Outing the Outliers – Tails of the Unexpected
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lesson 7: Measuring Variability for Skewed Distributions (Interquartile Range)
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 7 M2 ALGEBRA I Lesson 7: Measuring Variability for Skewed Distributions (Interquartile Range) Student Outcomes . Students explain why a median is a better description of a typical value for a skewed distribution. Students calculate the 5-number summary of a data set. Students construct a box plot based on the 5-number summary and calculate the interquartile range (IQR). Students interpret the IQR as a description of variability in the data. Students identify outliers in a data distribution. Lesson Notes Distributions that are not symmetrical pose some challenges in students’ thinking about center and variability. The observation that the distribution is not symmetrical is straightforward. The difficult part is to select a measure of center and a measure of variability around that center. In Lesson 3, students learned that, because the mean can be affected by unusual values in the data set, the median is a better description of a typical data value for a skewed distribution. This lesson addresses what measure of variability is appropriate for a skewed data distribution. Students construct a box plot of the data using the 5-number summary and describe variability using the interquartile range. Classwork Exploratory Challenge 1/Exercises 1–3 (10 minutes): Skewed Data and Their Measure of Center Verbally introduce the data set as described in the introductory paragraph and dot plot shown below. Exploratory Challenge 1/Exercises 1–3: Skewed Data and Their Measure of Center Consider the following scenario. A television game show, Fact or Fiction, was cancelled after nine shows. Many people watched the nine shows and were rather upset when it was taken off the air. -
Krishnan Correlation CUSB.Pdf
SELF INSTRUCTIONAL STUDY MATERIAL PROGRAMME: M.A. DEVELOPMENT STUDIES COURSE: STATISTICAL METHODS FOR DEVELOPMENT RESEARCH (MADVS2005C04) UNIT III-PART A CORRELATION PROF.(Dr). KRISHNAN CHALIL 25, APRIL 2020 1 U N I T – 3 :C O R R E L A T I O N After reading this material, the learners are expected to : . Understand the meaning of correlation and regression . Learn the different types of correlation . Understand various measures of correlation., and, . Explain the regression line and equation 3.1. Introduction By now we have a clear idea about the behavior of single variables using different measures of Central tendency and dispersion. Here the data concerned with one variable is called ‗univariate data‘ and this type of analysis is called ‗univariate analysis‘. But, in nature, some variables are related. For example, there exists some relationships between height of father and height of son, price of a commodity and amount demanded, the yield of a plant and manure added, cost of living and wages etc. This is a a case of ‗bivariate data‘ and such analysis is called as ‗bivariate data analysis. Correlation is one type of bivariate statistics. Correlation is the relationship between two variables in which the changes in the values of one variable are followed by changes in the values of the other variable. 3.2. Some Definitions 1. ―When the relationship is of a quantitative nature, the approximate statistical tool for discovering and measuring the relationship and expressing it in a brief formula is known as correlation‖—(Craxton and Cowden) 2. ‗correlation is an analysis of the co-variation between two or more variables‖—(A.M Tuttle) 3. -
Normal Probability Distribution
MATH2114 Week 8, Thursday The Normal Distribution Slides Adopted & modified from “Business Statistics: A First Course” 7th Ed, by Levine, Szabat and Stephan, 2016 Pearson Education Inc. Objective/Goals To compute probabilities from the normal distribution How to use the normal distribution to solve practical problems To use the normal probability plot to determine whether a set of data is approximately normally distributed Continuous Probability Distributions A continuous variable is a variable that can assume any value on a continuum (can assume an uncountable number of values) thickness of an item time required to complete a task temperature of a solution height, in inches These can potentially take on any value depending only on the ability to precisely and accurately measure The Normal Distribution Bell Shaped f(X) Symmetrical Mean=Median=Mode σ Location is determined by X the mean, μ μ Spread is determined by the standard deviation, σ Mean The random variable has an = Median infinite theoretical range: = Mode + to The Normal Distribution Density Function The formula for the normal probability density function is 2 1 (X μ) 1 f(X) e 2 2π Where e = the mathematical constant approximated by 2.71828 π = the mathematical constant approximated by 3.14159 μ = the population mean σ = the population standard deviation X = any value of the continuous variable The Normal Distribution Density Function By varying 휇 and 휎, we obtain different normal distributions Image taken from Wikipedia, released under public domain The -
