Immune Regulation and Tolerance

Total Page:16

File Type:pdf, Size:1020Kb

Immune Regulation and Tolerance Mechanisms of unresponsiveness: Immunological Ignorance Immune Regulation Normal response and Proliferation and Tolerance differentiation Mechanisms of Antigen/lymphocyte barrier unresponsiveness Mechanisms of Tissue abnormalities contributing to release and Yong-Rui Zou (Oct. 2005) autoimmunity presentation of self antigens. [email protected] Disease models Sympathetic ophthalmia, experimental allergic encephalomyelitis (EAE) Immunoregulation: A balance between activation and Mechanisms of unresponsiveness: suppression of effector cells to achieve an efficient Central tolerance in B and T cells (I): Clonal Deletion immune response without damaging the host. Self antigen presented in generative Activation (immunity) Suppression (tolerance) lymphoid Deletion of immature organs lymphocytes strongly recognizing self antigens autoimmunity immunodeficiency present in generative organs Lymphoid precursor Significance: The induction of tolerance may be Survival of clones which are only moderately exploited to prevent graft rejection, to treat autoimmune responsive to self antigens and allergic diseases, and to prevent immune responses present in generative in gene therapy. organs; forms T/B cell repertoire Important features of immunoregulation: 1. Antigen specific; affects T or B lymphocytes Science 298:1395 (2002) 2. Tolerance vs. activation? Determined by the nature of antigen and associated stimuli, and when and where the antigen is encountered Immunity 23:227 (2005) 1 Mechanisms of unresponsiveness: AIRE: Autoimmune regulator. Peripheral tolerance in B cells (I): Anergy Immunogenic signaling Tolerogenic signaling • Transcription factor. • Expressed at a high level by thymic medullar epithelium Acute Chronic cells. antigens antigens CD40L • Autosomal recessive mutation leads to autoimmune LPS polyendocrine syndrom - type 1 (APS-1). CD40 CD40 TLR4 • Inactivation of aire abolishes expression of some tissue TLR4 BCR BCR Fcγ2b specific genes in the thymic medulla. NFκB NFκB • AIRE deficiency impairs antigen-presentation ability of Ca++ Ca++ medullary epithelial cells. Growth genes Inhibitory genes Anergic B cells can respond to “Stronger” antigens Oligovalent self antigens Multivalent foreign antigens Constitutively exposed Acutely exposed aire -/- Anergic Anergic B cell B cell WT Remains anergic Activated Mechanisms of unresponsiveness: Mechanisms of immune tolerance Central tolerance in B cells (II):Receptor editing Peripheral B cell Tolerance (II): Follicular exclusion pre-B bone marrow B follicle T cell zone 2% κ rearrangement 10% B B220 Maturation of clones: further Moma-1 rearrangement • Non-reactive to soluble- Spleen • low-affinity to soluble- artery • self-reactive to TCR Self monovalent- immature antigens in bone marrow antigens B 90% 2 Mechanisms of unresponsiveness: The two-signal requirement for T cell activation Peripheral tolerance in B cells (II): Follicular exclusion Microbial antigen presented by APC TCR MHC - B cells binding to autoantigens in the periphery Signal 1 may be excluded from follicles. APC - Excluded B cells undergo apoptosis independent Signal 2 of Fas and T cells. Costimulatory B7 Receptor (CD28) - Rapid elimination depends on the presence of a normal repertoire of B cells. competition between B cells for BAFF T wo- si g n al r e q u i r em ent f or lym p ho cyt e ac t iva ti on • N a ïv e l ympho c y t e s ne e d t w o s i gn a l s t o i n i t ia t e re s pon ses BAFF: B-cell activating factor belonging to TNF family. • S ign al 1: a n t ig e n re c ogn i t i on • TNF family proteins, expressed by stromal cells Æ En s ur e th at th e i m m un e re s pon s e is an ti gen- s p e c i f i c in the spleen. • Plays a critical role as a survival factor for mature B cells. • S ign al 2: mi c r obe s or s ub st an c e s produ c ed dur i ng i nna t e imm une • BAFF transgenic mice develop autoimmune disorder. r es pon s e s t o m ic robe s Æ En s ur e th at th e i m m un e sy ste m r es pond s to mi c r obe s and no t t o ha r m les s a n t ig e n i c s ub st anc e ( S e c ond s ign al s for T c e l l s are co stim ul at or s on A P C s a nd cy t ok i ne