Behaviour and Ecology of the Primary Parasitoids Cotesia Urabae And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
To Us Insectometers, It Is Clear That Insect Decline in Our Costa Rican
SPECIAL FEATURE: PERSPECTIVE To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’sbekindto SPECIAL FEATURE: PERSPECTIVE the survivors Daniel H. Janzena,1 and Winnie Hallwachsa Edited by David L. Wagner, University of Connecticut, and accepted by Editorial Board Member May R. Berenbaum November 11, 2020 (received for review April 6, 2020) We have been field observers of tropical insects on four continents and, since 1978, intense observers of caterpillars, their parasites, and their associates in the 1,260 km2 of dry, cloud, and rain forests of Area´ de Conservaci ´onGuanacaste (ACG) in northwestern Costa Rica. ACG’s natural ecosystem restoration began with its national park designation in 1971. As human biomonitors, or “insectometers,” we see that ACG’s insect species richness and density have gradually declined since the late 1970s, and more intensely since about 2005. The overarching perturbation is climate change. It has caused increasing ambient tempera- tures for all ecosystems; more erratic seasonal cues; reduced, erratic, and asynchronous rainfall; heated air masses sliding up the volcanoes and burning off the cloud forest; and dwindling biodiversity in all ACG terrestrial ecosystems. What then is the next step as climate change descends on ACG’s many small-scale successes in sustainable biodevelopment? Be kind to the survivors by stimulating and facilitating their owner societies to value them as legitimate members of a green sustainable nation. Encourage national bioliteracy, BioAlfa. climate change | BioAlfa | conservation by rewilding | biodevelopment | insect decline As “insectometers,” also known as human biomoni- eventually focused into Area´ de Conservaci ´onGuana- tors, we have watched the conspicuous ongoing de- caste (ACG) in northwestern Costa Rica (8–13) (Fig. -
Trees for Farm Forestry: 22 Promising Species
Forestry and Forest Products Natural Heritage Trust Helping Communities Helping Australia TREES FOR FARM FORESTRY: 22 PROMISING SPECIES Forestry and Forest Products TREES FOR FARM FORESTRY: Natural Heritage 22 PROMISING SPECIES Trust Helping Communities Helping Australia A report for the RIRDC/ Land & Water Australia/ FWPRDC Joint Venture Agroforestry Program Revised and Edited by Bronwyn Clarke, Ian McLeod and Tim Vercoe March 2009 i © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 821 0 ISSN 1440-6845 Trees for Farm Forestry: 22 promising species Publication No. 09/015 Project No. CSF-56A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. -
Crop Colonization by Pests and Specialist Enemies
insects Article Dispersal in Host–Parasitoid Interactions: Crop Colonization by Pests and Specialist Enemies Edward W. Evans Department of Biology, Utah State University, Logan, UT 84322-5305, USA; [email protected]; Tel.: +01-435-797-2552 Received: 7 September 2018; Accepted: 2 October 2018; Published: 5 October 2018 Abstract: Interactions of insect pests and their natural enemies increasingly are being considered from a metapopulation perspective, with focus on movements of individuals among habitat patches (e.g., individual crop fields). Biological control may be undercut in short-lived crops as natural enemies lag behind the pests in colonizing newly created habitat. This hypothesis was tested by assessing parasitism of cereal leaf beetle (Oulema melanopus) and alfalfa weevil (Hypera postica) larvae at varying distances along transects into newly planted fields of small grains and alfalfa in northern Utah. The rate of parasitism of cereal leaf beetles and alfalfa weevils by their host-specific parasitoids (Tetrastichus julis (Eulophidae) and Bathyplectes curculionis (Ichneumonidae), respectively) was determined for earliest maturing first generation host larvae. Rates of parasitism did not vary significantly with increasing distance into a newly planted field (up to 250–700 m in individual experiments) from the nearest source field from which pest and parasitoid adults may have immigrated. These results indicate strong, rapid dispersal of the parasitoids in pursuing their prey into new habitat. Thus, across the fragmented agricultural landscape of northern Utah, neither the cereal leaf beetle nor the alfalfa weevil initially gained substantial spatial refuge from parasitism by more strongly dispersing than their natural enemies into newly created habitat. -
Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, <I
