That Induce Chronic Inflammation Selection Leading to Autoreactive T

Total Page:16

File Type:pdf, Size:1020Kb

That Induce Chronic Inflammation Selection Leading to Autoreactive T Thymic Involution Perturbs Negative Selection Leading to Autoreactive T Cells That Induce Chronic Inflammation This information is current as Brandon D. Coder, Hongjun Wang, Linhui Ruan and of October 3, 2021. Dong-Ming Su J Immunol 2015; 194:5825-5837; Prepublished online 8 May 2015; doi: 10.4049/jimmunol.1500082 http://www.jimmunol.org/content/194/12/5825 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2015/05/08/jimmunol.150008 Material 2.DCSupplemental http://www.jimmunol.org/ References This article cites 69 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/194/12/5825.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 3, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Thymic Involution Perturbs Negative Selection Leading to Autoreactive T Cells That Induce Chronic Inflammation Brandon D. Coder, Hongjun Wang,1 Linhui Ruan,2 and Dong-Ming Su Thymic involution and the subsequent amplified release of autoreactive T cells increase the susceptibility toward developing autoimmunity, but whether they induce chronic inflammation with advanced age remains unclear. The presence of chronic low- level proinflammatory factors in elderly individuals (termed inflammaging) is a significant risk factor for morbidity and mortality in virtually every chronic age-related disease. To determine how thymic involution leads to the persistent release and activation of autoreactive T cells capable of inducing inflammaging, we used a Foxn1 conditional knockout mouse model that induces accel- erated thymic involution while maintaining a young periphery. We found that thymic involution leads to T cell activation shortly after thymic egress, which is accompanied by a chronic inflammatory phenotype consisting of cellular infiltration into non– lymphoid tissues, increased TNF-a production, and elevated serum IL-6. Autoreactive T cell clones were detected in the periphery of Foxn1 conditional knockout mice. A failure of negative selection, facilitated by decreased expression of Aire rather than Downloaded from impaired regulatory T cell generation, led to autoreactive T cell generation. Furthermore, the young environment can reverse age-related regulatory T cell accumulation in naturally aged mice, but not inflammatory infiltration. Taken together, these findings identify thymic involution and the persistent activation of autoreactive T cells as a contributing source of chronic inflammation (inflammaging). The Journal of Immunology, 2015, 194: 5825–5837. hronic inflammation is a ubiquitous feature of the aging cancers including colitis-associated colon cancer and hepatocellular http://www.jimmunol.org/ process and implicated in virtually every age-related carcinoma (5). IL-6 and TNF-a are the most predictive inflamma- C disease (1, 2). The term “inflammaging” describes the tory biomarkers and are highly correlated with “all-cause” mor- low-level, chronic, and systemic proinflammatory state that bidity and mortality in the elderly (6). Although the etiology accompanies advanced age in the absence of infection (1). Even of inflammaging is not fully understood, the source of proin- though clinical manifestations are not obvious, the presence flammatory factors is primarily attributed to the combination of proinflammatory factors such as IL-6, TNF-a,IL-1,and of cellular senescence–induced senescence-associated secretory C-reactive protein are associated with the severity, incidence, and phenotype (SASP) and the persistent activation of immune cells mortality of cardiovascular diseases such as atherosclerosis (1, 2, 7). by guest on October 3, 2021 and myocardial infarction (3), neurodegenerative diseases such as The persistent activation of immune cells is hypothesized to Parkinson’s disease (4) and Alzheimer’s disease (1), and late-life result from chronic cell death and self-debris serving as damage- associated molecular patterns, leading to innate immune cell activation (1, 8) or repeated life-long exposure to latent viral Department of Cell Biology and Immunology, University of North Texas Health infections, such as CMV (9, 10), continuously activating both Science Center at Fort Worth, Fort Worth, TX 76107 innate and adaptive immune responses. However, it is not known 1Current address: Department of Histology and Embryology, Jilin Medical College, Jilin, People’s Republic of China. whether thymic involution can lead to the persistent activation of 2Current address: First Affiliated Hospital, Wenzhou Medical University, Wenzhou, T cells that are capable of inducing inflammaging. People’s Republic of China. The thymus is a primary lymphoid organ comprised of cortical Received for publication January 13, 2015. Accepted for publication April 14, 2015. and medullary thymic epithelial cells (cTECs and mTECs) re- This work was supported by National Institute of Allergy and Infectious Diseases/ sponsible for the development of thymocytes and the generation National Institutes of Health Grants R01AI081995 (to D.