Mechanisms of Autoimmunity —Recent Concept—

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Autoimmunity —Recent Concept— Ⅵ Autoimmune Diseases Mechanisms of Autoimmunity —Recent concept— JMAJ 47(9): 403–406, 2004 Kazuhiko YAMAMOTO Professor, Department of Allergy and Rheumatology, The University of Tokyo Abstract: Autoantibodies and autoreactive T cells, which exist even in healthy individuals, are usually regulated by a mechanism called immunological tolerance. For example, peripheral T cells are subject to various types of regulatory mechanisms, including clonal deletion, anergy, clonal ignorance, and T cells with regulatory functions. It is believed that autoimmune response may initiate when such regulated immune responses are pathologically activated by a certain trigger, probably a limited antigenic stimulation. Thereafter, other factors that promote autoimmune responses combine to develop an autoimmune disease. It is esti- mated that T cells are closely involved in these reactions. Key words: Immunological tolerance; Molecular mimicry; Epitope spreading Introduction assumes that the immune system definitely distinguishes between self and non-self, and Autoimmunity is generally defined as a phe- that autoreactive B and T cell clones are nomenon in which antibodies or T cells react eliminated before they mature. However, with autoantigens. Autoimmunity induces auto- recent studies have demonstrated that this immune diseases. Recent studies have revealed theory, although basically correct, does not that such autoantibodies or autoreactive T cells always hold true. B and T cells that react with exist even in healthy individuals. The immune autoantigens exist in the peripheral blood of system has various mechanisms to suppress the healthy individuals. immune response to the self, and the distur- For example, T cells that react with auto- bance of these mechanisms results in auto- antigens, such as myelin basic protein (MBP) immune diseases. of myelin sheath and type II collagen of car- tilage, can be separated from the peripheral Autoimmunity and blood of healthy individuals. Furthermore, auto- Autoimmune Diseases immune diseases such as thyroiditis can be induced in normal animals by immunizing them The conventional clonal deletion theory with organ-specific antigens such as thyro- This article is a revised English version of a paper originally published in the Journal of the Japan Medical Association (Vol. 129, No. 7, 2003, pages 895–898). JMAJ, September 2004—Vol. 47, No. 9 403 K. YAMAMOTO globulin, indicating that lymphocytes that react Mechanisms of with the autoantigens exist in normal animals. Immunological Tolerance Therefore, it is believed that the existence of autoantibodies or autoreactive T cells is not Immunological tolerance is defined as a state enough to elicit autoimmune diseases. In in which the immune system does not posi- addition, it has been recently speculated that tively respond to autoantigens. The concept of auto-reactivity at a low level is physiological immunological tolerance for autoreactive T and necessary for a normal immune response. and B cells has been changing rapidly as new It has been reported that the weak reactivity experimental systems have been established. to autoantigens presented by major histo- T cells, which play a central role in acquired compatibility complexes (MHC; for humans, immunity, undergo clonal deletion by apo- HLA) might be necessary for the survival of ptosis when they are exposed to a sufficient peripheral mature T cells and maintenance of amount of autoantigens in the thymus where homeostasis. they differentiate. This is called central toler- Considering these factors, it is important to ance. It has been revealed recently that some distinguish specific autoimmune responses that molecules previously considered to be expressed cause various autoimmune diseases from the only in a specific organ are also expressed in existence of autoreactive lymphocytes or simple medullary epithelial cells of the thymus. This autoimmune response. For example, injection indicates that the thymus is intended to express of spermatozoa into an animal results only in as many autoantigens as possible in the body the production of autoantibodies against sper- to induce tolerance for them. However, this matozoa, but it does not cause any disease. mechanism is limited by the fact that not all However, the immunization of an animal with autoantigens are expressed in the thymus. spermatozoa mixed with an adjuvant that Furthermore, T cells that weakly react with strongly stimulates an immune response results autoantigens can migrate into peripheral tissue. in autoimmune testitis. Therefore, autoimmune Each antigen should have multiple amino acid diseases are distinguished from mere auto- sequences that can bind to antigen-presenting immune