-flowering crops.
    [Show full text]