Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators International Journal of Molecular Sciences Review Mechanisms Governing Anaphylaxis: Inflammatory Cells, Mediators, Endothelial Gap Junctions and Beyond Samantha Minh Thy Nguyen 1, Chase Preston Rupprecht 2, Aaisha Haque 3, Debendra Pattanaik 4, Joseph Yusin 5 and Guha Krishnaswamy 1,3,* 1 Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27106, USA; [email protected] 2 The Rowan School of Osteopathic Medicine, Stratford, NJ 08084, USA; [email protected] 3 The Bill Hefner VA Medical Center, Salisbury, NC 27106, USA; [email protected] 4 Division of Allergy and Immunology, UT Memphis College of Medicine, Memphis, TN 38103, USA; [email protected] 5 The Division of Allergy and Immunology, Greater Los Angeles VA Medical Center, Los Angeles, CA 90011, USA; [email protected] * Correspondence: [email protected] Abstract: Anaphylaxis is a severe, acute, life-threatening multisystem allergic reaction resulting from the release of a plethora of mediators from mast cells culminating in serious respiratory, cardiovascular and mucocutaneous manifestations that can be fatal. Medications, foods, latex, exercise, hormones (progesterone), and clonal mast cell disorders may be responsible. More recently, novel syndromes such as delayed reactions to red meat and hereditary alpha tryptasemia have been described. Anaphylaxis manifests as sudden onset urticaria, pruritus, flushing, erythema, Citation: Nguyen, S.M.T.; Rupprecht, angioedema (lips, tongue, airways, periphery), myocardial dysfunction (hypovolemia, distributive C.P.; Haque, A.; Pattanaik, D.; Yusin, or mixed shock and arrhythmias), rhinitis, wheezing and stridor. Vomiting, diarrhea, scrotal edema, J.; Krishnaswamy, G. Mechanisms uterine cramps, vaginal bleeding, urinary incontinence, dizziness, seizures, confusion, and syncope Governing Anaphylaxis: may occur. The traditional (or classical) pathway is mediated via T cells, Th2 cytokines (such as Inflammatory Cells, Mediators, IL-4 and 5), B cell production of IgE and subsequent crosslinking of the high affinity IgE receptor Endothelial Gap Junctions and (Fc"RI) on mast cells and basophils by IgE-antigen complexes, culminating in mast cell and basophil Beyond. Int. J. Mol. Sci. 2021, 22, 7785. degranulation. Degranulation results in the release of preformed mediators (histamine, heparin, https://doi.org/10.3390/ α ijms22157785 tryptase, chymase, carboxypeptidase, cathepsin G and tumor necrosis factor alpha (TNF- ), and of de novo synthesized ones such as lipid mediators (cysteinyl leukotrienes), platelet activating factor Academic Editor: Kurt A. Jellinger (PAF), cytokines and growth factors such as vascular endothelial growth factor (VEGF). Of these, histamine, tryptase, cathepsin G, TNF-α, LTC4, PAF and VEGF can increase vascular permeability. Received: 1 June 2021 Recent data suggest that mast cell-derived histamine and PAF can activate nitric oxide production Accepted: 13 July 2021 from endothelium and set into motion a signaling cascade that leads to dilatation of blood vessels Published: 21 July 2021 and dysfunction of the endothelial barrier. The latter, characterized by the opening of adherens junctions, leads to increased capillary permeability and fluid extravasation. These changes contribute Publisher’s Note: MDPI stays neutral to airway edema, hypovolemia, and distributive shock, with potentially fatal consequences. In this with regard to jurisdictional claims in review, besides mechanisms (endotypes) underlying IgE-mediated anaphylaxis, we also provide a published maps and institutional affil- brief overview of IgG-, complement-, contact system-, cytokine- and mast cell-mediated reactions iations. that can result in phenotypes resembling IgE-mediated anaphylaxis. Such classifications can lead the way to precision medicine approaches to the management of this complex disease. Keywords: anaphylaxis; anaphylactic shock; hypotension; allergic reaction; angioedema; epinephrine; Copyright: © 2021 by the authors. food allergy; mast cell; tryptase; histamine; coagulation; complement; cytokines; allergy Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons 1. Introduction Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ Anaphylaxis is a severe acute life-threatening