-M.S.) and 3R01AI081995- of central immune tolerance toward self-tissues. Thymic-driven 03S1 (to B.D.C.). central immune tolerance is accomplished through two mecha- D.-M.S. and B.D.C. conceived and designed the experiments; B.D.C., L.R., and nisms: the elimination of autoreactive T cell clones via the process H.W. performed the experiments and analyzed the data; and D.-M.S. and B.D.C. wrote the paper. of negative selection (11), and the generation of natural regulatory Address correspondence and reprint requests to Dr. Dong-Ming Su, Department of T cells (nTregs) via diverted differentiation (12, 13). These two Cell Biology and Immunology, University of North Texas Health Center at Fort processes depend on the TCR–self-peptide–MHC avidity and Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107. E-mail address: signal strength, where a weak signal leads to thymocyte survival [email protected] (14), a strong signal leads to clonal deletion (15), and a moderate The online version of this article contains supplemental material. signal plus cytokines (IL-2) leads to nTreg differentiation (16, 17). Abbreviations used in this article: Aire, autoimmune regulator gene; cKO, condi- The efficiencies of negative selection and the differentiation of tional knockout; cTEC, cortical thymic epithelial cell; Ctr, control; DP, double- positive; F-cKO, Foxn1 conditional knockout; fx, loxP-floxed Foxn1 (Foxn1 flox); nTregs are dependent on the production and presentation of tissue- IRBP, interstitial retinol-binding protein; mOVA, membrane-bound ovalbumin; specific Ags on MHC, which is, in part, regulated by the auto- mTEC, medullary thymic epithelial cell; nTreg, natural regulatory T cell; RTE, recent thymic emigrant; SASP, senescence-associated secretory phenotype; SP, immune regulator gene (Aire) in mTECs (18–22). single-positive; TEC, thymic epithelial cell; Teff, T effector cell; Tg, transgenic; The thymus undergoes a progressive and age-related involution T TM, tamoxifen; Treg, regulatory T cell; uCreER , ubiquitous promoter-driven Cre- attributed to the deterioration of the thymic microenvironment (23), recombinase and estrogen-receptor fusion protein; WT, wild-type. which is made of an integrated three-dimensional meshwork of Copyright Ó 2015 by The American Association of Immunologists, Inc. 0022-1767/15/$25.00 cTECs and mTECs, where TEC differentiation is regulated by the www.jimmunol.org/cgi/doi/10.4049/jimmunol.1500082 5826 INFLAMMAGING RELATED TO THYMIC INVOLUTION Foxn1 gene (24). It has been reported that defects in mTEC as well as sera) of recipient RAG2/2 mice were collected for analysis of structure and the loss of Aire can affect the maintenance of central inflammatory cell infiltration. immune tolerance (25–27) by leading to the generation of fewer Thymic lobe kidney capsule transplantation (28) or deficient nTregs (29), and thereby increasing the incidence of autoimmune disease. However, the mechanisms through which The surgical operation of the kidney capsule transplantation was performed as previously described (31). Intact newborn mouse thymic lobes of fx/fx- thymic involution impacts the two mechanisms of central toler- uCreERT and fx/fx-only with and without mOVA-Tg were directly trans- ance (negative selection and nTregs) are not fully understood. planted into young host OT-II+ TCR-Tg mice. Three days after the graft, Furthermore, whether thymic atrophy alone leads to the release of the host mice were i.p. injected with TM (1 mg/10 g body weight/d) for 3 autoreactive T cells that become persistently activated immune consecutive days to induce deletion of the Foxn1 gene. Two weeks after the last TM injection, the grafted thymi were isolated for FACS analysis of cells and contribute to inflammaging remains
Recommended publications
  • Pathway in the Thymus by a CD24-Dependent Autoreactive T
    Autoreactive T Cells Escape Clonal Deletion in the Thymus by a CD24-Dependent Pathway This information is current as Joseph W. Carl, Jr., Jin-Qing Liu, Pramod S. Joshi, Hani Y. of September 27, 2021. El-Omrani, Lijie Yin, Xincheng Zheng, Caroline C. Whitacre, Yang Liu and Xue-Feng Bai J Immunol 2008; 181:320-328; ; doi: 10.4049/jimmunol.181.1.320 http://www.jimmunol.org/content/181/1/320 Downloaded from References This article cites 54 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/181/1/320.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Autoreactive T Cells Escape Clonal Deletion in the Thymus by a CD24-Dependent Pathway1 Joseph W. Carl, Jr.,* Jin-Qing Liu,* Pramod S.