2018 Statistics Final Exam Academic Success Programme Columbia University Instructor: Mark England
2018 Statistics Final Exam Academic Success Programme Columbia University Instructor: Mark England Name: UNI: You have two hours to finish this exam. § Calculators are necessary for this exam. § Always show your working and thought process throughout so that even if you don’t get the answer totally correct I can give you as many marks as possible. § It has been a pleasure teaching you all. Try your best and good luck! Page 1 Question 1 True or False for the following statements? Warning, in this question (and only this question) you will get minus points for wrong answers, so it is not worth guessing randomly. For this question you do not need to explain your answer. a) Correlation values can only be between 0 and 1. False. Correlation values are between -1 and 1. b) The Student’s t distribution gives a lower percentage of extreme events occurring compared to a normal distribution. False. The student’s t distribution gives a higher percentage of extreme events. c) The units of the standard deviation of � are the same as the units of �. True. d) For a normal distribution, roughly 95% of the data is contained within one standard deviation of the mean. False. It is within two standard deviations of the mean e) For a left skewed distribution, the mean is larger than the median. False. This is a right skewed distribution. f) If an event � is independent of �, then � (�) = �(�|�) is always true. True. g) For a given confidence level, increasing the sample size of a survey should increase the margin of error. -
BACHELOR of COMMERCE (Hons)
GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY , D ELHI BACHELOR OF COMMERCE (Hons) BCOM 110- Business Statistics L-5 T/P-0 Credits-5 Objectives: The objective of this course is to familiarize students with the basic statistical tools used to summarize and analyze quantitative information for decision making. COURSE CONTENTS Unit I Lectures: 20 Statistical Data and Descriptive Statistics: Measures of Central Tendency: Mathematical averages including arithmetic mean, geometric mean and harmonic mean, properties and applications, positional averages, mode, median (and other partition values including quartiles, deciles, and percentile; Unit II Lectures: 15 Measures of variation: absolute and relative, range, quartile deviation, mean deviation, standard deviation, and their co-efficients, properties of standard deviation/variance; Moments: calculation and significance; Skewness, Kurtosis and Moments. Unit III Lectures: 15 Simple Correlation and Regression Analysis: Correlation Analysis, meaning of correlation simple, multiple and partial; linear and non-linear, Causation and correlation, Scatter diagram, Pearson co-efficient of correlation; calculation and properties, probable and standard errors, rank correlation; Simple Regression Analysis: Regression equations and estimation. Unit IV Lectures: 20 Index Numbers: Meaning and uses of index numbers, construction of index numbers, univariate and composite, aggregative and average of relatives – simple and weighted, tests of adequacy of index numbers, Base shifting, problems in the construction of index numbers. Text Books : 1. Levin, Richard and David S. Rubin. (2011), Statistics for Management. 7th Edition. PHI. 2. Gupta, S.P., and Gupta, Archana, (2009), Statistical Methods. Sultan Chand and Sons, New Delhi. Reference Books : 1. Berenson and Levine, (2008), Basic Business Statistics: Concepts and Applications. Prentice Hall. BUSINESS STATISTICS:PAPER CODE 110 Dr. -
L-Moments Based Assessment of a Mixture Model for Frequency Analysis of Rainfall Extremes
Advances in Geosciences, 2, 331–334, 2006 SRef-ID: 1680-7359/adgeo/2006-2-331 Advances in European Geosciences Union Geosciences © 2006 Author(s). This work is licensed under a Creative Commons License. L-moments based assessment of a mixture model for frequency analysis of rainfall extremes V. Tartaglia, E. Caporali, E. Cavigli, and A. Moro Dipartimento di Ingegneria Civile, Universita` degli Studi di Firenze, Italy Received: 2 December 2004 – Revised: 2 October 2005 – Accepted: 3 October 2005 – Published: 23 January 2006 Abstract. In the framework of the regional analysis of hy- events in Tuscany (central Italy), a statistical methodology drological extreme events, a probabilistic mixture model, for parameter estimation of a probabilistic mixture model is given by a convex combination of two Gumbel distributions, here developed. The use of a probabilistic mixture model in is proposed for rainfall extremes modelling. The papers con- the regional analysis of rainfall extreme events, comes from cerns with statistical methodology for parameter estimation. the hypothesis that rainfall phenomenon arises from two in- With this aim, theoretical expressions of the L-moments of dependent populations (Becchi et al., 2000; Caporali et al., the mixture model are here defined. The expressions have 2002). The first population describes the basic components been tested on the time series of the annual maximum height corresponding to the more frequent events of low magnitude, of daily rainfall recorded in Tuscany (central Italy). controlled by the local morpho-climatic conditions. The sec- ond population characterizes the outlier component of more intense and rare events, which is here considered due to the aggregation at the large scale of meteorological phenomena. -