multi-system reaction resulting from 4.0/). the release of a plethora of mediators from mast cells culminating in serious respiratory, Int. J. Mol. Sci. 2021, 22, 7785. https://doi.org/10.3390/ijms22157785 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 2 of 23 1. Introduction Int. J. Mol. Sci. 2021, 22, 7785 2 of 23 Anaphylaxis is a severe acute life-threatening multi-system reaction resulting from the release of a plethora of mediators from mast cells culminating in serious respiratory, cardiovascular and mucocutaneous manifestations that can be fatal [1,2]. This manifests cardiovascularas urticaria, pruritus, and mucocutaneous flushing, erythema, manifestations angioedema that (lips, can betongue, fatal [airways,1,2]. This periphery), manifests asmyocardial urticaria, dysfunction pruritus, flushing, (hypovolemia, erythema, distributive angioedema or mixed (lips, tongue,shock and airways, arrhythmias), periphery), rhi- myocardialnitis, wheezing, dysfunction and stridor. (hypovolemia, Nausea, vomiting, distributive diarrhea, or mixed scrotal shock edema, and uterine arrhythmias), cramps, rhinitis,vaginal wheezing,bleeding, urinary and stridor. incontinence, Nausea, vomiting, dizziness, diarrhea, seizures, scrotal confusion, edema, and uterine syncope cramps, may vaginalalso be bleeding,seen (Figure urinary 1) [2,3] incontinence,. Despite many dizziness, advances seizures, in understanding confusion, and etiology, syncope mecha- may alsonisms be and seen management, (Figure1)[ 2,3 ].anaphylaxis Despite many remains advances underdiagnosed in understanding and etiology,undertreated mechanisms [4]. An- andaphylaxis management, is highly anaphylaxis likely when remains any one underdiagnosed of the following and two undertreated criteria are [satisfied4]. Anaphylaxis [1,2,5]: is highly likely when any one of the following two criteria are satisfied [1,2,5]: Figure 1. Anaphylaxis-triggers (including endotypes), genetic predisposition, selected cofactors and role of mast cells and Figure 1. Anaphylaxis-triggers (including endotypes), genetic predisposition, selected cofactors and role of mast cells and mediators in manifestations and culminating potentially in cardiorespiratory arrest. CNS = central nervous system, NSAIDs mediators in manifestations and culminating potentially in cardiorespiratory arrest. CNS = central nervous system, =NSAIDs nonsteroidal = nonsteroidal anti-inflammatory anti-inflammatory drugs, ACE drugs, = angiotensin ACE = angiotensin converting converting enzyme, enzyme, HATS = HATS hereditary = hereditary alpha tryptasemia alpha tryp- syndrome,tasemia syndrome, PAF = platelet PAF = activating platelet activating factor, IgE factor, = immunoglobulin IgE = immunoglobulin E, IgG = immunoglobulinE, IgG = immunoglobulin G. G. 1.1. Acute onset of an illness (minutes to hours) with involvement of thethe skinskin (urticaria,(urticaria, pruritus, flushing) flushing) and/or mucosa mucosa (angioedema/swelling (angioedema/swelling of of lips, lips, tongue, tongue, larynx) larynx) Plus at Least One of the Following: a. RespiRespiratoryratory involvement involvement (dyspnea,(dyspnea, wheezing, wheezing, stridor, stridor, reduced reduced peak flowsflows oror hypoxemia)hypoxemia);; b. ReducedReduced blood blood pressure pressure andand associated associated symptoms of end-organend-organ dysfunctiondysfunction (syncope,(syncope, fecal fecal or or urinary urinary incontinence, incontinence, hypotonia/collapse) hypotonia/collapse);; c. SevereSevere gastrointestinal gastrointestinal symptoms symptoms (severe(severe crampy crampy abdominal abdominal pain, pain, severe severe di- arrhea,diarrhea, repetitive repetitive vomiting) vomiting).. 