Behaviour and Ecology of the Primary Parasitoids Cotesia Urabae And

Total Page:16

File Type:pdf, Size:1020Kb

Behaviour and Ecology of the Primary Parasitoids Cotesia Urabae And V/A¡TE INS IIU'I' F. 4.1 .4o LIEiT,\RV Behaviour and Parasitoids Cotesia urabae anù (HYmenoPtera: Braconidae) and (LePidoPtera: By Geoffrey Rowland Allen B.Sc. Qlons) The University of N.S-V/. A thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Agricultural Science at The University of Adelaide- 11 TO MY PARENTS 111 Table of Contents Page SUMMARY xiv DECLARATION xvü ACKNOWLEDGMENTS xvüi PREFACE 1 CHAPTER 1. INTRODUCTION TO U. LUGENS AND ITS BIOLOGY. 4 Taxonomy and distribution 4 Host plants 5 General biologY 6 Phenology 8 Management and control of U- lugens 10 CHAPTER 2. BIOLOGY OF THE PARASITOIDS OF U. LUGENS AND SURVIVAL OF LARVAE OF U. LUGENS IN TIIE FIELD IN SOUTH AUSTRALIA. 11 Abstract 11 Introduction 11 Materials and methods t2 Results 15 1. The parasitoid comPlex 15 2. Survival of. U. lugens larvae in the field 25 Discussion 29 CHAPTER 3. TTIE PHENOLOGIES OF C. URABAE, D. EUCALYPTI AND THEIR HOST U. LUGENS IN TI# ADELAIDE REGION. 33 Abstr¿ct 33 Introduction 33 Materials and methods 35 1. Field monitoring 35 2.Placement of parasitized and unparasitized larvae in the field 3l 3. Analysis of data 39 lv Results 39 1. Phenology of U. lugens 39 2. Phenologies of C. urabae andD. eucalypti 42 Discussion 51 CHAPTER 4. TT{E SIZE OF ADULT C. URABA¿'AND D. EUCALYPTI IN RELATION TO TTIEIR HOST U. LUGENS. 57 Abstract 57 Introducúon 57 Materials and methods 59 1. Analysis of data 60 Results 60 Discussion 65 CHAPTER 5. TEMPERATURE AND TTIE DEVEI,OPMENT OF U. LUGENS, C. URABAE AND D. EUCALYPTI. 69 Abstract 69 Introduction 70 Materials and methods 72 1. Experiment 1: Larval development of U. Iugens, and preimaginal deveþment of D. eucalypti and C. urabae from small and mid hosts 72 a. Experimental protocol 72 b. Analysis of data 74 2. Experiment2:Eggdevelopment of U. lugens 75 3. Experiment 3: Pupal developmentof U. fugens 75 4. Experiment 4: I-ongevity of adult C. urabae and D. eucalypti 76 5. Simulation of Phenologies 76 Results 77 1. DeveloPment of U. lugens 77 a. Egg development 77 b. Larval develoPment 79 c. Pupal development 84 2. Development of C. urabae andD. eucalypti 84 a. Egg-lanral development 84 b. Pupal development 90 c. V/eight of adult parasitoids 90 v d. Longevity of adult C. urabae and D. eucalypti 91 3. Simulation of phenologies 9T Discussion 97 ¡/, CHAPTER 6. BEHAVIOURAL INTERACTIONS BETTVEEN U. LUGENS, C. URABAE AND D, EUCALYPTI. 103 Abstract 103 Introduction 104 Materials and methods 105 1. Experimental protocol 105 2. Analysis of data 108 Results 109 Discussion tzl 1. Gregariousness and defensive behaviour of U. lugens t2r 2. Experimental design , U. lugens defensive behaviour and superparasitism t25 3. Host acceptance and the success of oviposition of C. urabae andD. eucaþPti 127 CHAPTER 7. LARVAL STAGE AND RESPONSE OF U. LUGENSTO ATTACIC 130 Abstract 130 Introduction 130 Materials and methods 131 1. Experiment 1: Setal and body dimensions of larvae of U.lugens t32 2. Experiment 2: Response of U. lugens to attack. r33 3. Experiment 3: Response of U. lugetu to repeated attack 135 Results 136 1. Experiment 1: Setal and body dimensions of larvae of U.lugens t36 2. Experiment 2: Response of U. lugens to attack 138 a. Response to attack 138 b. Type of defensive response t4t c. Prior U. lugens behaviour and response to attack 148 3. Experiment 3: Response of U. lugens to repeated attack 148 Discussion 149 vi CHAPTER 8. GENERAL DISCUSSION 155 APPENDIX 1. PARASITOIDS OF U. LUGENS IN SOUTH AUSTRALIA, WITHDESCRIPTION OF TWO NEW SPECtsS OF BRACONIDAE. 