New Insights Into the Physiological Role of Carbonic Anhydrase IX in Tumour Ph Regulation

Total Page:16

File Type:pdf, Size:1020Kb

New Insights Into the Physiological Role of Carbonic Anhydrase IX in Tumour Ph Regulation Oncogene (2010) 29, 6509–6521 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 www.nature.com/onc REVIEW New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation P Swietach1, A Hulikova1, RD Vaughan-Jones1,3 and AL Harris2,3 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK and 2Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK In this review, we discuss the role of the tumour-associated acidity, commonly expressed using the pH scale. A carbonic anhydrase isoform IX (CAIX) in the context of particularly important class of pH-sensitive molecules is pH regulation. We summarise recent experimental find- protein because of the strong link between protonation ings on the effect of CAIX on cell growth and survival, and state, tertiary structure and functional output. The þ present a diffusion-reaction model to help in the assess- responsiveness to pH depends on H affinity (KH), ment of CAIX function under physiological conditions. bestowed on the protein by the chemistry of its amino CAIX emerges as an important facilitator of acid acid residues. For many proteins, KH is numerically diffusion and acid transport, helping to overcome large close to physiological [H þ ], thus even small displace- cell-to-capillary distances that are characteristic of solid ments from ‘normal’ intracellular pH (pHi) can sig- tumours. The source of substrate for CAIX catalysis is nificantly alter cellular biochemistry. H þ ions serve as likely to be CO2, generated by adequately oxygenated universal and potent modulators of virtually all aspects mitochondria or from the titration of metabolic acids with of life. Through the breadth of their effects, H þ ions are À HCO3 taken up from the extracellular milieu. The appropriate signalling molecules for coordinating com- relative importance of these pathways will depend on plex cell programmes. For instance, moderately alkaline oxygen and metabolite availability, the spatiotemporal pHi is permissive for cell proliferation (Pouyssegur et al., patterns of the cell’s exposure to hypoxia and on the 1984; Chambard and Pouyssegur, 1986; Gillies et al., regulation of metabolism by genes. This is now an 1990; Gillies et al., 1992). It is not surprising that proper important avenue for further investigation. The impor- pHi regulation is of fundamental importance to all cells. tance of CAIX in regulating tumour pH highlights the Specialised mechanisms for pHi regulation have protein as a potential target for cancer therapy. evolved to fine-tune acid/base balance appropriately Oncogene (2010) 29, 6509–6521; doi:10.1038/onc.2010.455; for on-going cellular physiology. A major challenge to published online 4 October 2010 pHi house keeping is the large disparity between the target H þ ion concentration, typically between 50 and Keywords: cancer; pH; carbonic anhydrase IX; acid/ 100 nM, and the acid/base challenges, as high as base transport; buffers millimolar per minute, that disturb pHi. Among these acid/base loads is cellular respiration, which produces þ H -yielding CO2 or lactic acid. The most metabolically active cells are expected to express the most powerful The fundamental importance of acid/base balance pHi regulating apparatus. Cancer cells, for instance, are characterised by a very high metabolic rate (Gatenby Cellular function, growth and development arise from a and Gillies, 2004). The alkaline pHi measured in diversity of interlinked biochemical processes. The tumours with nuclear magnetic resonance (Griffiths proper orchestration of these unitary events is per- et al., 1981; Gillies et al., 2004) suggests that these cells formed by a hierarchy of signalling cascades, involving are well equipped to deal with excess H þ ions. both small ions (such as calcium) as well as more complex molecules (such as G-proteins). The potency and scope of these signals depends on the responsiveness of target molecules. Many biological molecules are weak Buffering reactions and membrane transport regulate acids or weak bases that can release or bind H þ ions intracellular pH (protons), respectively. The protonation state (and hence charge) of these