2.2. Acute onset of hypotension * or bronchospasm or laryngeal involvementinvolvement (stridor, voice change, odynophagia) after exposure to a knownknown oror highlyhighly probableprobable allergenallergen for the patient even in the absence of skin involvement. for the patient even in the absence of skin involvement. ** HypotensionHypotension in in adults adults is regardedis regarded as systolicas systolic blood blood pressure pressure of <90 of mm <90 Hg mm or greaterHg or thangreater a 30% than decrease a 30% decrease in systolic in bloodsystolic pressure blood pressure from the from patient’s the baseline.patient’s Hypotensionbaseline. Hypo- in infantstension and in infants children: and systolic children: blood systolic pressure blood <70 pressure mm Hg <70 (1–12 mm months); Hg (1– <(7012 months); mm Hg < + (7 [20 × age]) (1–10 years); <90 mm Hg (11–17 years); or >30% decrease in systolic blood pressure from baseline for the patient. Globally, the true rate of anaphylaxis is difficult to measure due to both under- diagnosis and misdiagnosis. It is generally agreed that the incidence of anaphylaxis Int. J. Mol. Sci. 2021, 22, 7785 3 of 23 is increasing worldwide with estimates for case fatality rates at 0.5–1% of patients hospital- ized for the condition [6]. Anaphylaxis accounts for approximately 0.26% of all hospital admissions worldwide, with medications and food contributing to most cases [6]. Novel allergens have also contributed to the rise in anaphylaxis
Recommended publications
  • Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation
    Review Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation Chiara Rizzo 1, Giulia Grasso 1, Giulia Maria Destro Castaniti 1, Francesco Ciccia 2 and Giuliana Guggino 1,* 1 Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, Piazza delle Cliniche 2, 90110 Palermo, Italy; [email protected] (C.R.); [email protected] (G.G.); [email protected] (G.M.D.C.) 2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-6552260 Received: 30 April 2020; Accepted: 29 May 2020; Published: 3 June 2020 Abstract: Primary Sjogren Syndrome (pSS) is a complex, multifactorial rheumatic disease that mainly targets salivary and lacrimal glands, inducing epithelitis. The cause behind the autoimmunity outbreak in pSS is still elusive; however, it seems related to an aberrant reaction to exogenous triggers such as viruses, combined with individual genetic pre-disposition. For a long time, autoantibodies were considered as the hallmarks of this disease; however, more recently the complex interplay between innate and adaptive immunity as well as the consequent inflammatory process have emerged as the main mechanisms of pSS pathogenesis. The present review will focus on innate cells and on the principal mechanisms of inflammation connected. In the first part, an overview of innate cells involved in pSS pathogenesis is provided, stressing in particular the role of Innate Lymphoid Cells (ILCs). Subsequently we have highlighted the main inflammatory pathways, including intra- and extra-cellular players.
    [Show full text]
  • Autoimmunity and Organ Damage in Systemic Lupus Erythematosus
    REVIEW ARTICLE https://doi.org/10.1038/s41590-020-0677-6 Autoimmunity and organ damage in systemic lupus erythematosus George C. Tsokos ✉ Impressive progress has been made over the last several years toward understanding how almost every aspect of the immune sys- tem contributes to the expression of systemic autoimmunity. In parallel, studies have shed light on the mechanisms that contribute to organ inflammation and damage. New approaches that address the complicated interaction between genetic variants, epigen- etic processes, sex and the environment promise to enlighten the multitude of pathways that lead to what is clinically defined as systemic lupus erythematosus. It is expected that each patient owns a unique ‘interactome’, which will dictate specific treatment. t took almost 100 years to realize that lupus erythematosus, strongly to the heterogeneity of the disease. Several genes linked to which was initially thought to be a skin entity, is a systemic the immune response are regulated through long-distance chroma- Idisease that spares no organ and that an aberrant autoimmune tin interactions10,11. Studies addressing long-distance interactions response is involved in its pathogenesis. The involvement of vital between gene variants in SLE are still missing, but, with the advent organs and tissues such as the brain, blood and the kidney in most of new technologies, such studies will emerge. patients, the vast majority of whom are women of childbearing age, Better understanding of the epigenome is needed to under- impels efforts to develop diagnostic tools and effective therapeu- stand how it supplements the genetic contribution to the dis- tics. The prevalence ranges from 20 to 150 cases per 100,000 peo- ease.