160 APPENDIX 2. LABORATORY REARING OF U. LUGENS, C. URABAE AND D. EUCALYPTI. 161 APPENDX 3. TT{E REI-ATIONSHIP BETWEEN HIND TIBIAL LENGTH AND TTIE CUBE ROOT OF TTIE WEIGHT OF AN ADULT FEMALE FOR C. URABAE AND D. EUCALYPTI. 166 REFERENCES t67 vtl List of Figures Page CHAPTER 2 Fig. 1. The number of larvae of U. lugens that were found during the 1985- 1986 summer generation of U.lugens 26 Fig.2. The proportion of larvae of U. fugenr found in each instar during the 1985- 1986 summer generation 26 Fig.3. The percentage of the larval population of U. lugens remaining on29 different E. microcarparîßsduring the 1985-1986 summer genefation 27 Fig.4. The meantSE percentage of larvae remaining on E. microcarpatees at freld site 3 during the 1986 winter generation of U.lugens, when larvae were either enclosed in a fine gau7Ê sleeve cage or left uncaged 28 Fig.5. The proportion of larvae of U. Iugens in each instar of the uncaged population of larvae during ttre 1986 winter generation 28 CHAPTER 3 Fig. 1. Phenology of U. lugens from September 1985 to December 1987 inclusive 40 Fig. 2. The temporal pattern of pupation of C. urabae andD. eucalypri in each host generation as determined by weekly sampling for cocoons in the field 44 Fig. 3. Th, .,ution of final host sizes, as determined by head capsule width, from which C. urabae andD. eucalyptí emerged to pupate in the field 46 Fig. 4. The distribution of final host sizes, as determined by dry weight of host, from which C. urabae andD. eucalypti emerged to pupate in the field 47 Fig. 5. Proportion of the total number of trees with host populations of vlll [I.lugens when the first cocoon of either parasitoid species appeared, that subsequently had cocoons of C . urabae ot D . eucalypti collected upon them 50 CHAPTER 4 Fig. 1. Exit position of larvae of C. urabae and D. eucalypri along their host's body length for different sizes (head capsule widths) of host 61 Fig.2. The relationship between female parasitoid weight and the number of fully developed eggs held by a female at the time of emergence from the pupal cocoon, and upon death when left unfed at2æC andTíVo relative humidity for C. urabae and D. eucalpti 66 CHAPTER 5 Fig. 1. The percentage of U.lugens eggs that faited to develop and developed but failed to hatch over five temperatures 78 Fig.2. Distributions of the number of lanral instars for male and female U.lugens reared at three different temperatures 15o, 20o, and 25oC 81 Fig. 3. The sizes of head capsules shed by larvae of U. fugens prior to the conìmencement of head capsule stacking when reared at three different temperatures 15o, 2@, and25oC 82 Fig. 4. The mean head capsule width of each instar of U. fugens for larvae ttrat underwent from í-l4larvalinstars before pupation across all three temperatures 83 Fig. 5. The relationship between temperature and rate of egg-lanral development of D. eucalypti when developing from small hoss 87 Fig. 6. Host head capsule width of U.lugent at the time of parasitoid emergence for c. urabae deveþing from small hosts, c. urabae deveþing from mid hosts, and D. ercalypti developing from small hosts at 15o,20o, and 25oC 88 IX Fig. 7. Host dry weight of U. lugens at the time of parasitoid emergence for C. wabae developing from small hosts, C- urabae developing from mid hosts, andD. eucalypti developing from small hosts at 15o,20o, and 25o,C 89 Fig. 8. Observed and predicted durations of the life stages of U. lugens, and observed and predicted appeafances of cocoons of C. urabae and D. eucalyprj for 1985, 1986, and 1987 94 CHAPTER 6 Fig. 1. The relative sizes of the first 9 instars of U.lugens reared at 20oC 106 Fig.2. Behaviour of U. lugens and pamsitoids of U. lugens 110 Fig. 3. The mean number of visits made by C. urabae