The Interpretation of the Probable Error and the Coefficient of Correlation
THE UNIVERSITY OF ILLINOIS LIBRARY 370 IL6 . No. 26-34 sssftrsss^"" Illinois Library University of L161—H41 Digitized by the Internet Archive in 2011 with funding from University of Illinois Urbana-Champaign http://www.archive.org/details/interpretationof32odel BULLETIN NO. 32 BUREAU OF EDUCATIONAL RESEARCH COLLEGE OF EDUCATION THE INTERPRETATION OF THE PROBABLE ERROR AND THE COEFFICIENT OF CORRELATION By Charles W. Odell Assistant Director, Bureau of Educational Research ( (Hi THE UBMM Of MAR 14 1927 HKivERsrrv w Illinois PRICE 50 CENTS PUBLISHED BY THE UNIVERSITY OF ILLINOIS. URBANA 1926 370 lit TABLE OF CONTENTS PAGE Preface 5 i Chapter I. Introduction 7 Chapter II. The Probable Error 9 .Chapter III. The Coefficient of Correlation 33 PREFACE Graduate students and other persons contemplating ed- ucational research frequently ask concerning the need for training in statistical procedures. They usually have in mind training in the technique of making tabulations and calcula- tions. This, as Doctor Odell points out, is only one phase, and probably not the most important phase, of needed train- ing in statistical methods. The interpretation of the results of calculation has not received sufficient attention by the authors of texts in this field. The following discussion of two derived measures, the probable error and the coefficient of correlation, is offered as a contribution to the technique of educational research. It deals with the problems of the reader of reports of research, as well as those of original investigators. The tabulating of objective data and the mak- ing of calculations from the tabulations may be and fre- quently is a tedious task, but it is primarily one of routine. -
Estimation of Quantiles and the Interquartile Range in Complex Surveys Carol Ann Francisco Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1987 Estimation of quantiles and the interquartile range in complex surveys Carol Ann Francisco Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Statistics and Probability Commons Recommended Citation Francisco, Carol Ann, "Estimation of quantiles and the interquartile range in complex surveys " (1987). Retrospective Theses and Dissertations. 11680. https://lib.dr.iastate.edu/rtd/11680 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17"x 23" black and white photographic print. -
Hand-Book on STATISTICAL DISTRIBUTIONS for Experimentalists
Internal Report SUF–PFY/96–01 Stockholm, 11 December 1996 1st revision, 31 October 1998 last modification 10 September 2007 Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists by Christian Walck Particle Physics Group Fysikum University of Stockholm (e-mail: [email protected]) Contents 1 Introduction 1 1.1 Random Number Generation .............................. 1 2 Probability Density Functions 3 2.1 Introduction ........................................ 3 2.2 Moments ......................................... 3 2.2.1 Errors of Moments ................................ 4 2.3 Characteristic Function ................................. 4 2.4 Probability Generating Function ............................ 5 2.5 Cumulants ......................................... 6 2.6 Random Number Generation .............................. 7 2.6.1 Cumulative Technique .............................. 7 2.6.2 Accept-Reject technique ............................. 7 2.6.3 Composition Techniques ............................. 8 2.7 Multivariate Distributions ................................ 9 2.7.1 Multivariate Moments .............................. 9 2.7.2 Errors of Bivariate Moments .......................... 9 2.7.3 Joint Characteristic Function .......................... 10 2.7.4 Random Number Generation .......................... 11 3 Bernoulli Distribution 12 3.1 Introduction ........................................ 12 3.2 Relation to Other Distributions ............................. 12 4 Beta distribution 13 4.1 Introduction ....................................... -
Descriptive Statistics