molecules will depend on ambient Cells contain a high concentration of weak acids and weak bases—such as proteins, amino acids and phos- Correspondence: Dr P Swietach, Department of Physiology, Anatomy phates—which results in the intracellular milieu having and Genetics, University of Oxford, Sherrington Building, South Parks a high pH buffering power (Boron, 2004). Buffers are Road, Oxford OX1 3PT, UK. necessary to ‘dampen’ pHi displacements in response to E-mail: [email protected] þ 3Joint senior authors. H production (or consumption) that takes place at Received 16 July 2010; revised 30 August 2010; accepted 31 August 2010; distinct loci within cells, such as mitochondria or the published online 4 October 2010 surface membrane. In the presence of buffers, even Carbonic anhydrase IX in tumour pH regulation P Swietach et al 6510 millimolar concentrations of acid (or base) inflict merely Therefore, pHi sensitivity must be built into the nanomolar changes in free H þ ion concentration apparatus for regulating acid/base balance. The fidelity (equivalent to changing pHi by a fraction of a unit). of this pHi-sensing mechanism relies on good diffusive Most cells usually undergo periods of sustained acid coupling across the cell, particularly between the bulk loading. Buffering does not eliminate the acid/base cytoplasm and the cell membrane. The diffusive H þ flux problem, but merely acts as a temporary repository for must match H þ production with H þ extrusion (and H þ ions. Chronic acid production (for example, by similarly, H þ depletion with H þ loading). However, respiration) can deplete protonatable buffer sites. To because of the high intracellular buffering capacity, avoid this shortfall in buffering power, excess H þ ions, most H þ ions are bound to buffer molecules and can above a certain desired [H þ ] level, must be extruded diffuse only as fast as the H þ buffer complex (Irving from cells. In its simplest case, acid extrusion should et al., 1990; Vaughan-Jones et al., 2002; Swietach et al., match metabolic acid production. High-charge density 2003). An indispensible role for smaller buffer mole- precludes H þ ions themselves from crossing the lipid cules, such as amino acids, dipeptides, phosphates and À bilayer of membranes. To overcome this permeability carbon dioxide/bicarbonate (CO2/HCO3), is to shuttle obstacle, H þ ions must be shuttled across the membrane H þ ions within cells (Figure 1a). These are needed to in a permeant form by transport proteins. As the offset the diffusive restrictions imposed by heavier H þ transport of H þ ions across the membrane may require buffers, such as proteins. an input of energy, pHi regulation usually involves An alternative buffer/transporter arrangement for þ À primary (for example, H ATPase) or secondary (for pHi regulation relies uniquely on the CO2/HCO3 buffer example, Na þ /H þ exchanger (NHE)) active transpor- system (Figure 1b). This buffer, often labelled as ters (Figure 1a; Martinez-Zaguilan et al., 1993; Lee and physiological, is a major component of buffering Tannock, 1998; McLean et al., 2000; Boron, 2004; capacity (Leem et al., 1999; Boron, 2004; Alper, 2006). Chiche et al., 2010). Unlike many other buffer systems, its protonated form Acid extrusion must remain responsive to even the (CO2) is usually freely permeant across the membrane smallest change in metabolic rate. Moreover, under lipid bilayer. Transmembrane flux of CO2 is therefore a certain circumstances, cells may incur a deficiency of H þ disguised form of H þ flux that does not require a ions and require acid uptake (for example, by ClÀ/H þ - protein transporter, although it can be enhanced by equivalent transport; Vasseur et al., 1989; Sun et al., aquaporins (Nakhoul et al., 1998). To enable this system 1996; Niederer et al., 2008), rather than acid extrusion. to regulate pHi effectively, flux of CO2 must be matched À by counter flux of HCO3. Bicarbonate ions are À membrane impermeant and therefore active HCO3 transport at the cell membrane is required to maintain À intracellular CO2/HCO3 composition (Figure 1b). For the purpose of this review, the two schemes of À pHi regulation are referred to as HCO3 dependent and À HCO3 independent with reference to the species of ion that is transported across the cell membrane. It is À noteworthy that, even in the absence of