Krishnan Correlation CUSB.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ED441031.Pdf
DOCUMENT RESUME ED 441 031 TM 030 830 AUTHOR Fahoome, Gail; Sawilowsky, Shlomo S. TITLE Review of Twenty Nonparametric Statistics and Their Large Sample Approximations. PUB DATE 2000-04-00 NOTE 42p.; Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 24-28, 2000). PUB TYPE Information Analyses (070)-- Numerical/Quantitative Data (110) Speeches/Meeting Papers (150) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS Monte Carlo Methods; *Nonparametric Statistics; *Sample Size; *Statistical Distributions ABSTRACT Nonparametric procedures are often more powerful than classical tests for real world data, which are rarely normally distributed. However, there are difficulties in using these tests. Computational formulas are scattered tnrous-hout the literature, and there is a lack of avalialalicy of tables of critical values. This paper brings together the computational formulas for 20 commonly used nonparametric tests that have large-sample approximations for the critical value. Because there is no generally agreed upon lower limit for the sample size, Monte Carlo methods have been used to determine the smallest sample size that can be used with the large-sample approximations. The statistics reviewed include single-population tests, comparisons of two populations, comparisons of several populations, and tests of association. (Contains 4 tables and 59 references.)(Author/SLD) Reproductions supplied by EDRS are the best that can be made from the original document. Review of Twenty Nonparametric Statistics and Their Large Sample Approximations Gail Fahoome Shlomo S. Sawilowsky U.S. DEPARTMENT OF EDUCATION Mice of Educational Research and Improvement PERMISSION TO REPRODUCE AND UCATIONAL RESOURCES INFORMATION DISSEMINATE THIS MATERIAL HAS f BEEN GRANTED BY CENTER (ERIC) This document has been reproduced as received from the person or organization originating it. -
Detecting Trends Using Spearman's Rank Correlation Coefficient
Environmental Forensics 2001) 2, 359±362 doi:10.1006/enfo.2001.0061, available online at http://www.idealibrary.com on Detecting Trends Using Spearman's Rank Correlation Coecient Thomas D. Gauthier Sciences International Inc, 6150 State Road 70, East Bradenton, FL 34203, U.S.A. Received 23 August 2001, Revised manuscript accepted 1 October 2001) Spearman's rank correlation coecient is a useful tool for exploratory data analysis in environmental forensic investigations. In this application it is used to detect monotonic trends in chemical concentration with time or space. # 2001 AEHS Keywords: Spearman rank correlation coecient; trend analysis; soil; groundwater. Environmental forensic investigations can involve a The idea behind the rank correlation coecient is variety of statistical analysis techniques. A relatively simple. Each variable is ranked separately from lowest simple technique that can be used for exploratory data to highest e.g. 1, 2, 3, etc.) and the dierence between analysis is the Spearman rank correlation coecient. In ranks for each data pair is recorded. If the data are this technical note, I describe howthe Spearman rank correlated, then the sum of the square of the dierence correlation coecient can be used as a statistical tool between ranks will be small. The magnitude of the sum to detect monotonic trends in chemical concentrations is related to the signi®cance of the correlation. with time or space. The Spearman rank correlation coecient is calcu- Trend analysis can be useful for detecting chemical lated according to the following equation: ``footprints'' at a site or evaluating the eectiveness of Pn an installed or natural attenuation remedy. -
BACHELOR of COMMERCE (Hons)
GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY , D ELHI BACHELOR OF COMMERCE (Hons) BCOM 110- Business Statistics L-5 T/P-0 Credits-5 Objectives: The objective of this course is to familiarize students with the basic statistical tools used to summarize and analyze quantitative information for decision making. COURSE CONTENTS Unit I Lectures: 20 Statistical Data and Descriptive Statistics: Measures of Central Tendency: Mathematical averages including arithmetic mean, geometric mean and harmonic mean, properties and applications, positional averages, mode, median (and other partition values including quartiles, deciles, and percentile; Unit II Lectures: 15 Measures of variation: absolute and relative, range, quartile deviation, mean deviation, standard deviation, and their co-efficients, properties of standard deviation/variance; Moments: calculation and significance; Skewness, Kurtosis and Moments. Unit III Lectures: 15 Simple Correlation and Regression Analysis: Correlation Analysis, meaning of correlation simple, multiple and partial; linear and non-linear, Causation and correlation, Scatter diagram, Pearson co-efficient of correlation; calculation and properties, probable and standard errors, rank correlation; Simple Regression Analysis: Regression equations and estimation. Unit IV Lectures: 20 Index Numbers: Meaning and uses of index numbers, construction of index numbers, univariate and composite, aggregative and average of relatives – simple and weighted, tests of adequacy of index numbers, Base shifting, problems in the construction of index numbers. Text Books : 1. Levin, Richard and David S. Rubin. (2011), Statistics for Management. 7th Edition. PHI. 2. Gupta, S.P., and Gupta, Archana, (2009), Statistical Methods. Sultan Chand and Sons, New Delhi. Reference Books : 1. Berenson and Levine, (2008), Basic Business Statistics: Concepts and Applications. Prentice Hall. BUSINESS STATISTICS:PAPER CODE 110 Dr. -