s produ c ed by A PCs .) Self antigen crosslinks BCR with no self reactivity Self antigen crosslinks Mechanisms of unresponsiveness: BCR strongly BCR weakly Peripheral tolerance in T cells (II): Anergy Pretreatment Stimulation T cell of T cells with antigens response B7 CD28 B7 CD28 18-24 hr CD28 B7 CD28 Death Survival Death Rescued by increased 18-24 hr BAFF production or reduced BAFF consumption Nature 435:590 (2005) 3 Molecular basis of anergy in T lymphocytes How do T cells choose between CD28 and CTLA-4? TCR CD3ζ P Zap 70 PROXIMAL EVENTS: • Kinetics: B7 on APCs engages CD28 early, CTLA-4 late in T - Reduced tyrosine cell responses. phosphorylation - Reduced Ca++ influx • Level of B7 expression on APCs: low levels favor CTLA-4 engagement (high affinity receptor). GROWTH FACTORS NUCLEAR EVENTS: - no induction of NFκB CELL JNK activities CYCLE Regulation of T cell homeostasis during immune responses Co-stimulatory pathways Anergy T cell • CD28 interacts with CD80 (B7-1) CD86 (B7-2) to expansion initiate T cell responses. B7 CTLA-4 Preferentially expressed in naive T cells • ICOS (CD28 homolog) stimulate effector T cell responses. Activated T cells Apoptosis express CTLA-4 Preferentially expressed in activated T cells Magnitude ofT cell response Surviving B7 CD28 Activated T cells are memory cells deprived of antigen • CTLA-4 and PD-1 inhibit T cell activation and other stimuli T cell activation Time after antigen exposure Mechanisms of immune tolerance: CTLA-4-/- T cells resist tolerance induction Peripheral T cell tolerance (III): Activation-induced cell death (AID) Naïve Tolerated To prevent over-expansion of the activated T cells Control homeostasis of T cell responses Days 4 T cell mediated suppression -/- Enhanced proliferation of activated CTLA4 T cells MBP-TCR In Rag-/- MBP MBP-TCR In wildtype MBP MBP-TCR In Rag-/- MBP CD4+ T cells Pathways of apoptosis in T cells Regulatory T cells (Treg) in self tolerance Release of Elimination mitochondrial of Antigen and cytochrome c, activation of • Phenotype and functions: other signals “Passive” caspase-9 cell death (death by ¾ CD4+CD25+ cells, develop in the thymus. B7 CD28 neglect) ¾ Recognize self-antigens. T cell proliferation ¾ Express Foxp3. Foxp3 mutation causes the early onset of fatal autoimmune disorder observed in scurfy mutant mice and human IL-2 IPEX patients (immune dysregulation, polyendocrinopath, FasL Persistence Fas enteropathy, X-linked syndrome). of antigen, Activation of repeated caspase-8 ¾ Prevent T-cell activation; supress cell proliferation and IL-2 production. stimulation Activation induced cell death Mechanisms of immune tolerance: Peripheral T cell tolerance (IV): Suppression by Treg Neonate thymectomy --> Autoimmune diseases 1. The disease is transferable by T cells. 2. The disease can be prevented by delayed thymectomy or by transplantation of normal CD4+ T cells. Science (2003) 299:1057 5 • Foxp3 is expressed specifically in TR Conclusions: Tolerance vs. Immunity • Immune responses are the outcome of a balance between the need to make a protective response and the need to maintain self-tolerance + • Expression of Foxp3 converts naïve CD4 T cells to TR • Mechanisms of unresponsiveness: – Central tolerance: Deletion; Receptor editing – Peripheral tolerance: Clonal ignorance; Clonal deletion; Anergy; Suppression Role of cytokines in suppression Mechanisms of immune tolerance: of cell-mediated immune responses Central Peripheral Antigen T cell proliferation Effector functions recognition and differentiation of T cells IL-12 Effector T cells Activated CD4+CD8- CD4+CD8- Th (TH1) macrophages APC Naïve T cell + + IFN-γ CD4 CD8 CD4-CD8+ CD4-CD8+ Tc IL-10 inhibits TGF-β inhibits IL-4 inhibits IL-10, TGF-β Cytokines Pro/Pre Plasma Functions of APCs: T cell action of inhibit B(IM) B(M) produced by B Cell IL-12 secretion, B7 proliferation IFN- macrophage suppressor γ expression activation T cells Clonal deletion Clonal deletion AID Receptor editing Receptor editing Treg suppression Suppressor T cells Anergy Mechanisms of immune tolerance: Peripheral T cell tolerance (IV): Suppression by Treg B7 CD28 T cell MHC TCR DC IL-10 IDO TGF-β B7 CTLA-4 Treg Indoleamine deoxygenase (IDO) IFN-γ Cleavage of tryptophan 6.