HCO3 À transporters, CO2/HCO3 buffer can participate in pH regulation by spatially shuttling H þ ions to and from H þ transporters (Spitzer et al., 2002; Swietach et al., 2007). À The versatility of the CO2/HCO3 buffer system can be limited by the slow kinetics of CO2 hydration and the reverse dehydration reaction. Without catalysis, the À slow interchange between CO2 and HCO3 could impede H þ shuttling within the cell and across the membrane. For this reason, most cells express carbonic anhydrase (CA) enzymes, which catalyse the reversible reaction, À þ CO2 þ H2O2HCO3 þ H . Some CA isoforms have an Figure 1 Cellular mechanisms for removing intracellular acid intracellular catalytic site (for example, CAI, CAII, þ À involve pH buffers and membrane H or HCO3 transporters. (a) CAIII and so on), whereas others (for example, CAIV, À þ HCO3-independent mechanism: Intracellular H ions are extruded CAIX, CAXII, CAXIV) catalyse the reaction at the across the cell membrane by means of an H þ transporter (hexagon), such as Na þ /H þ exchange or H þ lactate cotransport. extracellular surface of the cells (Chegwidden et al., The transporter is supplied with H þ ions by protonated buffers 2000; Supuran, 2008). þ À (HBuf) that facilitate intracellular H diffusion. (b) HCO3- Regulation of pHi goes beyond the cell.
Recommended publications
  • Assessing the Influence of Environmental Ph on Algal Physiology Using a Novel Culture System
    Assessing the influence of environmental pH on algal physiology using a novel culture system By Rachel L. Golda A DISSERTATION Presented to the Division of Environmental and Biomolecular Systems and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Environmental Science and Engineering August, 2017 i School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL _________________________________ This is to certify that the PhD dissertation of Rachel L. Golda has been approved ________________________________________________ Mentor/Advisor: Tawnya Peterson (Oregon Health & Science University) ________________________________________________ Mentor/Advisor: Joseph Needoba (Oregon Health & Science University) ________________________________________________ Committee Chair: Paul Tratnyek (Oregon Health & Science University) ________________________________________________ Member: Anne Thompson (Portland State University) i TABLE OF CONTENTS CERTIFICATE OF APPROVAL ........................................................... Error! Bookmark not defined. TABLE OF CONTENTS ........................................................................................................................... ii LIST OF FIGURES .................................................................................................................................... v LIST OF EQUATIONS ...........................................................................................................................
    [Show full text]
  • THE ROLE of CARBON DIOXIDE (AND INTRACELLULAR Ph) IN
    THEORETICAL ARTICLE—ELMÉLETI ÖSSZEFOGLALÁS THE ROLE OF CARBON DIOXIDE (AND INTRACELLULAR pH) IN THE PATHOMECHANISM OF SEVERAL MENTAL DISORDERS ARE THE DISEASES OF CIVILIZATION CAUSED BY LEARNT BEHAVIOUR, NOT THE STRESS ITSELF? ANDRÁS SIKTER , GÁBOR FALUDI , ZOLTÁN RIHMER 1 Municipal Clinic of Szentendre, Section of Internal Medicine 2 Dept of Clinical and Theoretical Mental Health, Kutvolgyi Clinical Center, Semmelweis University, Budapest ELMÉLETI ÖSSZEFOGLALÁS Neuropsychopharmacologia Hungarica 2009, XI/3, 161-173 A SZÉNDIOXID (ÉS AZ INTRACELLULÁRIS matikus betegségek patomechanizmusában. Fel- pH) SZEREPE NÉHÁNY MENTÁLIS tételezik, hogy a civilizációs betegségeket nem BETEGSÉG PATOMECHANIZMUSÁBAN maga a stressz, hanem annak le nem reagálása Nem maga a stressz, hanem tanult okozza azáltal, hogy a CO2 szint tartósan eltér a viselkedési formák okoznák a civilizációs fiziológiástól. A növekvõ agyi pCO2, acidotikus betegségeket? citoszol pH, és/vagy emelkedett bazális citoszol A széndioxid szerepe alábecsült a neuropszichi- Ca2+ koncentráció csökkenti a citoszolba történõ átriai betegségek patomechanizmusában, ugyan- Ca2+ beáramlást és az arousalt – dysthymiát, de- akkor fontos kapocs a lélek és a test között. A pressziót okozhatnak. Ez többnyire ATP hiány- mindenkori lelki állapot többnyire a légzést is nyal és a citoszol Mg2+ tartalmának csökkenésé- befolyásolja (lassítja, gyorsítja, irregulárissá te- vel is jár. Ez az energetikai és ionkonstelláció jel- szi), ezért változik a pH. Másrészt a neuronok lemzõ az életkor emelkedésével korrelációt mu- citoszoljának aktuális pH-ja a Ca2+ konduktivitás tató krónikus szervi betegségekre is, és a legfon- egyik legfontosabb modifikátora, ezért a légzés a tosabb kapcsolat az organikus betegségekkel, Ca2+-on keresztül közvetlenül, gyorsan, hatéko- például az iszkémiás szívbetegséggel. A felvá- nyan befolyásolja a “second messenger” rend- zolt modellbe beleillik, hogy egyes farmakológi- szert.