    [Show full text]
  • Natural Killer T Cells Are Required for the Development of a Superantigen-Driven T Helper Type 2 Immune Response in Mice
    IMMUNOLOGY ORIGINAL ARTICLE Natural killer T cells are required for the development of a superantigen-driven T helper type 2 immune response in mice Auro Nomizo,1 Edilberto Postol,2 Summary Raquel de Alencar,2 Fabı´ola We show, here, that one single injection or weekly injections of staphylo- Cardillo2 and Jose´ Mengel2 coccal enterotoxin B (SEB), starting in 1-day-old newborn mice, induced 1Department of Clinical Analysis, Toxicology a powerful immune response with a T helper type 2 (Th2) pattern, as and Bromatology, Faculty of Pharmaceutical Sciences of Ribeira˜o Preto, University of Sa˜o judged by the isotype and cytokine profile, with the production of large Paulo, Ribeira˜o Preto, and 2Department of amounts of SEB-specific immunoglobulin G1 (IgG1), detectable levels of Immunology, Institute of Biomedical Sciences, SEB-specific IgE and increased production of interleukin-4 by spleen cells. University of Sa˜o Paulo, Sa˜o Paulo, SP, Brazil These protocols also induced an increase in the levels of total IgE in the serum. Memory of SEB was transferred to secondary recipients by using total spleen cells from primed animals. The secondary humoral response in transferred mice was diminished if spleen cells from SEB-treated mice were previously depleted of CD3+ or Vb8+ T cells or NK1.1+ cells. In vivo depletion of NK1.1+ cells in adult mice resulted in a marked reduction in the SEB-specific antibody response in both the primary and secondary doi:10.1111/j.1365-2567.2005.02215.x immune responses. Additionally, purified NK1.1+ T cells were able to per- Received 11 April 2005; revised 23 May 2005; form SEB-specific helper B-cell actions in vitro and in vivo.
    [Show full text]
  • Of T Cell Tolerance
    cells Review Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance Sébastien This 1,2,† , Stefanie F. Valbon 1,2,†, Marie-Ève Lebel 1 and Heather J. Melichar 1,3,* 1 Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; [email protected] (S.T.); [email protected] (S.F.V.); [email protected] (M.-È.L.) 2 Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada 3 Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength Citation: This, S.; Valbon, S.F.; Lebel, of T cell receptor signaling during differentiation influences the ‘function’ and persistence of anergic M.-È.; Melichar, H.J.
    [Show full text]
  • Proapoptotic Protein Bim Is Differentially Required During Thymic Clonal Deletion to Ubiquitous Versus Tissue-Restricted Antigens
    Proapoptotic protein Bim is differentially required during thymic clonal deletion to ubiquitous versus tissue-restricted antigens Alexander Y. W. Suen and Troy A. Baldwin1 Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada T6G 2S2 Edited by Michael J. Bevan, University of Washington, Seattle, WA, and approved December 8, 2011 (received for review September 8, 2011) Positive and negative selection of thymocytes in the thymus are positively selected by high-affinity antigen encounter in the thy- critical for the development of a mature and self-tolerant T-cell mus (6). One such example are T-regulatory (Treg) cells, which repertoire. The proapoptotic Bcl-2 family member Bim is important are believed to require high-affinity interactions to develop in the for negative selection by inducing apoptosis in thymocytes receiv- medulla (7). It remains unknown what drives this distinction ing a strong signal through their antigen receptor. However, in the between negative selection and Treg development, although case of ubiquitous self-antigens (UbA), Bim is not required for the secondary signals, such as TGF-β, may play a role in overcoming clonal deletion of self-reactive thymocytes, suggesting the exis- cell death (8). tence of nonapoptotic clonal deletion mechanisms. Unlike UbA, Although it is unclear how the same TCR can transduce a sig- clonal deletion to tissue-restricted antigens (TRAs) requires posi- nal for positive or negative selection, differential mitogen-acti- tive selection and CCR7-mediated migration to the medulla. This vated protein kinase signaling appears to play a role, ultimately led us to hypothesize that Bim is required for the latter.
