Natural Killer T Cells Are Required for the Development of a Superantigen-Driven T Helper Type 2 Immune Response in Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Invariant Natural Killer T Cells in Dendritic Cell Licensing, Cross-Priming, and Memory CD8+ T Cell Generation
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector MINI REVIEW published: 28 July 2015 doi: 10.3389/fimmu.2015.00379 The role of invariant natural killer T cells in dendritic cell licensing, cross-priming, and memory CD8+ T cell generation Catherine Gottschalk, Elisabeth Mettke and Christian Kurts* Institute of Experimental Immunology, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany New vaccination strategies focus on achieving CD8+ T cell (CTL) immunity rather than on induction of protective antibody responses. While the requirement of CD4+ T (Th) cell help in dendritic cell (DC) activation and licensing, and in CTL memory induction has been described in several disease models, CTL responses may occur in a Th cell help-independent manner. Invariant natural killer T cells (iNKT cells) can substitute for Edited by: Elisabetta Padovan, Th cell help and license DC as well. iNKT cells produce a broad spectrum of Th1 and Basel University Hospital and Th2 cytokines, thereby inducing a similar set of costimulatory molecules and cytokines in University of Basel, Switzerland DC. This form of licensing differs from Th cell help by inducing other chemokines, while Reviewed by: Th cell-licensed DCs produce CCR5 ligands, iNKT cell-licensed DCs produce CCL17, Francesca Di Rosa, + + National Research Council, Italy which attracts CCR4 CD8 T cells for subsequent activation. It has recently been shown Alena Donda, that iNKT cells do not only enhance immune responses against bacterial pathogens or University of Lausanne, Switzerland Paolo Dellabona, parasites but also play a role in viral infections. -
Pathway in the Thymus by a CD24-Dependent Autoreactive T
Autoreactive T Cells Escape Clonal Deletion in the Thymus by a CD24-Dependent Pathway This information is current as Joseph W. Carl, Jr., Jin-Qing Liu, Pramod S. Joshi, Hani Y. of September 27, 2021. El-Omrani, Lijie Yin, Xincheng Zheng, Caroline C. Whitacre, Yang Liu and Xue-Feng Bai J Immunol 2008; 181:320-328; ; doi: 10.4049/jimmunol.181.1.320 http://www.jimmunol.org/content/181/1/320 Downloaded from References This article cites 54 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/181/1/320.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Autoreactive T Cells Escape Clonal Deletion in the Thymus by a CD24-Dependent Pathway1 Joseph W. Carl, Jr.,* Jin-Qing Liu,* Pramod S. -
Of T Cell Tolerance
cells Review Strength and Numbers: The Role of Affinity and Avidity in the ‘Quality’ of T Cell Tolerance Sébastien This 1,2,† , Stefanie F. Valbon 1,2,†, Marie-Ève Lebel 1 and Heather J. Melichar 1,3,* 1 Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada; [email protected] (S.T.); [email protected] (S.F.V.); [email protected] (M.-È.L.) 2 Département de Microbiologie, Immunologie et Infectiologie, Université de Montréal, Montréal, QC H3C 3J7, Canada 3 Département de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: The ability of T cells to identify foreign antigens and mount an efficient immune response while limiting activation upon recognition of self and self-associated peptides is critical. Multiple tolerance mechanisms work in concert to prevent the generation and activation of self-reactive T cells. T cell tolerance is tightly regulated, as defects in these processes can lead to devastating disease; a wide variety of autoimmune diseases and, more recently, adverse immune-related events associated with checkpoint blockade immunotherapy have been linked to a breakdown in T cell tolerance. The quantity and quality of antigen receptor signaling depend on a variety of parameters that include T cell receptor affinity and avidity for peptide. Autoreactive T cell fate choices (e.g., deletion, anergy, regulatory T cell development) are highly dependent on the strength of T cell receptor interactions with self-peptide. However, less is known about how differences in the strength Citation: This, S.; Valbon, S.F.; Lebel, of T cell receptor signaling during differentiation influences the ‘function’ and persistence of anergic M.-È.; Melichar, H.J. -
Proapoptotic Protein Bim Is Differentially Required During Thymic Clonal Deletion to Ubiquitous Versus Tissue-Restricted Antigens