NCSS Statistical Software NCSS.com Chapter 200 Descriptive Statistics Introduction This procedure summarizes variables both statistically and graphically. Information about the location (center), spread (variability), and distribution is provided. The procedure provides a large variety of statistical information about a single variable. Kinds of Research Questions The use of this module for a single variable is generally appropriate for one of four purposes: numerical summary, data screening, outlier identification (which sometimes is incorporated into data screening), and distributional shape. We will briefly discuss each of these now. Numerical Descriptors The numerical descriptors of a sample are called statistics. These statistics may be categorized as location, spread, shape indicators, percentiles, and interval estimates. Location or Central Tendency One of the first impressions that we like to get from a variable is its general location. You might think of this as the center of the variable on the number line. The average (mean) is a common measure of location. When investigating the center of a variable, the main descriptors are the mean, median, mode, and the trimmed mean. Other averages, such as the geometric and harmonic mean, have specialized uses. We will now briefly compare these measures. If the data come from the normal distribution, the mean, median, mode, and the trimmed mean are all equal. If the mean and median are very different, most likely there are outliers in the data or the distribution is skewed. If this is the case, the median is probably a better measure of location. The mean is very sensitive to extreme values and can be seriously contaminated by just one observation. -
Measures of Variability
CHAPTER 4 Measures of Variability Chapter 3 introduced descriptive statistics, the purpose of which is to numerically describe or summarize data for a Chapter Outline variable. As we learned in Chapter 3, a set of data is often 4.1 An Example From the described in terms of the most typical, common, or frequently Research: How Many “Sometimes” occurring score by using a measure of central tendency such in an “Always”? as the mode, median, or mean. Measures of central ten- 4.2 Understanding Variability dency numerically describe two aspects of a distribution of scores, modality and symmetry, based ondistribute what the scores 4.3 The Range have in common with each other. However, researchers • Strengths and weaknesses of also describe the amount of differences among the scores of a the range variable in analyzing and reportingor their data. This chapter 4.4 The Interquartile Range introduces measures of variability, which are designed to rep- • Strengths and weaknesses of resent the amount of differences in a distribution of data. In the interquartile range this chapter, we will present and evaluate different measures 4.5 The Variance (s2) of variability in terms of their relative strengths and weak- • Definitional formula for the nesses. As in the previous chapters, our presentation will variance depend heavily on the findings and analysis from a published • Computational formula for the research study.post, variance • Why not use the absolute value of the deviation in 4.1 An Example From the calculating the variance? Research: How Many • Why divide by N – 1 rather than “Sometimes” in an “Always”? N in calculating the variance? 4.6 The Standard Deviation (s) copy,Throughout our daily lives, we are constantly asked to fill out • Definitional formula for the questionnaires and surveys. -
Measures of Spread
community project encouraging academics to share statistics support resources All stcp resources are released under a Creative Commons licence stcp-gilchristsamuels-6 The following resources are associated: Descriptive Statistics – Measures of Middle Value Descriptive Statistics – Measures of Spread Research question type: Most What kind of variables: Nominal, ordinal and interval/scale Common Applications: Most quantitative studies Descriptive statistics are a way of summarising your data into a few values, often for comparative purposes. Commonly they are presented in tables, although appropriate charts are also used. They include measures of middle values (or central tendency), and measures of spread (or dispersion) of your data. The following is a rough guide to appropriate measures for level of data: Data level Middle value (central tendency) Dispersion (spread) Nominal Mode Ordinal Mode, median Range, interquartile range (IQR) Interval/scale Median, mean Variance, standard deviation Range The range is defined as the difference between the maximum and the minimum values of a set of data. Example Find the range for: 2, 6, 3, 9, 5, 6, 2, 6. The maximum value of the data is 9, and the minimum value is 2. Hence the range is 9 - 2 = 7. Interquartile range (IQR) Quartiles split a dataset into four quarters when the values are written in ascending order. !!! The lower quartile is 25% of the way through a data set. This is the th value, where n is the ! number of data values. (Note: Quarter values are found by starting with the lower value and adding either ¼ or ¾ of the difference. For example, the 2¼th value is the 2nd value plus ¼ of the 3rd value minus the 2nd).