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2009 Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M Gabriela Murua Estación Experimental Agroindustrial Obispo Colombres, CONICET Jamie Molina Ochoa Universidad de Colima, University of Nebraska-Lincoln Patricio Fidalgo CRILAR Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Murua, M Gabriela; Ochoa, Jamie Molina; and Fidalgo, Patricio, "Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina" (2009). Faculty Publications: Department of Entomology. 384. http://digitalcommons.unl.edu/entomologyfacpub/384 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Insect Science: Vol. 9 | Article 20 Murúa et al. Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M. Gabriela Murúaa,b, Jaime Molina-Ochoac,d and Patricio Fidalgoe aEstación Experimental Agroindustrial Obispo Colombres, Sección Zoología Agrícola, CC 9, Las Talitas (T4101XAC), Tucumán, Argentina bCONICET cUniversidad de Colima, Facultad de Ciencias Biológicas y Agropecuarias, Km. 40, autopista Colima-Manzanillo, Tecomán, Colima (28100), México dDepartment of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816, USA eCRILAR (CONICET), entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina Abstract To develop a better understanding of the natural distribution of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and to update the knowledge of the incidence of its complex of parasitoids. -
Gumleaf Skeletoniser Biocontrol: a Lesson in Patience
THE JOINT FORCES OF CSIRO & SCION Lisa Berndt, Michelle Watson and Tara Murray Ensis Forest Biosecurity and Protection BiologicalBiological controlcontrol ofof gumleafgumleaf skeletoniser,skeletoniser, paropsisparopsis andand buddleiabuddleia March 2007 THE JOINT FORCES OF CSIRO & SCION Gumleaf skeletoniser Uraba lugens (Nolidae) • Australian eucalypt defoliator • In Auckland since 2001 • Spreading to Waikato, Northland, BOP • Threat to plantations, amenity trees, public health • Attacking new host plant species THE JOINT FORCES OF CSIRO & SCION GLS biocontrol • 4 potential parasitoids identified • ERMA permission to import 2004 • Develop rearing & host testing methods 2004-2007 (2 species) Eriborus sp. Photos: Geoff Allen & John Barran Euplectrus sp. Cotesia urabae Dolichogenidea eucalypti THE JOINT FORCES OF CSIRO & SCION Success: rearing • Rearing method finally successful • Solving mating problems key THE JOINT FORCES OF CSIRO & SCION Success: host testing • Methods developed • Nearly complete for two species • Nine more species to test • Strong preference for uraba THE JOINT FORCES OF CSIRO & SCION Paropsis biocontrol • Major eucalypt pest • Previously controlled by parasitoid Enoggera nissaui • Biocontrol disrupted by hyperparasitoid in North Island since 2002 Enoggera nassaui on P. charybdis egg • Second parasitoid (Neopolycystus insectifurax) not as effective • Most plantations sprayed annually now THE JOINT FORCES OF CSIRO & SCION Paropsis charybdis Current research • PhD student Tara Murray (2nd year) • Studying biology of hyperparasitoid -
The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Bud Worm and Armillaria Ostoyae on Grand Fir Seedlings
AN ABSTRACT OF THE THESIS OF Catherine Gray Parks for the degree of Doctor of Philosophy in the Department of Forest Science, presented on April 28, 1993. Title: The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Budworm and Armillaria ostoyae on Grand Fir Seedlings. Abstract Approved: John D. Waistad This greenhouse study evaluates the influence of separately and simultaneously imposed water stress, western spruce budworm (Choristorneura occidentalis Freeman) defoliation, and inoculation with the root pathogen, Armillaria ostoyae (Romagn.) Herink, on the growth and biochemical features of Abies .grandis (Dougl.) Lindi. Seedling biomass, plant moisture status, bud phenology, and allocation patterns of phenolics, carbohydrates, and key nutrients (nitrogen, phosphorus, potassium and sulfur) are reported. Hypotheses are developed and testedon the impacts of water-stress, defoliation, and root inoculation, on westernspruce budworm growth and development, and Armillaria ostoyae-caused mortality and infection. Western spruce budworm larvae fedon water-stressed seedlings had higher survival rates, grew faster, and produced largerpupae than those fed on well- watered seedlings. There is no clear reason for the positive insectresponse, but changes in foliage nutrient patterns and phenolic chemistryare indicated. Insect caused defoliation has been earlier reported to enhance successful colonization of Armillaria spp. on deciduous trees in the forests of the northeastern United States. The positive response of the fungus was attributed to a weakened tree condition. Conversely, although this study conclusively found water-limited trees to have increased susceptibility to A. ostoyae, defoliation significantly lowered Armillaria-caused infection and mortality. The decline in infection success is attributed to defoliation-caused reduction in plant water stress and an alteration of root carbohydrate chemistry. -