    [Show full text]
  • Does Aerobic Respiration Produce Carbon Dioxide Or Hydrogen Ion and Bicarbonate?
    SPECIAL ARTICLE Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate? Erik R. Swenson, M.D. ABSTRACT Maintenance of intracellular pH is critical for clinical homeostasis. The metabolism of glucose, fatty acids, and amino acids yielding the generation of adenosine triphosphate in the mitochondria is accompanied by the production of acid in the Krebs Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/128/5/873/381029/20180500_0-00010.pdf by guest on 30 September 2021 cycle. Both the nature of this acidosis and the mechanism of its disposal have been argued by two investigators with a long- abiding interest in acid–base physiology. They offer different interpretations and views of the molecular mechanism of this intracellular pH regulation during normal metabolism. Dr. John Severinghaus has posited that hydrogen ion and bicarbon- ate are the direct end products in the Krebs cycle. In the late 1960s, he showed in brain and brain homogenate experiments that acetazolamide, a carbonic anhydrase inhibitor, reduces intracellular pH. This led him to conclude that hydrogen ion and bicarbonate are the end products, and the role of intracellular carbonic anhydrase is to rapidly generate diffusible carbon dioxide to minimize acidosis. Dr. Erik Swenson posits that carbon dioxide is a direct end product in the Krebs cycle, a more widely accepted view, and that acetazolamide prevents rapid intracellular bicarbonate formation, which can then codiffuse with carbon dioxide to the cell surface and there be reconverted for exit from the cell. Loss of this “facilitated diffusion of carbon dioxide” leads to intracellular acidosis as the still appreciable uncatalyzed rate of carbon dioxide hydration generates more protons.
    [Show full text]
  • Nanomaterials for Intracellular Ph Sensing and Imaging
    Nanomaterials for intracellular pH sensing and imaging Ying Lian, Wei Zhang, Longjiang Ding, Xiao-ai Zhang, Yinglu Zhang, Xu-dong Wang* Department of Chemistry, Fudan University, 200433, Shanghai, CHINA Western Chemistry bld. 114, Handan Road No. 220, Shanghai [email protected] Abstract: Intracellular pH is a vital parameter that precisely controls cell functionalities, activities and cellular events. Abnormal intracellular pH is always closely related to the healthy status of cells, which is further translated into pathological changes in a macro perspective. Because of the highly compartmentalized structure inside cells, the pH in each compartment can be precisely tuned to optimize certain cellular functionality, and biological reactions in these regions occur at optimum condition. Thus, it is important to design sensors that can precisely measure pH in these regions, and sensors must have good biocompatibility, physical stability, high sensitivity, wide measurement range, as well as fast response, to fulfill requirements for intracellular pH measurement. In this chapter, we will start from illustrating the importance of measuring intracellular pH, and further discuss how to design optical nanosensors for sensing and imaging intracellular pH. The state of the art technology in intracellular pH sensing and imaging will be reviewed, nanomaterials that are used for constructing intracellular pH sensors will be summarized and the perspective of nanomaterials for intracellular pH sensing and imaging will be given at the end. 1. Overview of the history of pH measurement pH is the abbreviation for Latin "Pondus hydrogenii", Pondus stands for power and hydrogenii stands for hydrogen. In chemistry, the pH scale is a numeric index used to specify acidity and alkalinity of aqueous solutions.