    [Show full text]
  • Pathophysiology of Immune Thrombocytopenic Purpura: a Bird's-Eye View
    Egypt J Pediatr Allergy Immunol 2014;12(2):49-61. Review article Pathophysiology of immune thrombocytopenic purpura: a bird's-eye view. Amira Abdel Moneam Adly Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt ABSTRACT and B lymphocytes (including T-helper, T- Immune thrombocytopenic purpura (ITP) is a cytotoxic, and T-regulatory lymphocytes) 6. common autoimmune disorder resulting in isolated The triggering event for ITP is unknown7, but thrombocytopenia. It is a bleeding disorder continued research is providing new insights into characterized by low platelet counts due to decreased the underlying immunopathogenic processes as well platelet production as well as increased platelet as the cellular and molecular mechanisms involved destruction by autoimmune mechanisms. ITP can in megakaryocytopoiesis and platelet turnover. present either alone (primary) or in the setting of other Although historically ITP-associated thrombo- conditions (secondary) such as infections or altered cytopenia was attributed solely to increased rates of immune states. ITP is associated with a loss of destruction of antibody- coated platelets, it has tolerance to platelet antigens and a phenotype of become evident that suboptimal platelet production accelerated platelet destruction and impaired platelet also plays a role 8. production. Although the etiology of ITP remains Bleeding is due to decreased platelet production unknown, complex dysregulation of the immune as well as accelerated platelet destruction mediated system is observed in ITP patients. Antiplatelet in part by autoantibody-based destruction antibodies mediate accelerated clearance from the mechanisms9. Most autoantibodies in ITP are circulation in large part via the reticuloendothelial isotype switched and harbor somatic mutations10, (monocytic phagocytic) system.
    [Show full text]
  • B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
    cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1.
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • The CXCR4 Antagonist AMD3100 Impairs Survival of Human AML Cells and Induces Their Differentiation
    Leukemia (2008) 22, 2151–2158 & 2008 Macmillan Publishers Limited All rights reserved 0887-6924/08 $32.00 www.nature.com/leu ORIGINAL ARTICLE The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation S Tavor1, M Eisenbach1, J Jacob-Hirsch2, T Golan1, I Petit1, K BenZion1, S Kay1, S Baron1, N Amariglio2, V Deutsch1, E Naparstek1 and G Rechavi2 1Institute of Hematology and Bone Marrow Transplantation, Sourasky Medical Center, Tel Aviv, Israel and 2Cancer Research Center, Sheba Medical Center, Tel-Hashomer, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel The chemokine stromal cell-derived factor-1 (SDF-1) and its NOD/SCID mice, homing and subsequent engraftment of human receptor, CXCR4, participate in the retention of acute myelo- normal or AML stem cells are dependent on the expression of cell blastic leukemia (AML) cells within the bone marrow micro- 9–12 environment and their release into the circulation. AML cells surface CXCR4 and SDF-1 produced within the murine. In also constitutively express SDF-1-dependent elastase, which addition to controlling cell motility, SDF-1 regulates cell regulates their migration and proliferation. To study the proliferation, induces cell cycle progression and acts as a survival molecular events and genes regulated by the SDF-1/CXCR4 factor for normal human stem cells and AML cells.13–16 axis and elastase in AML cells, we examined gene expression CXCR4 blockage in AML cells, using the polypeptide profiles of the AML cell line, U937, under treatment with a RCP168, enhanced chemotherapy-induced apoptosis in vitro.17 neutralizing anti-CXCR4 antibody or elastase inhibitor, as compared with non-treated cells, using DNA microarray Most importantly, high CXCR4 expression level in leukemic technology.