    [Show full text]
  • T-Cell Tolerance by Prof. Anand Prakash
    PROF. ANAND PRAKASH Department of Biotechnology Mahatma Gandhi Central University Motihari Bihar • Immature T-Cells enter in the thymus after differentiating in the bone marrow. • These T-cells undergo maturation and develop TCRs through Somatic Recombination. Bone Marrow Precursors of the T-Cells enter from Bone marrow to THYMUS thymus T Cell Maturation starts Expression of TCR s • DEVELOPMENT OF T-CELL RECEPTORS (TCRs) Some of T-Cells in the thymus develop receptors which are useless with no antigen specificity and while others develop TCRs with • specificity for self antigens and non-self antigens. Thymocytes having TCRs with low affinity for auto antigens, displayed in the MHC class I and II, undergo positive selection and further differentiate to become part of adaptive immunity, whereas the one with non-functional receptors die off because of • negligence. Clonal deletion of T-cells with useless TCRs and high affinity receptors along with clonal diversion for development of “Treg”, are the major processes operative in the thymus towards elimination or regulation of self-reactive T cells. INSIDE THE THYMUS THE T-CELLS UNDERGO AN ELABORATE SCREENING PROCEDURE3 THROUGH FOLLOWING MECHANISMS • • • T CELLS RECOGNIZE ANTIGEN DERIVED PEPTIDES PRESENTED BY MHC MOLECULES MHC Class II MHC Class I Antigen Infected or Presenting Tumour Cell Cell CD8 Peptide CD4 CD4+ CD8+ Helper Cell Cytotoxic T Cell T Cell Receptor T Cell Receptor T CELLS RECOGNIZE ANTIGEN DERIVED PEPTIDES PRESENTED BY MHC MOLECULES Inside Thymus THYMIC T -CELL FATE IS DETERMINED BY STRENGTH OF TCR-MHC/PEPTIDE INTERACTION Thymic MHC stromal Cell Thymic T Cell TCR + CD4 CD8 • NEGATIVE SELECTION Negative selection occurs at the Double positive stage in the thymic cortex, or at the Single Positive stage in the thymic medulla.
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • Clonal Deletion of Autoreactive B Lymphocytes in Bone Marrow
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 8039-8043, October 1989 Immunology Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras (immunological tolerance/transgenic mice/histocompatibility complex) DAVID NEMAZEE*t AND KURT BUERKIt *Basel Institute for Immunology, Postfach CH-4005, Basel, Switzerland; and tPrecinical Research, Sandoz, Ltd., CH-4002, Basel, Switzerland Communicated by Philippa Marrack, July 24, 1989 (receivedfor review June 17, 1989) ABSTRACT To study the fate of developing B cells in the mice that either did or did not bear the H-2k antigens to which presence and absence of the autoantigens to which they react, the transgenic antibody reacts (H-2Kk and H-2Dk). chimeric mice were constructed by ij'ecting bone marrow cells A potential difficulty with studying tolerance to H-2k in our from mice transgenic for rearranged immunoglobulin genes system with genetic crosses was that, because the B cells in encoding an anti-H-2Kk antibody into irradiated recipients that the tolerant animals also bore H-2 class I antigens, it was not did or did not express the H-2Kk antigen. In the presence of clear whether it was necessary for the H-2k antigens to be H-2Kk, the anti-H-2Kk-specific B cells were deleted from the coexpressed on the transgenic B cells themselves to achieve spleen and lymph nodes, whereas in its absence, anti-H-2Kk tolerance. In this report we describe the tolerance phenotype cells were abundant. B cells bearing a low level of membrane of irradiation bone marrow chimeras in which anti-H-2k immunoglobulin with the anti-H-2Kk idiotype were found in the transgenic B cells that lack the H-2k antigens develop in hosts bone marrows of H-2Kk recipients, suggesting that clonal that bear or do not bear H-2k antigens.