Proapoptotic protein Bim is differentially required during thymic clonal deletion to ubiquitous versus tissue-restricted antigens Alexander Y. W. Suen and Troy A. Baldwin1 Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada T6G 2S2 Edited by Michael J. Bevan, University of Washington, Seattle, WA, and approved December 8, 2011 (received for review September 8, 2011) Positive and negative selection of thymocytes in the thymus are positively selected by high-affinity antigen encounter in the thy- critical for the development of a mature and self-tolerant T-cell mus (6). One such example are T-regulatory (Treg) cells, which repertoire. The proapoptotic Bcl-2 family member Bim is important are believed to require high-affinity interactions to develop in the for negative selection by inducing apoptosis in thymocytes receiv- medulla (7). It remains unknown what drives this distinction ing a strong signal through their antigen receptor. However, in the between negative selection and Treg development, although case of ubiquitous self-antigens (UbA), Bim is not required for the secondary signals, such as TGF-β, may play a role in overcoming clonal deletion of self-reactive thymocytes, suggesting the exis- cell death (8). tence of nonapoptotic clonal deletion mechanisms. Unlike UbA, Although it is unclear how the same TCR can transduce a sig- clonal deletion to tissue-restricted antigens (TRAs) requires posi- nal for positive or negative selection, differential mitogen-acti- tive selection and CCR7-mediated migration to the medulla. This vated protein kinase signaling appears to play a role, ultimately led us to hypothesize that Bim is required for the latter. -
Preclinical Evaluation of Invariant Natural Killer T Cells Modified With
International Journal of Molecular Sciences Article Preclinical Evaluation of Invariant Natural Killer T Cells Modified with CD38 or BCMA Chimeric Antigen Receptors for Multiple Myeloma Renée Poels 1,†, Esther Drent 1,†,‡, Roeland Lameris 2, Afroditi Katsarou 1, Maria Themeli 1, Hans J. van der Vliet 2,3, Tanja D. de Gruijl 2, Niels W. C. J. van de Donk 1 and Tuna Mutis 1,* 1 Cancer Center Amsterdam, Department of Haematology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (R.P.); [email protected] (E.D.); [email protected] (A.K.); [email protected] (M.T.); [email protected] (N.W.C.J.v.d.D.) 2 Cancer Center Amsterdam, Department of Medical Oncology, Amsterdam UMC, VU Amsterdam, 1081 HV Amsterdam, The Netherlands; [email protected] (R.L.); [email protected] (H.J.v.d.V.); [email protected] (T.D.d.G.) 3 Lava Therapeutics, 3584 CM Utrecht, The Netherlands * Correspondence: [email protected] † Equally contributed. ‡ Presently working at Gadeta, 3584 CM Utrecht, The Netherlands. Abstract: Due to the CD1d restricted recognition of altered glycolipids, Vα24-invariant natural killer T (iNKT) cells are excellent tools for cancer immunotherapy with a significantly reduced risk Citation: Poels, R.; Drent, E.; for graft-versus-host disease when applied as off-the shelf-therapeutics across Human Leukocyte Lameris, R.; Katsarou, A.; Themeli, Antigen (HLA) barriers. To maximally harness their therapeutic potential for multiple myeloma M.; van der Vliet, H.J.; de Gruijl, T.D.; (MM) treatment, we here armed iNKT cells with chimeric antigen receptors (CAR) directed against van de Donk, N.W.C.J.; Mutis, T. -
T-Cell Tolerance by Prof. Anand Prakash
PROF. ANAND PRAKASH Department of Biotechnology Mahatma Gandhi Central University Motihari Bihar • Immature T-Cells enter in the thymus after differentiating in the bone marrow. • These T-cells undergo maturation and develop TCRs through Somatic Recombination. Bone Marrow Precursors of the T-Cells enter from Bone marrow to THYMUS thymus T Cell Maturation starts Expression of TCR s • DEVELOPMENT OF T-CELL RECEPTORS (TCRs) Some of T-Cells in the thymus develop receptors which are useless with no antigen specificity and while others develop TCRs with • specificity for self antigens and non-self antigens. Thymocytes having TCRs with low affinity for auto antigens, displayed in the MHC class I and II, undergo positive selection and further differentiate to become part of adaptive immunity, whereas the one with non-functional receptors die off because of • negligence. Clonal deletion of T-cells with useless TCRs and high affinity receptors along with clonal diversion for development of “Treg”, are the major processes operative in the thymus towards elimination or regulation of self-reactive T cells. INSIDE THE THYMUS THE T-CELLS UNDERGO AN ELABORATE SCREENING PROCEDURE3 THROUGH FOLLOWING MECHANISMS • • • T CELLS RECOGNIZE ANTIGEN DERIVED PEPTIDES PRESENTED BY MHC MOLECULES MHC Class II MHC Class I Antigen Infected or Presenting Tumour Cell Cell CD8 Peptide CD4 CD4+ CD8+ Helper Cell Cytotoxic T Cell T Cell Receptor T Cell Receptor T CELLS RECOGNIZE ANTIGEN DERIVED PEPTIDES PRESENTED BY MHC MOLECULES Inside Thymus THYMIC T -CELL FATE IS DETERMINED BY STRENGTH OF TCR-MHC/PEPTIDE INTERACTION Thymic MHC stromal Cell Thymic T Cell TCR + CD4 CD8 • NEGATIVE SELECTION Negative selection occurs at the Double positive stage in the thymic cortex, or at the Single Positive stage in the thymic medulla. -