    [Show full text]
  • Regulation and Roles of Carbonic Anhydrases IX and XII
    HEINI KALLIO Regulation and Roles of Carbonic Anhydrases IX and XII ACADEMIC DISSERTATION To be presented, with the permission of the board of the Institute of Biomedical Technology of the University of Tampere, for public discussion in the Auditorium of Finn-Medi 5, Biokatu 12, Tampere, on December 2nd, 2011, at 12 o’clock. UNIVERSITY OF TAMPERE ACADEMIC DISSERTATION University of Tampere, Institute of Biomedical Technology Tampere University Hospital Tampere Graduate Program in Biomedicine and Biotechnology (TGPBB) Finland Supervised by Reviewed by Professor Seppo Parkkila Docent Peppi Karppinen University of Tampere University of Oulu Finland Finland Professor Robert McKenna University of Florida USA Distribution Tel. +358 40 190 9800 Bookshop TAJU Fax +358 3 3551 7685 P.O. Box 617 [email protected] 33014 University of Tampere www.uta.fi/taju Finland http://granum.uta.fi Cover design by Mikko Reinikka Acta Universitatis Tamperensis 1675 Acta Electronica Universitatis Tamperensis 1139 ISBN 978-951-44-8621-0 (print) ISBN 978-951-44-8622-7 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://acta.uta.fi Tampereen Yliopistopaino Oy – Juvenes Print Tampere 2011 There is a crack in everything, that’s how the light gets in. -Leonard Cohen 3 CONTENTS CONTENTS .......................................................................................................... 4 LIST OF ORIGINAL COMMUNICATIONS...................................................... 7 ABBREVIATIONS .............................................................................................
    [Show full text]
  • Functional and Immunohistological Studies on Cancer-Associated Carbonic Anhydrase Ix
    D868etukansi.kesken.fm Page 1 Monday, January 16, 2006 1:35 PM D 868 OULU 2006 D 868 UNIVERSITY OF OULU P.O. Box 7500 FI-90014 UNIVERSITY OF OULU FINLAND ACTA UNIVERSITATIS OULUENSIS ACTA UNIVERSITATIS OULUENSIS ACTA D SERIES EDITORS Mari Leppilampi MEDICA MariLeppilampi ASCIENTIAE RERUM NATURALIUM Professor Mikko Siponen FUNCTIONAL AND BHUMANIORA IMMUNOHISTOLOGICAL Professor Harri Mantila STUDIES ON CANCER- CTECHNICA Professor Juha Kostamovaara ASSOCIATED CARBONIC DMEDICA Professor Olli Vuolteenaho ANHYDRASE IX ESCIENTIAE RERUM SOCIALIUM Senior assistant Timo Latomaa FSCRIPTA ACADEMICA Communications Officer Elna Stjerna GOECONOMICA Senior Lecturer Seppo Eriksson EDITOR IN CHIEF Professor Olli Vuolteenaho EDITORIAL SECRETARY Publication Editor Kirsti Nurkkala FACULTY OF MEDICINE, DEPARTMENT OF CLINICAL CHEMISTRY, DEPARTMENT OF PATHOLOGY, ISBN 951-42-7993-X (nid.) UNIVERSITY OF OULU ISBN 951-42-7994-8 (PDF) ISSN 0355-3221 ACTA UNIVERSITATIS OULUENSIS D Medica 868 MARI LEPPILAMPI FUNCTIONAL