Recommended publications
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • Pathway in the Thymus by a CD24-Dependent Autoreactive T
    Autoreactive T Cells Escape Clonal Deletion in the Thymus by a CD24-Dependent Pathway This information is current as Joseph W. Carl, Jr., Jin-Qing Liu, Pramod S. Joshi, Hani Y. of September 27, 2021. El-Omrani, Lijie Yin, Xincheng Zheng, Caroline C. Whitacre, Yang Liu and Xue-Feng Bai J Immunol 2008; 181:320-328; ; doi: 10.4049/jimmunol.181.1.320 http://www.jimmunol.org/content/181/1/320 Downloaded from References This article cites 54 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/181/1/320.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Autoreactive T Cells Escape Clonal Deletion in the Thymus by a CD24-Dependent Pathway1 Joseph W. Carl, Jr.,* Jin-Qing Liu,* Pramod S.
    [Show full text]
  • Natural Killer T Cells Are Required for the Development of a Superantigen-Driven T Helper Type 2 Immune Response in Mice
    IMMUNOLOGY ORIGINAL ARTICLE Natural killer T cells are required for the development of a superantigen-driven T helper type 2 immune response in mice Auro Nomizo,1 Edilberto Postol,2 Summary Raquel de Alencar,2 Fabı´ola We show, here, that one single injection or weekly injections of staphylo- Cardillo2 and Jose´ Mengel2 coccal enterotoxin B (SEB), starting in 1-day-old newborn mice, induced 1Department of Clinical Analysis, Toxicology a powerful immune response with a T helper type 2 (Th2) pattern, as and Bromatology, Faculty of Pharmaceutical Sciences of Ribeira˜o Preto, University of Sa˜o judged by the isotype and cytokine profile, with the production of large Paulo, Ribeira˜o Preto, and 2Department of amounts of SEB-specific immunoglobulin G1 (IgG1), detectable levels of Immunology, Institute of Biomedical Sciences, SEB-specific IgE and increased production of interleukin-4 by spleen cells. University of Sa˜o Paulo, Sa˜o Paulo, SP, Brazil These protocols also induced an increase in the levels of total IgE in the serum. Memory of SEB was transferred to secondary recipients by using total spleen cells from primed animals. The secondary humoral response in transferred mice was diminished if spleen cells from SEB-treated mice were previously depleted of CD3+ or Vb8+ T cells or NK1.1+ cells. In vivo depletion of NK1.1+ cells in adult mice resulted in a marked reduction in the SEB-specific antibody response in both the primary and secondary doi:10.1111/j.1365-2567.2005.02215.x immune responses. Additionally, purified NK1.1+ T cells were able to per- Received 11 April 2005; revised 23 May 2005; form SEB-specific helper B-cell actions in vitro and in vivo.