andD. eucalypti to a patch of 40 small, 40 mid, and 40 latge U- lugens over 20 min' rt2 Fig. 4. The outcomes of all visits made to patches of 40 small, 40 mid, and 4O large U.lugensby D.eucalypti and C- urabae 113 Fig. 5. The number of times each mid or large U. lugens was €ncountered by C. urabae and by D. eucalYPti 116 Fig. 6. The number of larvae displaying defensive behaviour immediately following the visit by each D. eucalypti, and each C . urabac , to a patch of U. fugens at the beginning of each quarter of the total number of visis made by that Parasitoid 119 Fig.7. The outcome of encounters between C. urabae, D. eucalypfi and the mid or large larvae of U. lugens when, immediately prior to the encountef, the larvae were either rearing or thrashing or not rearing or thrashing t20 Fig. 8. The mean number of ovipositions, of visits, and time spent in the patch, for each 5 min. of the 20 min. observation for c. urabae, and D. eucalypri with the three sizes (small, mid, large) of U- lugens t22 x CHAPTER 7 Fig. 1. MeantSE measurements of each larval instar of U. lugens for body dimensions, the longest seta surrounding the body from three directions, and the highest seta above three regions of a larva's body 137 Fig.2. Frequency of defensive, locomotory and no response recorded as immediate (Ð and ultimate (u) response to attack with a micropin to small, mid and large larvae of U. lugens r39 Fig. 3. Subdivision of immediate defensive fesponse for small, mid, and large larvae of U.lugers into pulse, rear and head curl when attacked with a micropin from the front, from the side and from behind t42 Fig. 4. Frequency of regurgitation, thrashing and both these responses occurring together when in conjunction with pulsing, rearing and head curling for small, mid and large larvae of U.
Recommended publications
  • To Us Insectometers, It Is Clear That Insect Decline in Our Costa Rican
    SPECIAL FEATURE: PERSPECTIVE To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’sbekindto SPECIAL FEATURE: PERSPECTIVE the survivors Daniel H. Janzena,1 and Winnie Hallwachsa Edited by David L. Wagner, University of Connecticut, and accepted by Editorial Board Member May R. Berenbaum November 11, 2020 (received for review April 6, 2020) We have been field observers of tropical insects on four continents and, since 1978, intense observers of caterpillars, their parasites, and their associates in the 1,260 km2 of dry, cloud, and rain forests of Area´ de Conservaci ´onGuanacaste (ACG) in northwestern Costa Rica. ACG’s natural ecosystem restoration began with its national park designation in 1971. As human biomonitors, or “insectometers,” we see that ACG’s insect species richness and density have gradually declined since the late 1970s, and more intensely since about 2005. The overarching perturbation is climate change. It has caused increasing ambient tempera- tures for all ecosystems; more erratic seasonal cues; reduced, erratic, and asynchronous rainfall; heated air masses sliding up the volcanoes and burning off the cloud forest; and dwindling biodiversity in all ACG terrestrial ecosystems. What then is the next step as climate change descends on ACG’s many small-scale successes in sustainable biodevelopment? Be kind to the survivors by stimulating and facilitating their owner societies to value them as legitimate members of a green sustainable nation. Encourage national bioliteracy, BioAlfa. climate change | BioAlfa | conservation by rewilding | biodevelopment | insect decline As “insectometers,” also known as human biomoni- eventually focused into Area´ de Conservaci ´onGuana- tors, we have watched the conspicuous ongoing de- caste (ACG) in northwestern Costa Rica (8–13) (Fig.