Invariant Natural Killer T Cells
Antibodies 2014, 3, 16-36; doi:10.3390/antib3010016 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Invariant Natural Killer T Cells Antonella Cianferoni Divisions of Allergy and Immunology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail: [email protected]; Tel.: +1-267-426-7831; Fax: +1-215-590-4529 Received: 8 November 2013; in revised form: 13 December 2013 / Accepted: 18 December 2013 / Published: 23 December 2013 Abstract: Invariant Natural killer T cell (iNKT cells) are a subset of T cells, which are narrowly defined as a T cell lineage expressing a semi-invariant CD1d-restricted T cell Receptors (TCRs) composed by Vα24-Jα18/Vβ11 in human, and Vα14-Jα18/Vβ8,Vβ7, and Vβ2 in mouse. Unlike conventional T cells which recognize peptides bound to highly polymorphic major histocompatibility complex (MHC) class I and II molecules, iNKT cells recognize lipid antigens, such as glycolipids, presented by CD1d, a non-polymorphic non-classical MHC class I molecule. Lipids derived from microbes, tumors, and allergens, as well as self lipids have been shown to be able to activate iNKT cells. Early on, in an immune response, ligation of the iNKT cell TCR leads to rapid and copious secretion of prototypical Th1 and Th2 cytokines. Moreover, like NK cells, iNKT cells express cytotoxic granules, such as perforin and granzyme that polarize upon activation of TCR and are able to kill target cells. Therefore iNKT cells are a very interesting subset of T cells that may bridge the innate and adaptive immune systems. -
Understanding the Immune System: How It Works
Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them. -
Updating Targets for Natural Killer/T-Cell Lymphoma Immunotherapy
Cancer Biol Med 2021. doi: 10.20892/j.issn.2095-3941.2020.0400 REVIEW Updating targets for natural killer/T-cell lymphoma immunotherapy Weili Xue, Mingzhi Zhang Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Lymphoma Diagnosis and Treatment Center of Henan, Zhengzhou 450052, China ABSTRACT Natural killer/T-cell lymphoma (NKTCL) is a highly invasive subtype of non-Hodgkin lymphoma, typically positive for cytoplasmic CD3, CD56, cytotoxic markers, including granzyme B and TIA1, and Epstein-Barr virus (EBV). The current treatment methods for NKTCL are associated with several drawbacks. For example, chemotherapy can lead to drug resistance, while treatment with radiotherapy alone is inadequate and results in frequent relapses. Moreover, hematopoietic stem cell transplantation exhibits limited efficacy and is not well recognized by domestic and foreign experts. In recent years, immunotherapy has shown good clinical results and has become a hot spot in cancer research. Clinical activity of targeted antibodies, such as daratumumab (anti-CD38 antibody) and brentuximab vedotin (anti-CD30 antibody), have been reported in NKTCL. Additionally, dacetuzumab and Campath-1H have demonstrated promising results. Further encouraging data have been obtained using checkpoint inhibitors. The success of these immunotherapy agents is attributed to high expression levels of programmed death-ligand 1 in NKTCL. Furthermore, anti-CCR4 monoclonal antibodies (mAbs) exert cytotoxic actions on both CCR4+ tumor cells and regulatory T cells. Depletion of these cells and the long half-life of anti-CCR4 mAbs result in enhanced induction of antitumor effector T cells. The role of IL10 in NKTCL has also been investigated. It has been proposed that exploitation of this cytokine might provide potential novel therapeutic strategies. -
Clonal Deletion of Autoreactive B Lymphocytes in Bone Marrow
Proc. Nati. Acad. Sci. USA Vol. 86, pp. 8039-8043, October 1989 Immunology Clonal deletion of autoreactive B lymphocytes in bone marrow chimeras (immunological tolerance/transgenic mice/histocompatibility complex) DAVID NEMAZEE*t AND KURT BUERKIt *Basel Institute for Immunology, Postfach CH-4005, Basel, Switzerland; and tPrecinical Research, Sandoz, Ltd., CH-4002, Basel, Switzerland Communicated by Philippa Marrack, July 24, 1989 (receivedfor review June 17, 1989) ABSTRACT To study the fate of developing B cells in the mice that either did or did not bear the H-2k antigens to which presence and absence of the autoantigens to which they react, the transgenic antibody reacts (H-2Kk and H-2Dk). chimeric mice were constructed by ij'ecting bone marrow cells A potential difficulty with studying tolerance to H-2k in our from mice transgenic for rearranged immunoglobulin genes system with genetic crosses was that, because the B cells in encoding an anti-H-2Kk antibody into