    [Show full text]
  • Immune Regulation and Tolerance
    Mechanisms of unresponsiveness: Immunological Ignorance Immune Regulation Normal response and Proliferation and Tolerance differentiation Mechanisms of Antigen/lymphocyte barrier unresponsiveness Mechanisms of Tissue abnormalities contributing to release and Yong-Rui Zou (Oct. 2005) autoimmunity presentation of self antigens. [email protected] Disease models Sympathetic ophthalmia, experimental allergic encephalomyelitis (EAE) Immunoregulation: A balance between activation and Mechanisms of unresponsiveness: suppression of effector cells to achieve an efficient Central tolerance in B and T cells (I): Clonal Deletion immune response without damaging the host. Self antigen presented in generative Activation (immunity) Suppression (tolerance) lymphoid Deletion of immature organs lymphocytes strongly recognizing self antigens autoimmunity immunodeficiency present in generative organs Lymphoid precursor Significance: The induction of tolerance may be Survival of clones which are only moderately exploited to prevent graft rejection, to treat autoimmune responsive to self antigens and allergic diseases, and to prevent immune responses present in generative in gene therapy. organs; forms T/B cell repertoire Important features of immunoregulation: 1. Antigen specific; affects T or B lymphocytes Science 298:1395 (2002) 2. Tolerance vs. activation? Determined by the nature of antigen and associated stimuli, and when and where the antigen is encountered Immunity 23:227 (2005) 1 Mechanisms of unresponsiveness: AIRE: Autoimmune regulator. Peripheral tolerance in B cells (I): Anergy Immunogenic signaling Tolerogenic signaling • Transcription factor. • Expressed at a high level by thymic medullar epithelium Acute Chronic cells. antigens antigens CD40L • Autosomal recessive mutation leads to autoimmune LPS polyendocrine syndrom - type 1 (APS-1). CD40 CD40 TLR4 • Inactivation of aire abolishes expression of some tissue TLR4 BCR BCR Fcγ2b specific genes in the thymic medulla.
    [Show full text]
  • The Anatomy of T-Cell Activation and Tolerance Anna Mondino*T, Alexander Khoruts*, and Marc K
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 2245-2252, March 1996 Review The anatomy of T-cell activation and tolerance Anna Mondino*t, Alexander Khoruts*, and Marc K. Jenkins Department of Microbiology and the Center for Immunology, University of Minnesota Medical School, 420 Delaware Street S.E, Minneapolis, MN 55455 ABSTRACT The mammalian im- In recent years, it has become clear that TCR is specific for a self peptide-class I mune system must specifically recognize a full understanding of immune tolerance MHC complex) T cell that will exit the and eliminate foreign invaders but refrain cannot be achieved with reductionist in thymus and seed the secondary lymphoid from damaging the host. This task is vitro approaches that separate the individ- tissues (3, 4). In contrast, cortical CD4+ accomplished in part by the production of ual lymphocyte from its in vivo environ- CD8+ thymocytes that express TCRs that a large number of T lymphocytes, each ment. The in vivo immune response is a have no avidity for self peptide-MHC bearing a different antigen receptor to well-organized process that involves mul- complexes do not survive and die by an match the enormous variety of antigens tiple interactions of lymphocytes with each apoptotic mechanism. Cortical epithelial present in the microbial world. However, other, with bone-marrow-derived antigen- cells are essential for the process of pos- because antigen receptor diversity is gen- presenting cells (APCs), as well as with itive selection because they display the self erated by a random mechanism, the im- nonlymphoid cells and their products. The peptide-MHC complexes that are recog- mune system must tolerate the function of anatomic features that are designed to op- nized by CD4+ CD8+ thymocytes and also T lymphocytes that by chance express a timize immune tolerance toward innocuous provide essential differentiation factors self-reactive antigen receptor.