response not by the presence/absence MHC molecules. These sequences are called of autoimmune response, but by the different epitopes or antigenic determinants. However, quality and quantity of the autoimmune some epitopes are not presented as antigens response. under usual conditions probably due to the Autoimmune diseases are divided into two relationship with other epitopes or proteolysis groups: the organ-specific autoimmune diseases, in the cells. Such epitopes are called “cryptic in which the target antigens and the tissue dis- epitopes,” which means hidden antigenic deter- orders are localized in one organ, and the minants. T cells cannot become tolerant to systemic autoimmune diseases, in which the them.1) response to a certain type of antigens that are T cells that migrate into peripheral tissues expressed widely in the body, such as an undergo clonal deletion by apoptosis in the intranuclear antigen and multiple organs are similar way as in the thymus when the stimulus involved. There are several autoimmune dis- of autoantigens is strong. When the stimulus is eases that stand between these two groups. It not strong enough, T cells undergo clonal remains unclear whether these two groups of anergy (clonal paralysis). When the amount of autoimmune diseases result from the same or autoantigens is further reduced, T cells become substantially different mechanisms. ignorant (non-tolerant and unresponsive). In this regard, it is important that naïve T cells circulate only in lymphoid organs without 404 JMAJ, September 2004—Vol. 47, No. 9 MECHANISMS OF AUTOIMMUNITY entering other organs to maintain the state of triggered by the development or activation of helper T cells that react with a specific םignorant. CD4 It has also been reported that tolerance may autoantigen. Based on various evidence, it is be actively suppressed by regulatory T cells. now proposed that a specific antigenic stimulus Recent studies have reported T cells with vari- is the first trigger of autoimmunity. This is ous regulatory functions, including those that called the “single initiating antigen hypoth- produce cytokines with suppressive effects, esis”.2) For example, molecular mimicry in such as interleukin (IL)-10 and transforming which immune response occurs to both an growth factor (TGF)-␤, and those that have external microbial antigen and an autoantigen surface markers and pro- because of their homology is considered one of םand CD25 םCD4 vide suppressive effect through cell-cell contact. the mechanisms of initiating autoimmunity. These various suppressive T cells may play Microbial infection may initiate autoimmune different roles, depending on the activation of response not only through molecular mimicry, autoreactive T cells. but also with polyclonal activation and release Thus, autoreactive T cells are under sub- of isolated autoantigen. Lipopolysaccharide stantially different conditions of tolerance, (LPS), a product of infectious microbes, bac- depending on the quality and quantity of auto- terial DNA, and viruses serve as an adjuvant antigens. For example, many autoantigens are to immune response. They bind to Toll-like too isolated from the immune system to activate receptors (TLRs) on the surface of macro- potential autoreactive T cells. Autoantigens phages or dendritic cells to stimulate natural expressed on non-hematopoietic cells may not immunity and inflammatory cytokine pro- stimulate T cells because they do not have co- duction, enhancing immune response by in- stimulatory molecules. Another mechanism creasing the expression of MHC antigen or has also been revealed in which the lymph co-stimulatory molecules, such as B7-2 and nodes around organs have dendritic cells that OX40L. These responses are usually helpful for take antigens to induce tolerance of auto- inducing acquired immunity, but may stimulate reactive T cells in the steady state condition. potential autoreactive T cells. Through these B cells have been reported to undergo anergy processes, it is also possible that cryptic epitopes in response to soluble autoantigens and clonal not expressed under usual conditions are deletion in response to stronger autoantigens, expressed to trigger an autoimmune response. such as those on cell surfaces in the bone Non-infectious factors are also considered marrow where they differentiate. B cells that as a trigger of autoimmunity. For example, strongly react with soluble antigens such as estrogen exacerbates systemic lupus erythema- self-molecules at the germinal center of periph- tosus (SLE) in a mouse model, while drugs, eral tissues are also deleted through apoptosis. such as procaine amide and hydralazine, induce B cells have been reported to cause a phenom- the production of antinuclear antibodies, caus- enon called receptor editing in which B cells ing an SLE-like pathologic state.
