Nonparametric Statistics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix a Basic Statistical Concepts for Sensory Evaluation
Appendix A Basic Statistical Concepts for Sensory Evaluation Contents This chapter provides a quick introduction to statistics used for sensory evaluation data including measures of A.1 Introduction ................ 473 central tendency and dispersion. The logic of statisti- A.2 Basic Statistical Concepts .......... 474 cal hypothesis testing is introduced. Simple tests on A.2.1 Data Description ........... 475 pairs of means (the t-tests) are described with worked A.2.2 Population Statistics ......... 476 examples. The meaning of a p-value is reviewed. A.3 Hypothesis Testing and Statistical Inference .................. 478 A.3.1 The Confidence Interval ........ 478 A.3.2 Hypothesis Testing .......... 478 A.3.3 A Worked Example .......... 479 A.1 Introduction A.3.4 A Few More Important Concepts .... 480 A.3.5 Decision Errors ............ 482 A.4 Variations of the t-Test ............ 482 The main body of this book has been concerned with A.4.1 The Sensitivity of the Dependent t-Test for using good sensory test methods that can generate Sensory Data ............. 484 quality data in well-designed and well-executed stud- A.5 Summary: Statistical Hypothesis Testing ... 485 A.6 Postscript: What p-Values Signify and What ies. Now we turn to summarize the applications of They Do Not ................ 485 statistics to sensory data analysis. Although statistics A.7 Statistical Glossary ............. 486 are a necessary part of sensory research, the sensory References .................... 487 scientist would do well to keep in mind O’Mahony’s admonishment: statistical analysis, no matter how clever, cannot be used to save a poor experiment. The techniques of statistical analysis, do however, It is important when taking a sample or designing an serve several useful purposes, mainly in the efficient experiment to remember that no matter how powerful summarization of data and in allowing the sensory the statistics used, the inferences made from a sample scientist to make reasonable conclusions from the are only as good as the data in that sample. -
Nonparametric Statistics for Social and Behavioral Sciences
Statistics Incorporating a hands-on approach, Nonparametric Statistics for Social SOCIAL AND BEHAVIORAL SCIENCES and Behavioral Sciences presents the concepts, principles, and methods NONPARAMETRIC STATISTICS FOR used in performing many nonparametric procedures. It also demonstrates practical applications of the most common nonparametric procedures using IBM’s SPSS software. Emphasizing sound research designs, appropriate statistical analyses, and NONPARAMETRIC accurate interpretations of results, the text: • Explains a conceptual framework for each statistical procedure STATISTICS FOR • Presents examples of relevant research problems, associated research questions, and hypotheses that precede each procedure • Details SPSS paths for conducting various analyses SOCIAL AND • Discusses the interpretations of statistical results and conclusions of the research BEHAVIORAL With minimal coverage of formulas, the book takes a nonmathematical ap- proach to nonparametric data analysis procedures and shows you how they are used in research contexts. Each chapter includes examples, exercises, SCIENCES and SPSS screen shots illustrating steps of the statistical procedures and re- sulting output. About the Author Dr. M. Kraska-Miller is a Mildred Cheshire Fraley Distinguished Professor of Research and Statistics in the Department of Educational Foundations, Leadership, and Technology at Auburn University, where she is also the Interim Director of Research for the Center for Disability Research and Service. Dr. Kraska-Miller is the author of four books on teaching and communications. She has published numerous articles in national and international refereed journals. Her research interests include statistical modeling and applications KRASKA-MILLER of statistics to theoretical concepts, such as motivation; satisfaction in jobs, services, income, and other areas; and needs assessments particularly applicable to special populations. -