    [Show full text]
  • Of T Cell Tolerance
    cells Review Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance Sébastien This 1,2,† , Stefanie F. Valbon 1,2,†, Marie-Ève Lebel 1 and Heather J. Melichar 1,3,* 1 Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; [email protected] (S.T.); [email protected] (S.F.V.); [email protected] (M.-È.L.) 2 Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada 3 Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength Citation: This, S.; Valbon, S.F.; Lebel, of T cell receptor signaling during differentiation influences the ‘function’ and persistence of anergic M.-È.; Melichar, H.J.
    [Show full text]
  • B Lymphocytes in Neuromyelitis Optica
    VIEWS & REVIEWS B lymphocytes in neuromyelitis optica Jeffrey L. Bennett, MD, ABSTRACT PhD Neuromyelitis optica (NMO) is an inflammatory autoimmune disorder of the CNS that predomi- ’ Kevin C. O Connor, PhD nantly affects the spinal cord and optic nerves. A majority (approximately 75%) of patients with Amit Bar-Or, MD, FRCP NMO are seropositive for autoantibodies against the astrocyte water channel aquaporin-4 Scott S. Zamvil, MD, (AQP4). These autoantibodies are predominantly IgG1, and considerable evidence supports their PhD pathogenicity, presumably by binding to AQP4 on CNS astrocytes, resulting in astrocyte injury Bernhard Hemmer, MD and inflammation. Convergent clinical and laboratory-based investigations have indicated that Thomas F. Tedder, PhD B cells play a fundamental role in NMO immunopathology. Multiple mechanisms have been H.-Christian von hypothesized: AQP4 autoantibody production, enhanced proinflammatory B cell and plasmablast Büdingen, MD activity, aberrant B cell tolerance checkpoints, diminished B cell regulatory function, and loss of Olaf Stuve, MD, PhD B cell anergy. Accordingly, many current off-label therapies for NMO deplete B cells or modulate Michael R. Yeaman, PhD their activity. Understanding the role and mechanisms whereby B cells contribute to initiation, Terry J. Smith, MD maintenance, and propagation of disease activity is important to advancing our understanding Christine Stadelmann, of NMO pathogenesis and developing effective disease-specific therapies. Neurol Neuroimmunol MD Neuroinflamm 2015;2:e104;
    [Show full text]
  • Proapoptotic Protein Bim Is Differentially Required During Thymic Clonal Deletion to Ubiquitous Versus Tissue-Restricted Antigens
    Proapoptotic protein Bim is differentially required during thymic clonal deletion to ubiquitous versus tissue-restricted antigens Alexander Y. W. Suen and Troy A. Baldwin1 Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada T6G 2S2 Edited by Michael J. Bevan, University of Washington, Seattle, WA, and approved December 8, 2011 (received for review September 8, 2011) Positive and negative selection of thymocytes in the thymus are positively selected by high-affinity antigen encounter in the thy- critical for the development of a mature and self-tolerant T-cell mus (6). One such example are T-regulatory (Treg) cells, which repertoire. The proapoptotic Bcl-2 family member Bim is important are believed to require high-affinity interactions to develop in the for negative selection by inducing apoptosis in thymocytes receiv- medulla (7). It remains unknown what drives this distinction ing a strong signal through their antigen receptor. However, in the between negative selection and Treg development, although case of ubiquitous self-antigens (UbA), Bim is not required for the secondary signals, such as TGF-β, may play a role in overcoming clonal deletion of self-reactive thymocytes, suggesting the exis- cell death (8). tence of nonapoptotic clonal deletion mechanisms. Unlike UbA, Although it is unclear how the same TCR can transduce a sig- clonal deletion to tissue-restricted antigens (TRAs) requires posi- nal for positive or negative selection, differential mitogen-acti- tive selection and CCR7-mediated migration to the medulla. This vated protein kinase signaling appears to play a role, ultimately led us to hypothesize that Bim is required for the latter.