Recommended publications
  • IFM Innate Immunity Infographic
    UNDERSTANDING INNATE IMMUNITY INTRODUCTION The immune system is comprised of two arms that work together to protect the body – the innate and adaptive immune systems. INNATE ADAPTIVE γδ T Cell Dendritic B Cell Cell Macrophage Antibodies Natural Killer Lymphocites Neutrophil T Cell CD4+ CD8+ T Cell T Cell TIME 6 hours 12 hours 1 week INNATE IMMUNITY ADAPTIVE IMMUNITY Innate immunity is the body’s first The adaptive, or acquired, immune line of immunological response system is activated when the innate and reacts quickly to anything that immune system is not able to fully should not be present. address a threat, but responses are slow, taking up to a week to fully respond. Pathogen evades the innate Dendritic immune system T Cell Cell Through antigen Pathogen presentation, the dendritic cell informs T cells of the pathogen, which informs Macrophage B cells B Cell B cells create antibodies against the pathogen Macrophages engulf and destroy Antibodies label invading pathogens pathogens for destruction Scientists estimate innate immunity comprises approximately: The adaptive immune system develops of the immune memory of pathogen exposures, so that 80% system B and T cells can respond quickly to eliminate repeat invaders. IMMUNE SYSTEM AND DISEASE If the immune system consistently under-responds or over-responds, serious diseases can result. CANCER INFLAMMATION Innate system is TOO ACTIVE Innate system NOT ACTIVE ENOUGH Cancers grow and spread when tumor Certain diseases trigger the innate cells evade detection by the immune immune system to unnecessarily system. The innate immune system is respond and cause excessive inflammation. responsible for detecting cancer cells and This type of chronic inflammation is signaling to the adaptive immune system associated with autoimmune and for the destruction of the cancer cells.
    [Show full text]
  • Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation
    Review Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation Chiara Rizzo 1, Giulia Grasso 1, Giulia Maria Destro Castaniti 1, Francesco Ciccia 2 and Giuliana Guggino 1,* 1 Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; [email protected] (C.R.); [email protected] (G.G.); [email protected] (G.M.D.C.) 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-6552260 Received: 30 April 2020; Accepted: 29 May 2020; Published: 3 June 2020 Abstract: Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players.
    [Show full text]
  • Vaccination and Autoimmune Disease: What Is the Evidence?
    REVIEW Review Vaccination and autoimmune disease: what is the evidence? David C Wraith, Michel Goldman, Paul-Henri Lambert As many as one in 20 people in Europe and North America have some form of autoimmune disease. These diseases arise in genetically predisposed individuals but require an environmental trigger. Of the many potential environmental factors, infections are the most likely cause. Microbial antigens can induce cross-reactive immune responses against self-antigens, whereas infections can non-specifically enhance their presentation to the immune system. The immune system uses fail-safe mechanisms to suppress infection-associated tissue damage and thus limits autoimmune responses. The association between infection and autoimmune disease has, however, stimulated a debate as to whether such diseases might also be triggered by vaccines. Indeed there are numerous claims and counter claims relating to such a risk. Here we review the mechanisms involved in the induction of autoimmunity and assess the implications for vaccination in human beings. Autoimmune diseases affect about 5% of individuals in Autoimmune disease and infection developed countries.1 Although the prevalence of most Human beings have a highly complex immune system autoimmune diseases is quite low, their individual that evolved from the fairly simple system found in incidence has greatly increased over the past few years, as invertebrates. The so-called innate invertebrate immune documented for type 1 diabetes2,3 and multiple sclerosis.4 system responds non-specifically to infection, does not Several autoimmune disorders arise in individuals in age- involve lymphocytes, and hence does not display groups that are often selected as targets for vaccination memory.