    [Show full text]
  • Difference Between Hypersensitivity and Autoimmunity Key Difference – Hypersensitivity Vs Autoimmunity
    Difference Between Hypersensitivity and Autoimmunity www.differencebetwee.com Key Difference – Hypersensitivity vs Autoimmunity Autoimmunity is an adaptive immune response mounted against self-antigens. In simple terms, when your body is acting against its own cells and tissues, this is called an autoimmune reaction. An exaggerated and inappropriate immune response to an antigenic stimulus is defined as a hypersensitivity reaction. Unlike autoimmune reactions that are triggered only by the endogenous antigens, hypersensitivity reactions are triggered by both endogenous and exogenous antigens. This is the key difference between hypersensitivity and autoimmunity. What is Hypersensitivity? An exaggerated and inappropriate immune response to an antigenic stimulus is defined as a hypersensitivity reaction. The first exposure to a particular antigen activates the immune system and, antibodies are produced as a result. This is called sensitization. Subsequent exposures to the same antigen give rise to hypersensitivity. Few important facts regarding the hypersensitivity reactions are given below They can be elicited by both exogenous and endogenous agents. They are a result of an imbalance between the effector mechanisms and the countermeasures that are there to control any inappropriate execution of an immune response. The presence of a genetic susceptibility increases the likelihood of hypersensitivity reactions. The manner in which hypersensitivity reactions harm our body is similar to the way that the pathogens are destroyed by immune reactions. Figure 01: Allergy According to the Coombs and Gell classification, there are four main types of hypersensitivity reactions. Type I- Immediate Type/ Anaphylactic Mechanism Vasodilation, edema, and contraction of smooth muscles are the pathological changes that take place during the immediate phase of the reaction.
    [Show full text]
  • How Relevant Are Bone Marrow-Derived Mast Cells (Bmmcs) As Models for Tissue Mast Cells? a Comparative Transcriptome Analysis of Bmmcs and Peritoneal Mast Cells
    cells Article How Relevant Are Bone Marrow-Derived Mast Cells (BMMCs) as Models for Tissue Mast Cells? A Comparative Transcriptome Analysis of BMMCs and Peritoneal Mast Cells 1, 2, 1 1 2,3 Srinivas Akula y , Aida Paivandy y, Zhirong Fu , Michael Thorpe , Gunnar Pejler and Lars Hellman 1,* 1 Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (S.A.); [email protected] (Z.F.); [email protected] (M.T.) 2 Department of Medical Biochemistry and Microbiology, Uppsala University, The Biomedical Center, Box 589, SE-751 23 Uppsala, Sweden; [email protected] (A.P.); [email protected] (G.P.) 3 Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Box 7011, SE-75007 Uppsala, Sweden * Correspondence: [email protected]; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862 These authors contributed equally to this work. y Received: 29 July 2020; Accepted: 16 September 2020; Published: 17 September 2020 Abstract: Bone marrow-derived mast cells (BMMCs) are often used as a model system for studies of the role of MCs in health and disease. These cells are relatively easy to obtain from total bone marrow cells by culturing under the influence of IL-3 or stem cell factor (SCF). After 3 to 4 weeks in culture, a nearly homogenous cell population of toluidine blue-positive cells are often obtained. However, the question is how relevant equivalents these cells are to normal tissue MCs. By comparing the total transcriptome of purified peritoneal MCs with BMMCs, here we obtained a comparative view of these cells.