AND IMMUNOHISTOLOGICAL STUDIES ON CANCER-ASSOCIATED CARBONIC ANHYDRASE IX Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, for public discussion in the Auditorium 7 of Oulu University Hospital, on February 17th, 2006, at 12 noon OULUN YLIOPISTO, OULU 2006 Copyright © 2006 Acta Univ. Oul. D 868, 2006 Supervised by Professor Seppo Parkkila Docent Tuomo Karttunen Reviewed by Docent Teuvo Hentunen Professor Claudiu Supuran ISBN 951-42-7993-X (nid.) ISBN 951-42-7994-8 (PDF) http://herkules.oulu.fi/isbn9514279948/ ISSN 0355-3221 http://herkules.oulu.fi/issn03553221/ OULU UNIVERSITY PRESS OULU 2006 Leppilampi, Mari, Functional and immunohistological studies on cancer-associated carbonic anhydrase IX Faculty of Medicine, Department of Clinical Chemistry, Department of Pathology, University of Oulu, P.O.Box 5000, FI-90014 University of Oulu, Finland Acta Univ.
    [Show full text]
  • Investigating the Effects of Human Carbonic Anhydrase 1 Expression
    Investigating the effects of human Carbonic Anhydrase 1 expression in mammalian cells Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Xiaochen Liu, BSc, MSc January 2016 ABSTRACT Amyotrophic Lateral Sclerosis (ALS) is one of the most common motor neuron diseases with a crude annual incidence rate of ~2 cases per 100,000 in European countries, Japan, United States and Canada. The role of Carbonic Anhydrase 1 (CA1) in ALS pathogenesis is completely unknown. Previous unpublished results from Dr. Jian Liu have shown in the spinal cords of patients with sporadic amyotrophic lateral sclerosis (SALS) there is a significant increased expression of CA1 proteins. The purpose of this study is to examine the effect of CA1 expression in mammalian cells, specifically, whether CA1 expression will affect cellular viability and induce apoptosis. To further understand whether such effect is dependent upon CA1 enzymatic activity, three CA1 mutants (Thr199Val, Glu106Ile and Glu106Gln) were generated using two- step PCR mutagenesis. Also, a fluorescence-based assay using the pH-sensitive fluorophore Pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) to measure the anhydrase activity was developed. The assay has been able to circumvent the requirement of the specialized equipment by utilizing a sensitive and fast microplate reader and demonstrated that three - mutants are enzymatically inactive under the physiologically relevant HCO3 dehydration reaction which has not been tested before by others. The data show that transient expression of CA1 in Human Embryonic Kidney 293 (HEK293), African Green Monkey Kidney Fibroblast (COS7) and Human Breast Adenocarcinoma (MCF7) cell lines did not induce significant changes to the cell viability at 36hrs using the Water Soluble Tetrazolium-8 (WST8) assay.