    [Show full text]
  • The Balance Players of the Adaptive Immune System Mads Hald Andersen1,2
    Published OnlineFirst February 13, 2018; DOI: 10.1158/0008-5472.CAN-17-3607 Cancer Perspective Research The Balance Players of the Adaptive Immune System Mads Hald Andersen1,2 Abstract Equilibrium between immune activation and suppression may Vaccination against genetically stable cells with regular HLA be necessary to maintain immune homeostasis, because proin- expression is an attractive way to directly target immunosuppres- flammatory effector T cells (defined as antiregulatory T cells) sive cells in addition to attracting proinflammatory cells into the counteract the functions of regulatory immune cells. These self- tumor microenvironment. Importantly, vaccination toward IDO reactive T cells recognize human leukocyte antigen (HLA)–restrict- or PD-L1 to potentiate such T cells have proven safe, with minimal ed epitopes derived from proteins expressed by regulatory immune toxicity in the clinical phase I trials conducted thus far. cells such as IDO, PD-L1, PD-L2, or arginase. The activation of Significance: Autoreactive effector T cells that specifically rec- such proinflammatory effector T cells offers a novel way to directly ognize regulatory cells might be useful to harness for cancer target the tumor microenvironment, potentially giving them immunotherapy to target the immune-suppressive tumor micro- considerable clinical value, especially in patients with cancer. environment. Cancer Res; 1–4. Ó2018 AACR. It was the recognition of suppressor T cells, now called regu- HLA-restricted derived epitopes, which are generated from intra- latory T cells (Treg), pioneered by Dr. Sakaguchi that highlighted cellular degraded antigens, are able to directly eliminate regula- the importance of regulatory cells in the maintenance of immu- tory immune cells (Fig.
    [Show full text]
  • Cyclophosphamide-Induced Tolerance Induction And
    Regulatory Roles of NKT Cells in the Induction and Maintenance of Cyclophosphamide-Induced Tolerance This information is current as Toshiro Iwai, Yukihiro Tomita, Shinji Okano, Ichiro of September 25, 2021. Shimizu, Yohichi Yasunami, Takashi Kajiwara, Yasunobu Yoshikai, Masaru Taniguchi, Kikuo Nomoto and Hisataka Yasui J Immunol 2006; 177:8400-8409; ; doi: 10.4049/jimmunol.177.12.8400 Downloaded from http://www.jimmunol.org/content/177/12/8400 References This article cites 32 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/177/12/8400.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 25, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Regulatory Roles of NKT Cells in the Induction and Maintenance of Cyclophosphamide-Induced Tolerance1 Toshiro Iwai,* Yukihiro Tomita,2* Shinji Okano,† Ichiro Shimizu,* Yohichi Yasunami,‡ Takashi Kajiwara,* Yasunobu Yoshikai,§ Masaru Taniguchi,ʈ Kikuo Nomoto,¶ and Hisataka Yasui* We have previously reported the sequential mechanisms of cyclophosphamide (CP)-induced tolerance.
    [Show full text]
  • Cellular and Peptiderequirements for in Vitro Clonal Deletion of Immature
    Proc. Nati. Acad. Sci. USA Vol. 89, pp. 9000-9004, October 1992 Immunology Cellular and peptide requirements for in vitro clonal deletion of immature thymocytes KAZUYA IWABUCHI*, KEI-ICHI NAKAYAMA*, RODERICK L. McCoy*, FANPING WANG*, TAKASHI NISHIMURAt, SONOKo HABUt, KENNETH M. MURPHYt, AND DENNIS Y. LoH* Departments of *Medicine, Genetics, and Molecular Microbiology, and *Pathology, Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110; and tDepartment of Immunology, Tokai University School of Medicine, Isehara 259-11, Japan Communicated by Herman N. Eisen, June 23, 1992 (receivedfor review March 16, 1992) ABSTRACT Thymocytes from DO1 T-cell-receptor deletion system that can be used to elucidate the cellular and trasgenic mice undergo apoptosis, or programmed cell death, peptide-antigen requirements for inducing clonal deletion. when chicken ovalbumin-(323-339) peptide is administered in vivo. Using DO1 mice thymocytes, we have now developed a EXPERIMENTAL PROCEDURES simple in vitro model system that recapitulates the in vivo Mice. TCR transgenic mice (DO10) bearing TCR from a clonal-deletion process. When transgenic thymocytes were hybridoma, DO11.10, with specificity for cOVA-(323-339) cocultured with fibroblasts, B cells, or thymic nurse cell lines and I-Ad have been backcrossed to BALB/c mice and are (all bearing I-Ad) in the presence of chicken ovalbumin-(323- maintained in our own animal facility. KA mice were created 339), deletion of the transgenic TCR+CD4+CD8+ thymocytes by the microinjection of I-Ad genes (a and f3) driven by class was seen within 8-20 hr. Thymocytes designed to bear I-Ad on I MHC Kb promoter into mouse embryos and maintained in their surface could mediate the deletion themselves.
    [Show full text]