The Interpretation of the Probable Error and the Coefficient of Correlation
THE UNIVERSITY OF ILLINOIS LIBRARY 370 IL6 . No. 26-34 sssftrsss^"" Illinois Library University of L161—H41 Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/interpretationof32odel BULLETIN NO. 32 BUREAU OF EDUCATIONAL RESEARCH COLLEGE OF EDUCATION THE INTERPRETATION OF THE PROBABLE ERROR AND THE COEFFICIENT OF CORRELATION By Charles W. Odell Assistant Director, Bureau of Educational Research ( (Hi THE UBMM Of MAR 14 1927 HKivERsrrv w Illinois PRICE 50 CENTS PUBLISHED BY THE UNIVERSITY OF ILLINOIS. URBANA 1926 370 lit TABLE OF CONTENTS PAGE Preface 5 i Chapter I. Introduction 7 Chapter II. The Probable Error 9 .Chapter III. The Coefficient of Correlation 33 PREFACE Graduate students and other persons contemplating ed- ucational research frequently ask concerning the need for training in statistical procedures. They usually have in mind training in the technique of making tabulations and calcula- tions. This, as Doctor Odell points out, is only one phase, and probably not the most important phase, of needed train- ing in statistical methods. The interpretation of the results of calculation has not received sufficient attention by the authors of texts in this field. The following discussion of two derived measures, the probable error and the coefficient of correlation, is offered as a contribution to the technique of educational research. It deals with the problems of the reader of reports of research, as well as those of original investigators. The tabulating of objective data and the mak- ing of calculations from the tabulations may be and fre- quently is a tedious task, but it is primarily one of routine. -
Correlation • References: O Kendall, M., 1938: a New Measure of Rank Correlation
Coupling metrics to diagnose land-atmosphere interactions http://tiny.cc/l-a-metrics Correlation • References: o Kendall, M., 1938: A new measure of rank correlation. Biometrika, 30(1-2), 81–89. o Pearson, K., 1895: Notes on regression and inheritance in the case of two parents, Proc. Royal Soc. London, 58, 240–242. o Spearman, C., 1907, Demonstration of formulæ for true measurement of correlation. Amer. J. Psychol., 18(2), 161–169. • Principle: o A correlation r is a measure of how one variable tends to vary (in sync, out of sync, or randomly) with another variable in space and/or time. –1 ≤ r ≤ 1 o The most commonly used is Pearson product-moment correlation coefficient, which relates how well a distribution of two quantities fits a linear regression: cov(x, y) xy− x y r(x, y) = = 2 2 σx σy x xx y yy − − where overbars denote averages over domains in space, time or both. § As with linear regressions, there is an implied assumption that the distribution of each variable is near normal. If one or both variables are not, it may be advisable to remap them into a normal distribution. o Spearman's rank correlation coefficient relates the ranked ordering of two variables in a non-parametric fashion. This can be handy as Pearson’s r can be heavily influenced by outliers, just as linear regressions are. The equation is the same but the sorted ranks of x and y are used instead of the values of x and y. o Kendall rank correlation coefficient is a variant of rank correlation. -
Correlation and Regression Analysis
OIC ACCREDITATION CERTIFICATION PROGRAMME FOR OFFICIAL STATISTICS Correlation and Regression Analysis TEXTBOOK ORGANISATION OF ISLAMIC COOPERATION STATISTICAL ECONOMIC AND SOCIAL RESEARCH AND TRAINING CENTRE FOR ISLAMIC COUNTRIES OIC ACCREDITATION CERTIFICATION PROGRAMME FOR OFFICIAL STATISTICS Correlation and Regression Analysis TEXTBOOK {{Dr. Mohamed Ahmed Zaid}} ORGANISATION OF ISLAMIC COOPERATION STATISTICAL ECONOMIC AND SOCIAL RESEARCH AND TRAINING CENTRE FOR ISLAMIC COUNTRIES © 2015 The Statistical, Economic and Social Research and Training Centre for Islamic Countries (SESRIC) Kudüs Cad. No: 9, Diplomatik Site, 06450 Oran, Ankara – Turkey Telephone +90 – 312 – 468 6172 Internet www.sesric.org E-mail [email protected] The material presented in this publication is copyrighted. The authors give the permission to view, copy download, and print the material presented that these materials are not going to be reused, on whatsoever condition, for commercial purposes. For permission to reproduce or reprint any part of this publication, please send a request with complete information to the Publication Department of SESRIC. All queries on rights and licenses should be addressed to the Statistics Department, SESRIC, at the aforementioned address. DISCLAIMER: Any views or opinions presented in this document are solely those of the author(s) and do not reflect the views of SESRIC. ISBN: xxx-xxx-xxxx-xx-x Cover design by Publication Department, SESRIC. For additional information, contact Statistics Department, SESRIC. i CONTENTS Acronyms -