Krishnan Correlation CUSB.Pdf
SELF INSTRUCTIONAL STUDY MATERIAL PROGRAMME: M.A. DEVELOPMENT STUDIES COURSE: STATISTICAL METHODS FOR DEVELOPMENT RESEARCH (MADVS2005C04) UNIT III-PART A CORRELATION PROF.(Dr). KRISHNAN CHALIL 25, APRIL 2020 1 U N I T – 3 :C O R R E L A T I O N After reading this material, the learners are expected to : . Understand the meaning of correlation and regression . Learn the different types of correlation . Understand various measures of correlation., and, . Explain the regression line and equation 3.1. Introduction By now we have a clear idea about the behavior of single variables using different measures of Central tendency and dispersion. Here the data concerned with one variable is called ‗univariate data‘ and this type of analysis is called ‗univariate analysis‘. But, in nature, some variables are related. For example, there exists some relationships between height of father and height of son, price of a commodity and amount demanded, the yield of a plant and manure added, cost of living and wages etc. This is a a case of ‗bivariate data‘ and such analysis is called as ‗bivariate data analysis. Correlation is one type of bivariate statistics. Correlation is the relationship between two variables in which the changes in the values of one variable are followed by changes in the values of the other variable. 3.2. Some Definitions 1. ―When the relationship is of a quantitative nature, the approximate statistical tool for discovering and measuring the relationship and expressing it in a brief formula is known as correlation‖—(Craxton and Cowden) 2. ‗correlation is an analysis of the co-variation between two or more variables‖—(A.M Tuttle) 3. -
ED441031.Pdf
DOCUMENT RESUME ED 441 031 TM 030 830 AUTHOR Fahoome, Gail; Sawilowsky, Shlomo S. TITLE Review of Twenty Nonparametric Statistics and Their Large Sample Approximations. PUB DATE 2000-04-00 NOTE 42p.; Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 24-28, 2000). PUB TYPE Information Analyses (070)-- Numerical/Quantitative Data (110) Speeches/Meeting Papers (150) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS Monte Carlo Methods; *Nonparametric Statistics; *Sample Size; *Statistical Distributions ABSTRACT Nonparametric procedures are often more powerful than classical tests for real world data, which are rarely normally distributed. However, there are difficulties in using these tests. Computational formulas are scattered tnrous-hout the literature, and there is a lack of avalialalicy of tables of critical values. This paper brings together the computational formulas for 20 commonly used nonparametric tests that have large-sample approximations for the critical value. Because there is no generally agreed upon lower limit for the sample size, Monte Carlo methods have been used to determine the smallest sample size that can be used with the large-sample approximations. The statistics reviewed include single-population tests, comparisons of two populations, comparisons of several populations, and tests of association. (Contains 4 tables and 59 references.)(Author/SLD) Reproductions supplied by EDRS are the best that can be made from the original document. Review of Twenty Nonparametric Statistics and Their Large Sample Approximations Gail Fahoome Shlomo S. Sawilowsky U.S. DEPARTMENT OF EDUCATION Mice of Educational Research and Improvement PERMISSION TO REPRODUCE AND UCATIONAL RESOURCES INFORMATION DISSEMINATE THIS MATERIAL HAS f BEEN GRANTED BY CENTER (ERIC) This document has been reproduced as received from the person or organization originating it. -
Detecting Trends Using Spearman's Rank Correlation Coefficient