    [Show full text]
  • Supplementary Table 2 Gene Sets Used in GSEA
    Supplementary Table 2 Gene sets used in GSEA Up in RNAi and Sign Confirmed in Inducible Gene Probe Set ID Accession Symbol Gene Title 200660_at NM_005620 S100A11 S100 calcium binding protein A11 (calgizzarin) 200785_s_at NM_002332 LRP1 low density lipoprotein-related protein 1 (alpha-2-macroglobulin receptor) 201325_s_at NM_001423 EMP1 epithelial membrane protein 1 201373_at NM_000445 PLEC1 plectin 1, intermediate filament binding protein 500kDa 201466_s_at NM_002228 JUN v-jun sarcoma virus 17 oncogene homolog (avian) 201952_at AA156721 ALCAM activated leukocyte cell adhesion molecule 202042_at NM_002109 HARS histidyl-tRNA synthetase 202074_s_at NM_021980 OPTN optineurin 202087_s_at NM_001912 CTSL cathepsin L 202588_at NM_000476 AK1 adenylate kinase 1 202609_at NM_004447 EPS8 epidermal growth factor receptor pathway substrate 8 202733_at NM_004199 P4HA2 procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha polypeptide II 202756_s_at NM_002081 GPC1 glypican 1 202786_at NM_013233 STK39 serine threonine kinase 39 (STE20/SPS1 homolog, yeast) 202859_x_at NM_000584 IL8 interleukin 8 203083_at NM_003247 THBS2 thrombospondin 2 203186_s_at NM_002961 S100A4 S100 calcium binding protein A4 (calcium protein, calvasculin, metastasin, murine placental homolog) 203232_s_at NM_000332 ATXN1 ataxin 1 203233_at NM_000418 IL4R interleukin 4 receptor 203771_s_at AA740186 BLVRA biliverdin reductase A 203821_at NM_001945 HBEGF heparin-binding EGF-like growth factor 203939_at NM_002526 NT5E 5'-nucleotidase, ecto (CD73) 203955_at NM_014811
    [Show full text]
  • 2 Allergy, Immunodeficiency, Autoimmunity and COVID-19
    2 Allergy, Immunodeficiency, Autoimmunity and COVID-19 Vaccination Frequently Asked Questions (FAQ) 17 February 2021 This information has been developed by ASCIA, the peak professional body of clinical immunology/allergy specialists in Australia and New Zealand, to answer questions regarding COVID-19 vaccination in relation to allergy, immunodeficiency and autoimmunity. ASCIA will update this FAQ when new information is available. 1. Why is the COVID-19 vaccination program important? Vaccination is an important way to reduce the risk of developing infectious diseases which can easily spread. This includes COVID-19, which is caused by infection with the SARS-CoV-2 coronavirus. Immunity occurs after the vaccine stimulates a person’s immune system to make antibodies (immunoglobulins) to help protect the body from future infections. This means that if a person is vaccinated, they will be less likely to get COVID-19. Even if a person does get infected, it is likely to be a milder illness. Public health measures and restrictions that were implemented by the Australian and New Zealand governments since March 2020 have been successful in controlling the spread of COVID-19 in our countries. However, the COVID-19 pandemic has been a major cause of illness and deaths in other countries. This means that vaccination programs are required throughout the world, including Australia and New Zealand. 2. Which COVID-19 vaccines have been approved in Australia and New Zealand? Pfizer/BioNTech COMIRNATY mRNA-based COVID-19 vaccine has been provisionally approved by the Therapeutic Goods Administration (TGA), part of the Australian Government Department of Health, and by Medsafe in New Zealand for people 16 years and older.
    [Show full text]
  • IL-33 Is Processed Into Mature Bioactive Forms by Neutrophil Elastase and Cathepsin G
    IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G Emma Lefrançais, Stephane Roga, Violette Gautier, Anne Gonzalez-de-Peredo, Bernard Monsarrat, Jean-Philippe Girard1,2, and Corinne Cayrol1,2 Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France Edited* by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved December 19, 2011 (received for review October 3, 2011) Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear activity (4). However, we (23) and others (24–26) demonstrated cytokine from the IL-1 family, which has been linked to important that full-length IL-33 is biologically active and that processing of diseases, including asthma, rheumatoid arthritis, ulcerative colitis, IL-33 by caspases results in its inactivation, rather than its activa- and cardiovascular diseases. IL-33 signals through the ST2 receptor tion. Further analyses revealed that IL-33 is constitutively and drives cytokine production in type 2 innate lymphoid cells (ILCs) expressed to high levels in the nuclei of endothelial and epithelial (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells in vivo (27) and that it can be released in the extracellular cells, basophils, eosinophils, invariant natural killer T (iNKT), and space after cellular damage (23, 24). IL-33 was, thus, proposed (23, natural killer (NK) cells. We and others recently reported that, unlike 24, 27) to function as an endogenous danger signal or alarmin, IL-1β and IL-18, full-length IL-33 is biologically active independently similar to IL-1α and high-mobility group box 1 protein (HMGB1) of caspase-1 cleavage and that processing by caspases results in IL-33 (28–32), to alert cells of the innate immune system of tissue inactivation.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]