    [Show full text]
  • T-Cell Tolerance by Prof. Anand Prakash
    PROF. ANAND PRAKASH Department of Biotechnology Mahatma Gandhi Central University Motihari Bihar • Immature T-Cells enter in the thymus after differentiating in the bone marrow. • These T-cells undergo maturation and develop TCRs through Somatic Recombination. Bone Marrow Precursors of the T-Cells enter from Bone marrow to THYMUS thymus T Cell Maturation starts Expression of TCR s • DEVELOPMENT OF T-CELL RECEPTORS (TCRs) Some of T-Cells in the thymus develop receptors which are useless with no antigen specificity and while others develop TCRs with • specificity for self antigens and non-self antigens. Thymocytes having TCRs with low affinity for auto antigens, displayed in the MHC class I and II, undergo positive selection and further differentiate to become part of adaptive immunity, whereas the one with non-functional receptors die off because of • negligence. Clonal deletion of T-cells with useless TCRs and high affinity receptors along with clonal diversion for development of “Treg”, are the major processes operative in the thymus towards elimination or regulation of self-reactive T cells. INSIDE THE THYMUS THE T-CELLS UNDERGO AN ELABORATE SCREENING PROCEDURE3 THROUGH FOLLOWING MECHANISMS • • • T CELLS RECOGNIZE ANTIGEN DERIVED PEPTIDES PRESENTED BY MHC MOLECULES MHC Class II MHC Class I Antigen Infected or Presenting Tumour Cell Cell CD8 Peptide CD4 CD4+ CD8+ Helper Cell Cytotoxic T Cell T Cell Receptor T Cell Receptor T CELLS RECOGNIZE ANTIGEN DERIVED PEPTIDES PRESENTED BY MHC MOLECULES Inside Thymus THYMIC T -CELL FATE IS DETERMINED BY STRENGTH OF TCR-MHC/PEPTIDE INTERACTION Thymic MHC stromal Cell Thymic T Cell TCR + CD4 CD8 • NEGATIVE SELECTION Negative selection occurs at the Double positive stage in the thymic cortex, or at the Single Positive stage in the thymic medulla.
    [Show full text]
  • The Importance of Dendritic Cells in Maintaining Immune Tolerance Cindy Audiger, M
    The Importance of Dendritic Cells in Maintaining Immune Tolerance Cindy Audiger, M. Jubayer Rahman, Tae Jin Yun, Kristin V. Tarbell and Sylvie Lesage This information is current as of October 1, 2021. J Immunol 2017; 198:2223-2231; ; doi: 10.4049/jimmunol.1601629 http://www.jimmunol.org/content/198/6/2223 Downloaded from References This article cites 166 articles, 73 of which you can access for free at: http://www.jimmunol.org/content/198/6/2223.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 1, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Th eJournal of Brief Reviews Immunology The Importance of Dendritic Cells in Maintaining Immune Tolerance x { Cindy Audiger,*,†,1 M. Jubayer Rahman,‡,1 Tae Jin Yun, , Kristin V. Tarbell,‡ and Sylvie Lesage*,† Immune tolerance is necessary to prevent the immune specific depletion of CD11c+ cells (3).
    [Show full text]
  • Understanding the Immune System: How It Works
    Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them.
    [Show full text]
  • Clonal Deletion of Autoreactive B Lymphocytes in Bone Marrow
    Proc. Nati. Acad. Sci. USA Vol. 86, pp. 8039-8043, October 1989 Immunology Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras (immunological tolerance/transgenic mice/histocompatibility complex) DAVID NEMAZEE*t AND KURT BUERKIt *Basel Institute for Immunology, Postfach CH-4005, Basel, Switzerland; and tPrecinical Research, Sandoz, Ltd., CH-4002, Basel, Switzerland Communicated by Philippa Marrack, July 24, 1989 (receivedfor review June 17, 1989) ABSTRACT To study the fate of developing B cells in the mice that either did or did not bear the H-2k antigens to which presence and absence of the autoantigens to which they react, the transgenic antibody reacts (H-2Kk and H-2Dk). chimeric mice were constructed by ij'ecting bone marrow cells A potential difficulty with studying tolerance to H-2k in our from mice transgenic for rearranged immunoglobulin genes system with genetic crosses was that, because the B cells in encoding an anti-H-2Kk antibody into irradiated recipients that the tolerant animals also bore H-2 class I antigens, it was not did or did not express the H-2Kk antigen. In the presence of clear whether it was necessary for the H-2k antigens to be H-2Kk, the anti-H-2Kk-specific B cells were deleted from the coexpressed on the transgenic B cells themselves to achieve spleen and lymph nodes, whereas in its absence, anti-H-2Kk tolerance. In this report we describe the tolerance phenotype cells were abundant. B cells bearing a low level of membrane of irradiation bone marrow chimeras in which anti-H-2k immunoglobulin with the anti-H-2Kk idiotype were found in the transgenic B cells that lack the H-2k antigens develop in hosts bone marrows of H-2Kk recipients, suggesting that clonal that bear or do not bear H-2k antigens.