Environmental Forensics 2001) 2, 359±362 doi:10.1006/enfo.2001.0061, available online at http://www.idealibrary.com on Detecting Trends Using Spearman's Rank Correlation Coecient Thomas D. Gauthier Sciences International Inc, 6150 State Road 70, East Bradenton, FL 34203, U.S.A. Received 23 August 2001, Revised manuscript accepted 1 October 2001) Spearman's rank correlation coecient is a useful tool for exploratory data analysis in environmental forensic investigations. In this application it is used to detect monotonic trends in chemical concentration with time or space. # 2001 AEHS Keywords: Spearman rank correlation coecient; trend analysis; soil; groundwater. Environmental forensic investigations can involve a The idea behind the rank correlation coecient is variety of statistical analysis techniques. A relatively simple. Each variable is ranked separately from lowest simple technique that can be used for exploratory data to highest e.g. 1, 2, 3, etc.) and the dierence between analysis is the Spearman rank correlation coecient. In ranks for each data pair is recorded. If the data are this technical note, I describe howthe Spearman rank correlated, then the sum of the square of the dierence correlation coecient can be used as a statistical tool between ranks will be small. The magnitude of the sum to detect monotonic trends in chemical concentrations is related to the signi®cance of the correlation. with time or space. The Spearman rank correlation coecient is calcu- Trend analysis can be useful for detecting chemical lated according to the following equation: ``footprints'' at a site or evaluating the eectiveness of Pn an installed or natural attenuation remedy. -
One Sample T Test
Copyright c October 17, 2020 by NEH One Sample t Test Nathaniel E. Helwig University of Minnesota 1 How Beer Changed the World William Sealy Gosset was a chemist and statistician who was employed as the Head Exper- imental Brewer at Guinness in the early 1900s. As a part of his job, Gosset was responsible for taking samples of beer and performing various analyses to ensure that the beer was of the proper composition and quality. While at Guinness, Gosset taught himself experimental design and statistical analysis (which were new and exciting fields at the time), and he even spent some time in 1906{1907 studying in Karl Pearson's laboratory. Gosset's work often involved collecting a small number of samples, and testing hypotheses about the mean of the population from which the samples were drawn. For example, in the brewery, Gosset may want to test whether the population mean amount of some ingredient (e.g., barley) was equal to the intended value. And, on the farm, Gosset may want to test how different farming techniques and growing conditions affect the barley yields. Through this work, Gos- set noticed that the normal distribution was not adequate for testing hypotheses about the mean in small samples of data with an unknown variance. 2 2 1 Pn As a reminder, if X ∼ N(µ, σ ), thenx ¯ ∼ N(µ, σ =n) wherex ¯ = n i=1 xi, which implies x¯ − µ Z = p ∼ N(0; 1) σ= n i.e., the Z test statistic follows a standard normal distribution. However, in practice, the 2 2 1 Pn 2 population variance σ is often unknown, so the sample variance s = n−1 i=1(xi − x¯) must be used in its place. -
Nonparametric Estimation by Convex Programming
The Annals of Statistics 2009, Vol. 37, No. 5A, 2278–2300 DOI: 10.1214/08-AOS654 c Institute of Mathematical Statistics, 2009 NONPARAMETRIC ESTIMATION BY CONVEX PROGRAMMING By Anatoli B. Juditsky and Arkadi S. Nemirovski1 Universit´eGrenoble I and Georgia Institute of Technology The problem we concentrate on is as follows: given (1) a convex compact set X in Rn, an affine mapping x 7→ A(x), a parametric family {pµ(·)} of probability densities and (2) N i.i.d. observations of the random variable ω, distributed with the density pA(x)(·) for some (unknown) x ∈ X, estimate the value gT x of a given linear form at x. For several families {pµ(·)} with no additional assumptions on X and A, we develop computationally efficient estimation routines which are minimax optimal, within an absolute constant factor. We then apply these routines to recovering x itself in the Euclidean norm. 1. Introduction. The problem we are interested in is essentially as fol- lows: suppose that we are given a convex compact set X in Rn, an affine mapping x A(x) and a parametric family pµ( ) of probability densities. Suppose that7→N i.i.d. observations of the random{ variable· } ω, distributed with the density p ( ) for some (unknown) x X, are available. Our objective A(x) · ∈ is to estimate the value gT x of a given linear form at x. In nonparametric statistics, there exists an immense literature on various versions of this problem (see, e.g., [10, 11, 12, 13, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28] and the references therein). -