    [Show full text]
  • Autoimmunity and Organ Damage in Systemic Lupus Erythematosus
    REVIEW ARTICLE https://doi.org/10.1038/s41590-020-0677-6 Autoimmunity and organ damage in systemic lupus erythematosus George C. Tsokos ✉ Impressive progress has been made over the last several years toward understanding how almost every aspect of the immune sys- tem contributes to the expression of systemic autoimmunity. In parallel, studies have shed light on the mechanisms that contribute to organ inflammation and damage. New approaches that address the complicated interaction between genetic variants, epigen- etic processes, sex and the environment promise to enlighten the multitude of pathways that lead to what is clinically defined as systemic lupus erythematosus. It is expected that each patient owns a unique ‘interactome’, which will dictate specific treatment. t took almost 100 years to realize that lupus erythematosus, strongly to the heterogeneity of the disease. Several genes linked to which was initially thought to be a skin entity, is a systemic the immune response are regulated through long-distance chroma- Idisease that spares no organ and that an aberrant autoimmune tin interactions10,11. Studies addressing long-distance interactions response is involved in its pathogenesis. The involvement of vital between gene variants in SLE are still missing, but, with the advent organs and tissues such as the brain, blood and the kidney in most of new technologies, such studies will emerge. patients, the vast majority of whom are women of childbearing age, Better understanding of the epigenome is needed to under- impels efforts to develop diagnostic tools and effective therapeu- stand how it supplements the genetic contribution to the dis- tics. The prevalence ranges from 20 to 150 cases per 100,000 peo- ease.
    [Show full text]
  • "Epitope Mapping: B-Cell Epitopes". In: Encyclopedia of Life Sciences
    Epitope Mapping: B-cell Advanced article Epitopes Article Contents . Introduction GE Morris, Wolfson Centre for Inherited Neuromuscular Disease RJAH Orthopaedic Hospital, . What Is a B-cell Epitope? . Epitope Mapping Methods Oswestry, UK and Keele University, Keele, Staffordshire, UK . Applications Immunoglobulin molecules are folded to present a surface structure complementary to doi: 10.1002/9780470015902.a0002624.pub2 a surface feature on the antigen – the epitope is this feature of the antigen. Epitope mapping is the process of locating the antibody-binding site on the antigen, although the term is also applied more broadly to receptor–ligand interactions unrelated to the immune system. Introduction formed of highly convoluted peptide chains, so that resi- dues that lie close together on the protein surface are often Immunoglobulin molecules are folded in a way that as- far apart in the amino acid sequence (Barlow et al., 1986). sembles sequences from the variable regions of both the Consequently, most epitopes on native, globular proteins heavy and light chains into a surface feature (comprised of are conformation-dependent and they disappear if the up to six complementarity-determining regions (CDRs)) protein is denatured or fragmented. Sometimes, by acci- that is complementary in shape to a surface structure on the dent or design, antibodies are produced against linear antigen. These two surface features, the ‘paratope’ on the (sequential) epitopes that survive denaturation, though antibody and the ‘epitope’ on the antigen, may have a cer- such antibodies usually fail to recognize the native protein. tain amount of flexibility to allow an ‘induced fit’ between The simplest way to find out whether an epitope is confor- them.
    [Show full text]
  • Discussion of Natural Killer Cells and Innate Immunity
    Discussion of natural killer cells and innate immunity Theresa L. Whiteside, Ph.D. University of Pittsburgh Cancer Institute Pittsburgh, PA 15213 Myths in tumor immunology • Cancer cells are ignored by the immune system • Immune responses are directed only against “unique” antigens expressed on tumor cells • Tumor-specific T cells alone are sufficient for tumor regression • Tumor are passive targets for anti-tumor responses Tumor/Immune Cells Interactions Tumor cell death C G DC M TUMOR NK Th B Tc Ab Ag Ag/Ab complex NK cells as anti-tumor effectors • LGL, no TCR, express FcγRIII, other activating receptors and KIRs • Spare normal cells but kill a broad range of tumor cells ex vivo by at least two different mechanisms • Produce a number of cytokines (IFN-γ, TNF-α) • Constitutively express IL-2Rβγ and rapidly respond to IL-2 and also to IL-15 and IFNα/β • Regulated by a balance of inhibitory receptors specific for MHC class I antigens and activating signals • NK-DC interactions at sites of inflammation Heterogeneity of human NK cells • Every NK cell expresses at least one KIR that recognizes a self MHC class I molecule • Two functionally distinct subsets: 1) 90% CD56dimCD16bright , highly cytotoxic, abundant KIR expression, few cytokines 2) 10% CD56brightCD16dim/neg, produce cytokines, poorly cytotoxic, low KIR expression Expression of activating and inhibitory receptors on NK cells Interaction with CD56 Interaction with MHC ligands non-MHC ligands KIR CD16 CD2 CD94/NKG2A/B β2 NKp46, 44, 30 CD94/NKG2C/E NK Cell 2B4 NKG2D Lair1 LIR/ILT A
    [Show full text]
  • Pathophysiology of Immune Thrombocytopenic Purpura: a Bird's-Eye View
    Egypt J Pediatr Allergy Immunol 2014;12(2):49-61. Review article Pathophysiology of immune thrombocytopenic purpura: a bird's-eye view. Amira Abdel Moneam Adly Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt ABSTRACT and B lymphocytes (including T-helper, T- Immune thrombocytopenic purpura (ITP) is a cytotoxic, and T-regulatory lymphocytes) 6. common autoimmune disorder resulting in isolated The triggering event for ITP is unknown7, but thrombocytopenia. It is a bleeding disorder continued research is providing new insights into characterized by low platelet counts due to decreased the underlying immunopathogenic processes as well platelet production as well as increased platelet as the cellular and molecular mechanisms involved destruction by autoimmune mechanisms. ITP can in megakaryocytopoiesis and platelet turnover. present either alone (primary) or in the setting of other Although historically ITP-associated thrombo- conditions (secondary) such as infections or altered cytopenia was attributed solely to increased rates of immune states. ITP is associated with a loss of destruction of antibody- coated platelets, it has tolerance to platelet antigens and a phenotype of become evident that suboptimal platelet production accelerated platelet destruction and impaired platelet also plays a role 8. production. Although the etiology of ITP remains Bleeding is due to decreased platelet production unknown, complex dysregulation of the immune as well as accelerated platelet destruction mediated system is observed in ITP patients. Antiplatelet in part by autoantibody-based destruction antibodies mediate accelerated clearance from the mechanisms9. Most autoantibodies in ITP are circulation in large part via the reticuloendothelial isotype switched and harbor somatic mutations10, (monocytic phagocytic) system.
    [Show full text]
  • Adoptive Cell Therapy Using Engineered Natural Killer Cells
    Bone Marrow Transplantation (2019) 54:785–788 https://doi.org/10.1038/s41409-019-0601-6 REVIEW ARTICLE Adoptive cell therapy using engineered natural killer cells Katayoun Rezvani1 © The Author(s), under exclusive licence to Springer Nature Limited 2019 Abstract The generation of autologous T cells expressing a chimeric antigen receptor (CAR) have revolutionized the field of adoptive cellular therapy. CAR-T cells directed against CD19 have resulted in remarkable clinical responses in patients affected by B-lymphoid malignancies. However, the production of allogeneic CAR-T cells products remains expensive and clinically challenging. Moreover, the toxicity profile of CAR T-cells means that currently these life-saving treatments are only delivered in specialized centers. Therefore, efforts are underway to develop reliable off-the-shelf cellular products with acceptable safety profiles for the treatment of patients with cancer. Natural killer (NK) cells are innate effector lymphocytes with potent antitumor activity. The availability of NK cells from multiple sources and their proven safety profile in the allogeneic setting positions them as attractive contenders for cancer immunotherapy. In this review, we discuss advantages and potential drawbacks of using NK cells as a novel cellular therapy against hematologic malignancies, as well as strategies 1234567890();,: 1234567890();,: to further enhance their effector function. Introduction need for inpatient care may ultimately be economically unviable for many health care systems; (iii) the longer time Adoptive cell therapy has become a powerful treatment that is required to generate CAR T-cells may result in modality for advanced cancers refractory to conventional unavoidable delays in therapy, especially for patients with therapy.