    [Show full text]
  • Addition of Carbonic Anhydrase 9 Inhibitor SLC-0111 to Temozolomide Treatment Delays Glioblastoma Growth in Vivo
    Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo Nathaniel H. Boyd, … , Shoukat Dedhar, Anita B. Hjelmeland JCI Insight. 2017;2(24):e92928. https://doi.org/10.1172/jci.insight.92928. Research Article Neuroscience Oncology Tumor microenvironments can promote stem cell maintenance, tumor growth, and therapeutic resistance, findings linked by the tumor-initiating cell hypothesis. Standard of care for glioblastoma (GBM) includes temozolomide chemotherapy, which is not curative, due, in part, to residual therapy-resistant brain tumor-initiating cells (BTICs). Temozolomide efficacy may be increased by targeting carbonic anhydrase 9 (CA9), a hypoxia-responsive gene important for maintaining the altered pH gradient of tumor cells. Using patient-derived GBM xenograft cells, we explored whether CA9 and CA12 inhibitor SLC-0111 could decrease GBM growth in combination with temozolomide or influence percentages of BTICs after chemotherapy. In multiple GBMs, SLC-0111 used concurrently with temozolomide reduced cell growth and induced cell cycle arrest via DNA damage in vitro. In addition, this treatment shifted tumor metabolism to a suppressed bioenergetic state in vivo. SLC-0111 also inhibited the enrichment of BTICs after temozolomide treatment determined via CD133 expression and neurosphere formation capacity. GBM xenografts treated with SLC-0111 in combination with temozolomide regressed significantly, and this effect was greater than that of temozolomide or SLC-0111 alone. We determined that SLC-0111 improves the efficacy of temozolomide to extend survival of GBM-bearing mice and should be explored as a treatment strategy in combination with current standard of care. Find the latest version: https://jci.me/92928/pdf RESEARCH ARTICLE Addition of carbonic anhydrase 9 inhibitor SLC-0111 to temozolomide treatment delays glioblastoma growth in vivo Nathaniel H.
    [Show full text]
  • And Carbonic Anhydrase 9 (CAIX) in Clear Cell Renal Cell Carcinoma (Ccrcc)
    Arch Nephrol Urol 2020; 4 (2): 050-062 DOI: 10.26502/anu.2644-2833036 Research Article Study of Hypoxia Induced Factor-1Alpha (HIF-1A) and Carbonic Anhydrase 9 (CAIX) in clear cell Renal Cell Carcinoma (ccRCC) Anna Tassoudi1, Ioannis Stefanidis2, Theodoros Eleftheriadis3, Vasilios Tzortzis4, Vasilios Tassoudis5*and Maria Ioannou6 1Undergraduate student of Medicine, University of Thessaly, Volos, Greece 2Professor of Internal Pathology/ Nephrology, University of Thessaly, Volos, Greece 3Associate Professor of Internal Pathology/ Nephrology, University of Thessaly, Volos, Greece 4Professor of Urology, University of Thessaly, Volos, Greece 5N.H.S Director of Anesthesiology, University Hospital of Larissa, Larissa, Greece 6Professor of Pathology, University of Thessaly, Volos, Greece *Corresponding Author: Vasilios Tassoudis, N.H.S Director of Anesthesiology, University Hospital of Larissa, Larissa, Greece Received: 21 March 2021; Accepted: 07 April 2021; Published: 12 April 2021 Citation: Anna Tassoudi, Ioannis Stefanidis, Theodoros Eleftheriadis, Vasilios Tzortzis, Vasilios Tassoudis, Maria Ioannou. Study of Hypoxia Induced Factor-1Alpha (HIF-1A) and Carbonic Anhydrase 9 (CAIX) in clear cell Renal Cell Carcinoma (ccRCC). Archives of Nephrology and Urology 4 (2021): 050-062. Abstract Methods: We retrospectively analyzed 42 ccRCC cases Objective: The aim of this study was to investigate the immunohistochemically for their expression status of HIF- immunohistochemical expression of hypoxia inducible 1α, correlating this status with CAIX expression and factor-1α (HIF-1α) and carbonic anhydrase 9 (CAIX) in clinicopathological data. The Kruskal-Wallis H test and the renal cell carcinoma and the association with Mann-Whitney U test were used for statistical analysis. A clinicopathological parameters. Kendall’s tau-b test was performed to find possible correlation between HIF-1 alpha and CAIX.