Repeated-Measures ANOVA & Friedman Test Using STATCAL
Repeated-Measures ANOVA & Friedman Test Using STATCAL (R) & SPSS Prana Ugiana Gio Download STATCAL in www.statcal.com i CONTENT 1.1 Example of Case 1.2 Explanation of Some Book About Repeated-Measures ANOVA 1.3 Repeated-Measures ANOVA & Friedman Test 1.4 Normality Assumption and Assumption of Equality of Variances (Sphericity) 1.5 Descriptive Statistics Based On SPSS dan STATCAL (R) 1.6 Normality Assumption Test Using Kolmogorov-Smirnov Test Based on SPSS & STATCAL (R) 1.7 Assumption Test of Equality of Variances Using Mauchly Test Based on SPSS & STATCAL (R) 1.8 Repeated-Measures ANOVA Based on SPSS & STATCAL (R) 1.9 Multiple Comparison Test Using Boferroni Test Based on SPSS & STATCAL (R) 1.10 Friedman Test Based on SPSS & STATCAL (R) 1.11 Multiple Comparison Test Using Wilcoxon Test Based on SPSS & STATCAL (R) ii 1.1 Example of Case For example given data of weight of 11 persons before and after consuming medicine of diet for one week, two weeks, three weeks and four week (Table 1.1.1). Tabel 1.1.1 Data of Weight of 11 Persons Weight Name Before One Week Two Weeks Three Weeks Four Weeks A 89.43 85.54 80.45 78.65 75.45 B 85.33 82.34 79.43 76.55 71.35 C 90.86 87.54 85.45 80.54 76.53 D 91.53 87.43 83.43 80.44 77.64 E 90.43 84.45 81.34 78.64 75.43 F 90.52 86.54 85.47 81.44 78.64 G 87.44 83.34 80.54 78.43 77.43 H 89.53 86.45 84.54 81.35 78.43 I 91.34 88.78 85.47 82.43 78.76 J 88.64 84.36 80.66 78.65 77.43 K 89.51 85.68 82.68 79.71 76.5 Average 89.51 85.68 82.68 79.71 76.69 Based on Table 1.1.1: The person whose name is A has initial weight 89,43, after consuming medicine of diet for one week 85,54, two weeks 80,45, three weeks 78,65 and four weeks 75,45. -
7 Nonparametric Methods
7 NONPARAMETRIC METHODS 7 Nonparametric Methods SW Section 7.11 and 9.4-9.5 Nonparametric methods do not require the normality assumption of classical techniques. I will describe and illustrate selected non-parametric methods, and compare them with classical methods. Some motivation and discussion of the strengths and weaknesses of non-parametric methods is given. The Sign Test and CI for a Population Median The sign test assumes that you have a random sample from a population, but makes no assumption about the population shape. The standard t−test provides inferences on a population mean. The sign test, in contrast, provides inferences about a population median. If the population frequency curve is symmetric (see below), then the population median, iden- tified by η, and the population mean µ are identical. In this case the sign procedures provide inferences for the population mean. The idea behind the sign test is straightforward. Suppose you have a sample of size m from the population, and you wish to test H0 : η = η0 (a given value). Let S be the number of sampled observations above η0. If H0 is true, you expect S to be approximately one-half the sample size, .5m. If S is much greater than .5m, the data suggests that η > η0. If S is much less than .5m, the data suggests that η < η0. Mean and Median differ with skewed distributions Mean and Median are the same with symmetric distributions 50% Median = η Mean = µ Mean = Median S has a Binomial distribution when H0 is true. The Binomial distribution is used to construct a test with size α (approximately). -
Correlation • References: O Kendall, M., 1938: a New Measure of Rank Correlation
Coupling metrics to diagnose land-atmosphere interactions http://tiny.cc/l-a-metrics Correlation • References: o Kendall, M., 1938: A new measure of rank correlation. Biometrika, 30(1-2), 81–89. o Pearson, K., 1895: Notes on regression and inheritance in the case of two parents, Proc. Royal Soc. London, 58, 240–242. o Spearman, C., 1907, Demonstration of formulæ for true measurement of correlation. Amer. J. Psychol., 18(2), 161–169. • Principle: o A correlation r is a measure of how one variable tends to vary (in sync, out of sync, or randomly) with another variable in space and/or time. –1 ≤ r ≤ 1 o The most commonly used is Pearson product-moment correlation coefficient, which