    [Show full text]
  • Induction of Peripheral Tolerance in Ongoing Autoimmune Inflammation Equirr Es Interleukin 27 Signaling in Dendritic Cells
    Thomas Jefferson University Jefferson Digital Commons Department of Neurology Faculty Papers Department of Neurology 10-27-2017 Induction of peripheral tolerance in ongoing autoimmune inflammation equirr es interleukin 27 signaling in dendritic cells Rodolfo Thome Thomas Jefferson University Jason N. Moore Thomas Jefferson University Elisabeth R. Mari Thomas Jefferson University Javad Rasouli Thomas Jefferson University Follow this and additional works at: https://jdc.jefferson.edu/neurologyfp Part of the Medical Immunology Commons, and the Neurology Commons Let us know how access to this document benefits ouy Recommended Citation Thome, Rodolfo; Moore, Jason N.; Mari, Elisabeth R.; and Rasouli, Javad, "Induction of peripheral tolerance in ongoing autoimmune inflammation equirr es interleukin 27 signaling in dendritic cells" (2017). Department of Neurology Faculty Papers. Paper 139. https://jdc.jefferson.edu/neurologyfp/139 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Neurology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. ORIGINAL RESEARCH published: 27 October 2017 doi: 10.3389/fimmu.2017.01392 Induction of Peripheral Tolerance in Ongoing autoimmune inflammation Requires Interleukin 27 Signaling in Dendritic Cells Rodolfo Thomé1, Jason N.
    [Show full text]
  • Type 1 Regulatory T Cells: a New Mechanism of Peripheral Immune Tolerance
    Cellular & Molecular Immunology (2015) 12, 566–571 ß 2015 CSI and USTC. All rights reserved 1672-7681/15 $32.00 www.nature.com/cmi REVIEW Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance Hanyu Zeng, Rong Zhang, Boquan Jin and Lihua Chen The lack of immune response to an antigen, a process known as immune tolerance, is essential for the preservation of immune homeostasis. To date, two mechanisms that drive immune tolerance have been described extensively: central tolerance and peripheral tolerance. Under the new nomenclature, thymus-derived regulatory T (tTreg) cells are the major mediators of central immune tolerance, whereas peripherally derived regulatory T (pTreg) cells function to regulate 1 peripheral immune tolerance. A third type of Treg cells, termed iTreg, represents only the in vitro-induced Treg cells . Depending on whether the cells stably express Foxp3, pTreg, and iTreg cells may be divided into two subsets: the classical 1 1 1 2 2 CD4 Foxp3 Treg cells and the CD4 Foxp3 type 1 regulatory T (Tr1) cells . This review focuses on the discovery, associated biomarkers, regulatory functions, methods of induction, association with disease, and clinical trials of Tr1 cells. Cellular & Molecular Immunology (2015) 12, 566–571; doi:10.1038/cmi.2015.44; published online 8 June 2015 Keywords: biomarkers; clinical trials; regulatory functions; type 1 regulatory T cells INTRODUCTION functions of these cells and ultimately to apply this knowledge The induction and formation of peripheral immune tolerance to the treatment of associated diseases. is essential to maintaining stability of the immune system. In addition to the immune system’s major roles in regulating THE DISCOVERY OF TR1 CELLS clonal deletion, antigen sequestration, and expression at privi- Tr1 cells were first described by Roncarolo et al.
    [Show full text]