    [Show full text]
  • How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular Ph
    cancers Review How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular pH Shen-Han Lee 1,* and John R. Griffiths 2 1 Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, Jalan Langgar, Alor Setar 05460, Kedah, Malaysia 2 Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; john.griffi[email protected] * Correspondence: [email protected] Received: 17 May 2020; Accepted: 15 June 2020; Published: 18 June 2020 Abstract: The acidic tumour microenvironment is now recognized as a tumour phenotype that drives cancer somatic evolution and disease progression, causing cancer cells to become more invasive and to metastasise. This property of solid tumours reflects a complex interplay between cellular carbon metabolism and acid removal that is mediated by cell membrane carbonic anhydrases and various transport proteins, interstitial fluid buffering, and abnormal tumour-associated vessels. In the past two decades, a convergence of advances in the experimental and mathematical modelling of human cancers, as well as non-invasive pH-imaging techniques, has yielded new insights into the physiological mechanisms that govern tumour extracellular pH (pHe). In this review, we examine the mechanisms by which solid tumours maintain a low pHe, with a focus on carbonic anhydrase IX (CAIX), a cancer-associated cell surface enzyme. We also review the accumulating evidence that suggest a role for CAIX as a biological pH-stat by which solid tumours stabilize their pHe. Finally, we highlight the prospects for the clinical translation of CAIX-targeted therapies in oncology. Keywords: cancer microenvironment; tumour pH; carbonic anhydrase IX; cancer metabolism; pH-stat; pH measurement in vivo; magnetic resonance spectroscopy; models of tumour pH regulation 1.
    [Show full text]
  • Expression of Hypoxia-Inducible Carbonic Anhydrase-9 Relates to Angiogenic Pathways and Independently to Poor Outcome in Non-Small Cell Lung Cancer
    [CANCER RESEARCH 61, 7992–7998, November 1, 2001] Expression of Hypoxia-inducible Carbonic Anhydrase-9 Relates to Angiogenic Pathways and Independently to Poor Outcome in Non-Small Cell Lung Cancer Alexandra Giatromanolaki,1 Michael I. Koukourakis, Efthimios Sivridis, Jaromir Pastorek, Charles C. Wykoff, Kevin C. Gatter, and Adrian L. Harris Tumour and Angiogenesis Research Group, Departments of Radiotherapy/Oncology and Pathology, Democritus University of Thrace, Alexandroupolis 68100, Greece [A. G., M. I. K., E. S.]; Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic [J. P.]; and Departments of Cellular Science and Institute of Molecular Medicine, Oxford Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom [C. C. W., K. C. G., A. L. H.] ABSTRACT expression of CA9 in renal malignancies, and indeed, introduction of the wild-type VHL gene in renal cell carcinomas suppressed the Carbonic anhydrase-9 (CA9), a transmembrane enzyme with an extra- expression of CA9 and CA12 (3). cellular active site, is involved in the reversible metabolism of the carbon Recently, Wykoff et al. (4) showed that, apart from its constitutive dioxide to carbonic acid. Up-regulation of CA by hypoxia and the hypoxia- inducible factor (HIF) pathway has been recently postulated (Wykoff et al. expression in some tumors, CA9 is also induced by hypoxia. The HIF Cancer Res., 60: 7075–7083, 2000). In the present study we examined the pathway up-regulated by hypoxia or by VHL mutations (5) is there- expression of this enzyme in non-small cell lung cancer. Of 107 cases fore suggested as the major pathway of CA9 up-regulation in human analyzed, 39 (36.4%) had strong membrane/cytoplasmic expression of carcinomas.
    [Show full text]
  • The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and Ph Homeostasis in Non-Secretory Organs
    International Journal of Molecular Sciences Review The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs Dongun Lee and Jeong Hee Hong * Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-32-899-6682; Fax: +82-32-899-6039 Received: 17 December 2019; Accepted: 3 January 2020; Published: 4 January 2020 Abstract: The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems. Keywords: bicarbonate; ion transporters; carbonic anhydrase; intracellular pH; maturation 1. Convergent Regulation of Ion Homeostasis Ion homeostasis is an important process involved in various organ functions, including modulation of sensitivity to blood pressure, immune cell differentiation, fluid secretion, and fertilization of reproductive cells such as sperm and eggs.
    [Show full text]