"Rank and Linear Correlation Differences in Simulation and Other
AN ABSTRACT OF THE THESIS OF Maryam Agahi for the degree of Master of Science in Industrial Engineering presented on August 9, 2013 Title: Rank and Linear Correlation Differences in Simulation and other Applications Abstract approved: David S. Kim Monte Carlo simulation is used to quantify and characterize uncertainty in a variety of applications such as financial/engineering economic analysis, and project management. The dependence or correlation between the random variables modeled can also be simulated to add more accuracy to simulations. However, there exists a difference between how correlation is most often estimated from data (linear correlation), and the correlation that is simulated (rank correlation). In this research an empirical methodology is developed to estimate the difference between the specified linear correlation between two random variables, and the resulting linear correlation when rank correlation is simulated. It is shown that in some cases there can be relatively large differences. The methodology is based on the shape of the quantile-quantile plot of two distributions, a measure of the linearity of the quantile- quantile plot, and the level of correlation between the two random variables. This methodology also gives a user the ability to estimate the rank correlation that when simulated, generates the desired linear correlation. This methodology enhances the accuracy of simulations with dependent random variables while utilizing existing simulation software tools. ©Copyright by Maryam Agahi August 9,2013 All Rights -
A Test of Independence in Two-Way Contingency Tables Based on Maximal Correlation
A TEST OF INDEPENDENCE IN TWO-WAY CONTINGENCY TABLES BASED ON MAXIMAL CORRELATION Deniz C. YenigÄun A Dissertation Submitted to the Graduate College of Bowling Green State University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2007 Committee: G¶abor Sz¶ekely, Advisor Maria L. Rizzo, Co-Advisor Louisa Ha, Graduate Faculty Representative James Albert Craig L. Zirbel ii ABSTRACT G¶abor Sz¶ekely, Advisor Maximal correlation has several desirable properties as a measure of dependence, includ- ing the fact that it vanishes if and only if the variables are independent. Except for a few special cases, it is hard to evaluate maximal correlation explicitly. In this dissertation, we focus on two-dimensional contingency tables and discuss a procedure for estimating maxi- mal correlation, which we use for constructing a test of independence. For large samples, we present the asymptotic null distribution of the test statistic. For small samples or tables with sparseness, we use exact inferential methods, where we employ maximal correlation as the ordering criterion. We compare the maximal correlation test with other tests of independence by Monte Carlo simulations. When the underlying continuous variables are dependent but uncorre- lated, we point out some cases for which the new test is more powerful. iii ACKNOWLEDGEMENTS I would like to express my sincere appreciation to my advisor, G¶abor Sz¶ekely, and my co-advisor, Maria Rizzo, for their advice and help throughout this research. I thank to all the members of my committee, Craig Zirbel, Jim Albert, and Louisa Ha, for their time and advice. -
Chi-Squared for Association in SPSS
community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence stcp-karadimitriou-chisqS The following resources are associated: Summarising categorical variables in SPSS and the ‘Titanic.sav’ dataset Chi-Squared Test for Association in SPSS Dependent variable: Categorical Independent variable: Categorical Common Applications: Association between two categorical variables. The chi-squared test tests the hypothesis that there is no relationship between two categorical variables. It compares the observed frequencies from the data with frequencies which would be expected if there was no relationship between the two variables. Data: The dataset Titanic.sav contains data on 1309 passengers and crew who were on board the ship ‘Titanic’ when it sank in 1912. The question of interest is which factors affected survival. The dependent variable is ‘Survival’ and possible independent values are all the other variables. Here we will look at whether there’s an association between nationality (Residence) and survival (Survived). Variable name pclass survived Residence Gender age sibsp parch fare No. of No. of price Class of Survived Country of Gender siblings/ parents/ Name Age of passenger 0 = died residence 0 = male spouses on children on ticket board board Abbing, Anthony 3 0 USA 0 42 0 0 7.55 Abbott, Rosa 3 1 USA 1 35 1 1 20.25 Abelseth, Karen 3 1 UK 1 16 0 0 7.65 Data of this type are usually summarised by counting the number of subjects in each factor category and presenting it in the form of a table, known as a cross-tabulation or a contingency table. -