irradiated recipients that the tolerant animals also bore H-2 class I antigens, it was not did or did not express the H-2Kk antigen. In the presence of clear whether it was necessary for the H-2k antigens to be H-2Kk, the anti-H-2Kk-specific B cells were deleted from the coexpressed on the transgenic B cells themselves to achieve spleen and lymph nodes, whereas in its absence, anti-H-2Kk tolerance. In this report we describe the tolerance phenotype cells were abundant. B cells bearing a low level of membrane of irradiation bone marrow chimeras in which anti-H-2k immunoglobulin with the anti-H-2Kk idiotype were found in the transgenic B cells that lack the H-2k antigens develop in hosts bone marrows of H-2Kk recipients, suggesting that clonal that bear or do not bear H-2k antigens. -
Immune Regulation and Tolerance
Mechanisms of unresponsiveness: Immunological Ignorance Immune Regulation Normal response and Proliferation and Tolerance differentiation Mechanisms of Antigen/lymphocyte barrier unresponsiveness Mechanisms of Tissue abnormalities contributing to release and Yong-Rui Zou (Oct. 2005) autoimmunity presentation of self antigens. [email protected] Disease models Sympathetic ophthalmia, experimental allergic encephalomyelitis (EAE) Immunoregulation: A balance between activation and Mechanisms of unresponsiveness: suppression of effector cells to achieve an efficient Central tolerance in B and T cells (I): Clonal Deletion immune response without damaging the host. Self antigen presented in generative Activation (immunity) Suppression (tolerance) lymphoid Deletion of immature organs lymphocytes strongly recognizing self antigens autoimmunity immunodeficiency present in generative organs Lymphoid precursor Significance: The induction of tolerance may be Survival of clones which are only moderately exploited to prevent graft rejection, to treat autoimmune responsive to self antigens and allergic diseases, and to prevent immune responses present in generative in gene therapy. organs; forms T/B cell repertoire Important features of immunoregulation: 1. Antigen specific; affects T or B lymphocytes Science 298:1395 (2002) 2. Tolerance vs. activation? Determined by the nature of antigen and associated stimuli, and when and where the antigen is encountered Immunity 23:227 (2005) 1 Mechanisms of unresponsiveness: AIRE: Autoimmune regulator. Peripheral tolerance in B cells (I): Anergy Immunogenic signaling Tolerogenic signaling • Transcription factor. • Expressed at a high level by thymic medullar epithelium Acute Chronic cells. antigens antigens CD40L • Autosomal recessive mutation leads to autoimmune LPS polyendocrine syndrom - type 1 (APS-1). CD40 CD40 TLR4 • Inactivation of aire abolishes expression of some tissue TLR4 BCR BCR Fcγ2b specific genes in the thymic medulla. -
NKT Cells in Mucosal Immunity
nature publishing group REVIEW See COMMENTARY page XX NKT cells in mucosal immunity S M i d d e n d o r p 1 a n d E E S N i e u w e n h u i s 1 The gastrointestinal tract allows the residence of an almost enumerable number of bacteria. To maintain homeostasis, the mucosal immune system must remain tolerant to the commensal microbiota and eradicate pathogenic bacteria. Aberrant interactions between the mucosal immune cells and the microbiota have been implicated in the pathogenesis of inflammatory disorders, such as inflammatory bowel disease (IBD). In this review, we discuss the role of natural killer T cells (NKT cells) in intestinal immunology. NKT cells are a subset of non-conventional T cells recognizing endogenous and / or exogenous glycolipid antigens when presented by the major histocompatibility complex (MHC) class I-like antigen-presenting molecules CD1d and MR1. Upon T-cell receptor (TCR) engagement, NKT cells can rapidly produce various cytokines that have important roles in mucosal immunity. Our understanding of NKT-cell-mediated pathways including the identification of specific antigens is expanding. This knowledge will facilitate the development of NKT cell- based interventions and immune therapies for human intestinal diseases. INTRODUCTION With reference to recent literature on the role of iNKT cells in The main function of the intestine is digestion and absorption mucosal immunology,2 – 4 this review will mainly focus on the of nutrients from food and recovery of water and electrolytes. role of other intestinal NKT cells (e.g., mucosal (m) NKT cells In addition, the intestine houses a large immune compartment, and NKT cells) in mucosal immunity and the interaction of as it is responsible for prevention and control of mucosal infec- NKT cells with other immune cells such as dendritic cells (DCs) tions, regulation of microbial colonization, and induction of oral and B lymphocytes.