relates how well a distribution of two quantities fits a linear regression: cov(x, y) xy− x y r(x, y) = = 2 2 σx σy x xx y yy − − where overbars denote averages over domains in space, time or both. § As with linear regressions, there is an implied assumption that the distribution of each variable is near normal. If one or both variables are not, it may be advisable to remap them into a normal distribution. o Spearman's rank correlation coefficient relates the ranked ordering of two variables in a non-parametric fashion. This can be handy as Pearson’s r can be heavily influenced by outliers, just as linear regressions are. The equation is the same but the sorted ranks of x and y are used instead of the values of x and y. o Kendall rank correlation coefficient is a variant of rank correlation. -
9 Blocked Designs
9 Blocked Designs 9.1 Friedman's Test 9.1.1 Application 1: Randomized Complete Block Designs • Assume there are k treatments of interest in an experiment. In Section 8, we considered the k-sample Extension of the Median Test and the Kruskal-Wallis Test to test for any differences in the k treatment medians. • Suppose the experimenter is still concerned with studying the effects of a single factor on a response of interest, but variability from another factor that is not of interest is expected. { Suppose a researcher wants to study the effect of 4 fertilizers on the yield of cotton. The researcher also knows that the soil conditions at the 8 areas for performing an experiment are highly variable. Thus, the researcher wants to design an experiment to detect any differences among the 4 fertilizers on the cotton yield in the presence a \nuisance variable" not of interest (the 8 areas). • Because experimental units can vary greatly with respect to physical characteristics that can also influence the response, the responses from experimental units that receive the same treatment can also vary greatly. • If it is not controlled or accounted for in the data analysis, it can can greatly inflate the experimental variability making it difficult to detect real differences among the k treatments of interest (large Type II error). • If this source of variability can be separated from the treatment effects and the random experimental error, then the sensitivity of the experiment to detect real differences between treatments in increased (i.e., lower the Type II error). • Therefore, the goal is to choose an experimental design in which it is possible to control the effects of a variable not of interest by bringing experimental units that are similar into a group called a \block". -
Correlation and Regression Analysis
OIC ACCREDITATION CERTIFICATION PROGRAMME FOR OFFICIAL STATISTICS Correlation and Regression Analysis TEXTBOOK ORGANISATION OF ISLAMIC COOPERATION STATISTICAL ECONOMIC AND SOCIAL RESEARCH AND TRAINING CENTRE FOR ISLAMIC COUNTRIES OIC ACCREDITATION CERTIFICATION PROGRAMME FOR OFFICIAL STATISTICS Correlation and Regression Analysis TEXTBOOK {{Dr. Mohamed Ahmed Zaid}} ORGANISATION OF ISLAMIC COOPERATION STATISTICAL ECONOMIC AND SOCIAL RESEARCH AND TRAINING CENTRE FOR ISLAMIC COUNTRIES © 2015 The Statistical, Economic and Social Research and Training Centre for Islamic Countries (SESRIC) Kudüs Cad. No: 9, Diplomatik Site, 06450 Oran, Ankara – Turkey Telephone +90 – 312 – 468 6172 Internet www.sesric.org E-mail [email protected] The material presented in this publication is copyrighted. The authors give the permission to view, copy download, and print the material presented that these materials are not going to be reused, on whatsoever condition, for commercial purposes. For permission to reproduce or reprint any part of this publication, please send a request with complete information to the Publication Department of SESRIC. All queries on rights and licenses should be addressed to the Statistics Department, SESRIC, at the aforementioned address. DISCLAIMER: Any views or opinions presented in this document are solely those of the author(s) and do not reflect the views of SESRIC. ISBN: xxx-xxx-xxxx-xx-x Cover design by Publication Department, SESRIC. For additional information, contact Statistics Department, SESRIC. i CONTENTS Acronyms