Revision of All Topics
Revision Of All Topics Quantitative Aptitude & Business Statistics Def:Measures of Central Tendency • A single expression representing the whole group,is selected which may convey a fairly adequate idea about the whole group. • This single expression is known as average. Quantitative Aptituide & Business 2 Statistics: Revision Of All Toics Averages are central part of distribution and, therefore ,they are also called measures of central tendency. Quantitative Aptituide & Business 3 Statistics: Revision Of All Toics Types of Measures central tendency: There are five types ,namely 1.Arithmetic Mean (A.M) 2.Median 3.Mode 4.Geometric Mean (G.M) 5.Harmonic Mean (H.M) Quantitative Aptituide & Business 4 Statistics: Revision Of All Toics Arithmetic Mean (A.M) The most commonly used measure of central tendency. When people ask about the “average" of a group of scores, they usually are referring to the mean. Quantitative Aptituide & Business 5 Statistics: Revision Of All Toics • The arithmetic mean is simply dividing the sum of variables by the total number of observations. Quantitative Aptituide & Business 6 Statistics: Revision Of All Toics Arithmetic Mean for Ungrouped data is given by n ∑ xi + + + + X = x1 x2 x3 ...... xn = i=1 n n Quantitative Aptituide & Business 7 Statistics: Revision Of All Toics Arithmetic Mean for Discrete Series n ∑ fi xi f1x1 + f 2 x2 + f 3 x3 +......+ f n xn i=1 X = = n f1 + f2 + f3 + .... + fn ∑ fi i=1 Quantitative Aptituide & Business 8 Statistics: Revision Of All Toics Arithmetic Mean for Continuous Series fd X = A + ∑ ×C N Quantitative Aptituide & Business 9 Statistics: Revision Of All Toics Weighted Arithmetic Mean • The term ‘ weight’ stands for the relative importance of the different items of the series. -
Outing the Outliers – Tails of the Unexpected
Presented at the 2016 International Training Symposium: www.iceaaonline.com/bristol2016 Outing the Outliers – Tails of the Unexpected Outing the Outliers – Tails of the Unexpected Cynics would say that we can prove anything we want with statistics as it is all down to … a word (or two) from the Wise? interpretation and misinterpretation. To some extent this is true, but in truth it is all down to “The great tragedy of Science: the slaying making a judgement call based on the balance of of a beautiful hypothesis by an ugly fact” probabilities. Thomas Henry Huxley (1825-1895) British Biologist The problem with using random samples in estimating is that for a small sample size, the values could be on the “extreme” side, relatively speaking – like throwing double six or double one with a pair of dice, and nothing else for three of four turns. The more random samples we have the less likely (statistically speaking) we are to have all extreme values. So, more is better if we can get it, but sometimes it is a question of “We would if we could, but we can’t so we don’t!” Now we could argue that Estimators don’t use random values (because it sounds like we’re just guessing); we base our estimates on the “actuals” we have collected for similar tasks or activities. However, in the context of estimating, any “actual” data is in effect random because the circumstances that created those “actuals” were all influenced by a myriad of random factors. Anyone who has ever looked at the “actuals” for a repetitive task will know that there are variations in those values. -
Linear Regression and Correlation
NCSS Statistical Software NCSS.com Chapter 300 Linear Regression and Correlation Introduction Linear Regression refers to a group of techniques for fitting and studying the straight-line relationship between two variables. Linear regression estimates the regression coefficients β0 and β1 in the equation Yj = β0 + β1 X j + ε j where X is the independent variable, Y is the dependent variable, β0 is the Y intercept, β1 is the slope, and ε is the error. In order to calculate confidence intervals and hypothesis tests, it is assumed that the errors are independent and normally distributed with mean zero and variance σ 2 . Given a sample of N observations on X and Y, the method of least squares estimates β0 and β1 as well as various other quantities that describe the precision of the estimates and the goodness-of-fit of the straight line to the data. Since the estimated line will seldom fit the data exactly, a term for the discrepancy between the actual and fitted data values must be added. The equation then becomes y j = b0 + b1x j + e j = y j + e j 300-1 © NCSS, LLC. All Rights Reserved. NCSS Statistical Software NCSS.com Linear Regression and Correlation where j is the observation (row) number, b0 estimates β0 , b1 estimates β1 , and e j is the discrepancy between the actual data value y j and the fitted value given by the regression equation, which is often referred to as y j . This discrepancy is usually referred to as the residual. Note that the linear regression equation is a mathematical model describing the relationship between X and Y.