    [Show full text]
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • COVID-19 Natural Immunity
    COVID-19 natural immunity Scientific brief 10 May 2021 Key Messages: • Within 4 weeks following infection, 90-99% of individuals infected with the SARS-CoV-2 virus develop detectable neutralizing antibodies. • The strength and duration of the immune responses to SARS-CoV-2 are not completely understood and currently available data suggests that it varies by age and the severity of symptoms. Available scientific data suggests that in most people immune responses remain robust and protective against reinfection for at least 6-8 months after infection (the longest follow up with strong scientific evidence is currently approximately 8 months). • Some variant SARS-CoV-2 viruses with key changes in the spike protein have a reduced susceptibility to neutralization by antibodies in the blood. While neutralizing antibodies mainly target the spike protein, cellular immunity elicited by natural infection also target other viral proteins, which tend to be more conserved across variants than the spike protein. The ability of emerging virus variants (variants of interest and variants of concern) to evade immune responses is under investigation by researchers around the world. • There are many available serologic assays that measure the antibody response to SARS-CoV-2 infection, but at the present time, the correlates of protection are not well understood. Objective of the scientific brief This scientific brief replaces the WHO Scientific Brief entitled “’Immunity passports’ in the context of COVID-19”, published 24 April 2020.1 This update is focused on what is currently understood about SARS-CoV-2 immunity from natural infection. More information about considerations on vaccine certificates or “passports”will be covered in an update of WHO interim guidance, as requested by the COVID-19 emergency committee.2 Methods A rapid review on the subject was undertaken and scientific journals were regularly screened for articles on COVID-19 immunity to ensure to include all large and robust studies available in the literature at the time of writing.
    [Show full text]
  • Epstein-Barr Virus Epitope-Major Histocompatibility Complex
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2020-03-17 Epstein-Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor alpha and beta Repertoires Anna Gil University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Hemic and Lymphatic Diseases Commons, Immune System Diseases Commons, Immunology and Infectious Disease Commons, Infectious Disease Commons, Microbiology Commons, Virus Diseases Commons, and the Viruses Commons Repository Citation Gil A, Kamga L, Chirravuri-Venkata R, Aslan N, Clark FG, Ghersi D, Luzuriaga K, Selin LK. (2020). Epstein- Barr Virus Epitope-Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Selection of Diverse T Cell Receptor alpha and beta Repertoires. Open Access Articles. https://doi.org/10.1128/mBio.00250-20. Retrieved from https://escholarship.umassmed.edu/ oapubs/4191 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. RESEARCH ARTICLE Host-Microbe Biology crossm Epstein-Barr Virus Epitope–Major Histocompatibility Complex Interaction Combined with Convergent Recombination Drives Downloaded from Selection of Diverse T Cell Receptor ␣ and ␤ Repertoires Anna Gil,a Larisa Kamga,b Ramakanth Chirravuri-Venkata,c Nuray Aslan,a Fransenio Clark,a Dario Ghersi,c Katherine Luzuriaga,b Liisa K.
    [Show full text]
  • Epitope Spreading: Lessons from Autoimmune Skin Diseases
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REVIEW Epitope Spreading: Lessons From Autoimmune Skin Diseases Lawrence S. Chan,*† Carol J. Vanderlugt,‡ Takashi Hashimoto,§ Takeji Nishikawa,¶ John J. Zone,** Martin M. Black,†† Fenella Wojnarowska,‡‡ Seth R. Stevens,§§ Mei Chen,† Janet A. Fairley,¶¶ David T. Woodley,*† Stephen D. Miller,‡ and Kenneth B. Gordon†‡ *Medicine Service, Section of Dermatology, Lakeside Division, VA Chicago Health Care System, Chicago, Illinois, U.S.A.; Departments of †Dermatology and ‡Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, U.S.A.; ¶¶Department of Dermatology, Kurume University School of Medicine, Kurume, Japan; ¶Department of Dermatology, Keio University School of Medicine, Tokyo, Japan; **Medicine Service, Section of Dermatology, Salt Lake City VA Medical Center, Salt Lake City, Utah, U.S.A.; ††Department of Dermatopathology, Guy’s and St. Thomas Medical and Dental School, London, U.K.; ‡‡Department of Dermatology, The Oxford Radcliffe Hospital, Oxford, U.K.; §§Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, Ohio, U.S.A.; ¶¶Department of Dermatology, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A. Autoimmune diseases are initiated when patients develop In experimental autoimmune animal diseases, ‘‘epitope aberrant T and/or B cell responses against self proteins. spreading’’ seems to have significant physiologic impor- These responses
    [Show full text]