Insects and Related Arthropods Associated with of Agriculture
USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H. -
Hymenoptera: Braconidae) Reared from Hypercompe Cunigunda (Lepidoptera: Erebidae) in Brazil
Revista Brasileira de Entomologia 64(1):e201982, 2020 www.rbentomologia.com Diolcogaster choi sp. nov. from Brazil, a new gregarious microgastrine parasitoid wasp (Hymenoptera: Braconidae) reared from Hypercompe cunigunda (Lepidoptera: Erebidae) in Brazil Geraldo Salgado-Neto1* , Ísis Meri Medri2, José L. Fernández-Triana3, James Bryan Whitfield4 1Universidade Federal de Santa Maria, Departamento de Defesa Fitossanitária, Pós-graduação em Agronomia, Santa Maria, RS, Brasil. 2Universidade de Brasília, Departamento de Ecologia, Doutorado em Ecologia, Brasília, D F, Brasil. 3Canadian National Collection of Insects, Arachnids, and Nematodes, Ottawa, Ontario, Canada. 4University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, USA. urn:lsid:zoobank.org:pub:28F860D2-5CDB-4D55-82BC-C41CFE1ADD0E ARTICLE INFO ABSTRACT Article history: A new species of Diolcogaster (Hymenoptera: Braconidae) is described and illustrated. Additionally, its position Received 23 August 2019 within the recently published key to New World species of the xanthaspis species-group (to which the described Accepted 17 December 2019 Diolcogaster belongs) is provided. The gregarious larval parasitoid Diolcogaster choi sp. nov. was collected in Available online 17 February 2020 Maringá, Paraná State, Brazil. This natural enemy was recovered from a caterpillar of Hypercompe cunigunda (Stoll, Associate Editor: Bernardo Santos 1781) (Lepidoptera: Erebidae) that was feeding on plant of passionflower, Passiflora edulis Sims (Passifloraceae). The fauna of the xanthaspis group in the New World now includes five species, including the new species from Brazil described in this paper. Diolcogaster choi sp. nov. differs anatomically, and is morphologically diagnosed, Keywords: from all other known member of the xanthaspis group of the genus Diolcogaster, to which it belongs. The species Caterpillar also differs in recorded host, and its DNA barcode appears to be distinctive among described Diolcogaster. -
Reproductive Biology and Longevity of Euplectrus Ronnai (Brèthes) (Hymenoptera: Eulophidae)
July - September 2003 481 BIOLOGICAL CONTROL Reproductive Biology and Longevity of Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) ANA C. YAMAMOTO AND LUÍS A. FOERSTER Depto. Zoologia, UFPR. C. postal 19.020, 81531-990, Curitiba, PR, e-mail: [email protected] Neotropical Entomology 32(3):481-485 (2003) Biologia Reprodutiva e Longevidade de Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) RESUMO - O ectoparasitóide Euplectrus ronnai (Brèthes) é um dos componentes do complexo de espécies que parasitam a lagarta do trigo Mythimna (Pseudaletia) sequax Franclemont (Lepidoptera: Noctuidae). Não há dados na literatura sobre o potencial de parasitismo, preferência por ínstares do hospedeiro e longevidade desse parasitóide, o que motivou a realização do presente trabalho. O parasitismo ocorreu entre o terceiro e o quinto ínstares do hospedeiro; lagartas de segundo instar inviabilizaram o desenvolvimento do parasitóide, e no primeiro e no sexto ínstares não houve oviposição pelas fêmeas de E. ronnai. O número de ovos depositados pelas fêmeas aumentou com o estádio de desenvolvimento do hospedeiro, variando de 1,5 ovos/lagarta no terceiro instar a 3,6 ovos/lagarta no quinto ínstar. A proporção de lagartas parasitadas entre os diferentes ínstares mostrou que E. ronnai apresenta preferência pelo quarto e quinto ínstares de M. sequax. Não houve diferença no tempo de desenvolvimento, na razão sexual, no número médio de lagartas parasitadas e na porcentagem de lagartas parasitadas em testes de livre escolha entre lagartas de quarto e de quinto ínstares. Entretanto, o número de parasitóides/hospedeiro foi significativamente maior em lagartas de quinto ínstar. A fecundidade média das fêmeas de E. ronnai foi de 63,7 ovos e cada fêmea parasitou a média de 20,3 lagartas. -
Hymenoptera: Braconidae: Microgastrinae) Comb
Revista Brasileira de Entomologia 63 (2019) 238–244 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Systematics, Morphology and Biogeography First record of Cotesia scotti (Valerio and Whitfield, 2009) (Hymenoptera: Braconidae: Microgastrinae) comb. nov. parasitising Spodoptera cosmioides (Walk, 1858) and Spodoptera eridania (Stoll, 1782) (Lepidoptera: Noctuidae) in Brazil a b a a Josiane Garcia de Freitas , Tamara Akemi Takahashi , Lara L. Figueiredo , Paulo M. Fernandes , c d e Luiza Figueiredo Camargo , Isabela Midori Watanabe , Luís Amilton Foerster , f g,∗ José Fernandez-Triana , Eduardo Mitio Shimbori a Universidade Federal de Goiás, Escola de Agronomia, Setor de Entomologia, Programa de Pós-Graduac¸ ão em Agronomia, Goiânia, GO, Brazil b Universidade Federal do Paraná, Setor de Ciências Agrárias, Programa de Pós-Graduac¸ ão em Agronomia – Produc¸ ão Vegetal, Curitiba, PR, Brazil c Universidade Federal de São Carlos, Programa de Pós-Graduac¸ ão em Ecologia e Recursos Naturais, São Carlos, SP, Brazil d Universidade Federal de São Carlos, Departamento de Ecologia e Biologia Evolutiva, São Carlos, SP, Brazil e Universidade Federal do Paraná, Departamento de Zoologia, Curitiba, PR, Brazil f Canadian National Collection of Insects, Ottawa, Canada g Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Entomologia e Acarologia, Piracicaba, SP, Brazil a b s t r a c t a r t i c l e i n f o Article history: This is the first report of Cotesia scotti (Valerio and Whitfield) comb. nov. in Brazil, attacking larvae of the Received 3 December 2018 black armyworm, Spodoptera cosmioides, and the southern armyworm, S. -
Biological Control of Gonipterus Platensis
BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS 2018 BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS JÚRI: Presidente: Doutora Maria Teresa Marques Ferreira Professora Catedrática Instituto Superior de Agronomia Universidade de Lisboa Vogais: Doutora Maria Rosa Santos de Paiva Professora Catedrática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa; Doutora Manuela Rodrigues Branco Simões Professora Auxiliar com Agregação Instituto Superior de Agronomia Universidade de Lisboa; Doutor José Carlos Franco Santos Silva Professor Auxiliar Instituto Superior de Agronomia Universidade de Lisboa; Doutor Edmundo Manuel Rodrigues de Sousa Investigador Auxiliar Instituto Nacional de Investigação Agrária e Veterinária. 2018 À Susana e à Leonor i Em memória da minha Avó, Maria dos Anjos Valente (1927-2017) ii Agradecimentos Agradeço, em primeiro lugar, à Professora Manuela Branco, pelo apoio incansável na orientação desta tese, a total disponibilidade e os inúmeros ensinamentos. Ao RAIZ, pelo financiamento do doutoramento, e à sua Direção, em particular ao Engenheiro Serafim Tavares, ao Engenheiro José Nordeste, ao Professor Carlos Pascoal Neto, à Engenheira Leonor Guedes, ao Gabriel Dehon e ao Nuno Borralho, pelo voto de confiança e incentivo que sempre me transmitiram. Deixo um especial agradecimento à Catarina Gonçalves e à Catarina Afonso, pela amizade, por terem ajudado a manter os projetos do RAIZ e a biofábrica a funcionar, pelas horas infindáveis passadas no laboratório e pelos excelentes contributos científicos que muito melhoraram a qualidade desta tese. -
Tamarixia Radiata Behaviour Is Influenced by Volatiles from Both
insects Article Tamarixia radiata Behaviour is Influenced by Volatiles from Both Plants and Diaphorina citri Nymphs Yan-Mei Liu 1,2 , Shu-Hao Guo 1, Fei-Feng Wang 1, Li-He Zhang 2, Chang-Fei Guo 2, Andrew G. S. Cuthbertson 3, Bao-Li Qiu 1,2 and Wen Sang 1,2,* 1 Key Laboratory of Bio-Pesticide Innovation and Application, Department of Entomology, South China Agricultural University, Guangzhou 510640, China; [email protected] (Y.-M.L.); [email protected] (S.-H.G.); wff[email protected] (F.-F.W.); [email protected] (B.-L.Q.) 2 Engineering Research Center of Biological control, Ministry of Education, Guangzhou 510640, China; [email protected] (L.-H.Z.); [email protected] (C.-F.G.) 3 Independent Science Advisor, York YO41 1LZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +86-20-8528-3717 Received: 7 March 2019; Accepted: 13 May 2019; Published: 16 May 2019 Abstract: Tamarixia radiata (Waterston) is an important ectoparasitoid of the Asian citrus psyllid, Diaphorina citri Kuwayama, a globally destructive pest of citrus. In the present study, a Y-tube olfactometer was employed to investigate whether the parasitoid T. radiata is capable of utilizing the odour source emitted by both plants and insect hosts during its foraging. The odour sources included Murraya paniculata (L.) shoots, 1st, 2nd, 3rd, 4th, and 5th D. citri instar nymphs, both individually and in combinations. Moreover, nymph-stage choice for parasitism, including 3rd, 4th, and 5th D. citri instar nymphs, was carried out. The results indicated that female T. radiata were only significantly attracted to volatiles emitted by M.