    [Show full text]
  • Trees for Farm Forestry: 22 Promising Species
    Forestry and Forest Products Natural Heritage Trust Helping Communities Helping Australia TREES FOR FARM FORESTRY: 22 PROMISING SPECIES Forestry and Forest Products TREES FOR FARM FORESTRY: Natural Heritage 22 PROMISING SPECIES Trust Helping Communities Helping Australia A report for the RIRDC/ Land & Water Australia/ FWPRDC Joint Venture Agroforestry Program Revised and Edited by Bronwyn Clarke, Ian McLeod and Tim Vercoe March 2009 i © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 821 0 ISSN 1440-6845 Trees for Farm Forestry: 22 promising species Publication No. 09/015 Project No. CSF-56A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Crop Colonization by Pests and Specialist Enemies
    insects Article Dispersal in Host–Parasitoid Interactions: Crop Colonization by Pests and Specialist Enemies Edward W. Evans Department of Biology, Utah State University, Logan, UT 84322-5305, USA; [email protected]; Tel.: +01-435-797-2552 Received: 7 September 2018; Accepted: 2 October 2018; Published: 5 October 2018 Abstract: Interactions of insect pests and their natural enemies increasingly are being considered from a metapopulation perspective, with focus on movements of individuals among habitat patches (e.g., individual crop fields). Biological control may be undercut in short-lived crops as natural enemies lag behind the pests in colonizing newly created habitat. This hypothesis was tested by assessing parasitism of cereal leaf beetle (Oulema melanopus) and alfalfa weevil (Hypera postica) larvae at varying distances along transects into newly planted fields of small grains and alfalfa in northern Utah. The rate of parasitism of cereal leaf beetles and alfalfa weevils by their host-specific parasitoids (Tetrastichus julis (Eulophidae) and Bathyplectes curculionis (Ichneumonidae), respectively) was determined for earliest maturing first generation host larvae. Rates of parasitism did not vary significantly with increasing distance into a newly planted field (up to 250–700 m in individual experiments) from the nearest source field from which pest and parasitoid adults may have immigrated. These results indicate strong, rapid dispersal of the parasitoids in pursuing their prey into new habitat. Thus, across the fragmented agricultural landscape of northern Utah, neither the cereal leaf beetle nor the alfalfa weevil initially gained substantial spatial refuge from parasitism by more strongly dispersing than their natural enemies into newly created habitat.
    [Show full text]
  • Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 2009 Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M Gabriela Murua Estación Experimental Agroindustrial Obispo Colombres, CONICET Jamie Molina Ochoa Universidad de Colima, University of Nebraska-Lincoln Patricio Fidalgo CRILAR Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Murua, M Gabriela; Ochoa, Jamie Molina; and Fidalgo, Patricio, "Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina" (2009). Faculty Publications: Department of Entomology. 384. http://digitalcommons.unl.edu/entomologyfacpub/384 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Journal of Insect Science: Vol. 9 | Article 20 Murúa et al. Natural distribution of parasitoids of larvae of the fall armyworm, Spodoptera frugiperda, in Argentina M. Gabriela Murúaa,b, Jaime Molina-Ochoac,d and Patricio Fidalgoe aEstación Experimental Agroindustrial Obispo Colombres, Sección Zoología Agrícola, CC 9, Las Talitas (T4101XAC), Tucumán, Argentina bCONICET cUniversidad de Colima, Facultad de Ciencias Biológicas y Agropecuarias, Km. 40, autopista Colima-Manzanillo, Tecomán, Colima (28100), México dDepartment of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816, USA eCRILAR (CONICET), entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina Abstract To develop a better understanding of the natural distribution of the fall armyworm, Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae), and to update the knowledge of the incidence of its complex of parasitoids.
    [Show full text]
  • Gumleaf Skeletoniser Biocontrol: a Lesson in Patience
    THE JOINT FORCES OF CSIRO & SCION Lisa Berndt, Michelle Watson and Tara Murray Ensis Forest Biosecurity and Protection BiologicalBiological controlcontrol ofof gumleafgumleaf skeletoniser,skeletoniser, paropsisparopsis andand buddleiabuddleia March 2007 THE JOINT FORCES OF CSIRO & SCION Gumleaf skeletoniser Uraba lugens (Nolidae) • Australian eucalypt defoliator • In Auckland since 2001 • Spreading to Waikato, Northland, BOP • Threat to plantations, amenity trees, public health • Attacking new host plant species THE JOINT FORCES OF CSIRO & SCION GLS biocontrol • 4 potential parasitoids identified • ERMA permission to import 2004 • Develop rearing & host testing methods 2004-2007 (2 species) Eriborus sp. Photos: Geoff Allen & John Barran Euplectrus sp. Cotesia urabae Dolichogenidea eucalypti THE JOINT FORCES OF CSIRO & SCION Success: rearing • Rearing method finally successful • Solving mating problems key THE JOINT FORCES OF CSIRO & SCION Success: host testing • Methods developed • Nearly complete for two species • Nine more species to test • Strong preference for uraba THE JOINT FORCES OF CSIRO & SCION Paropsis biocontrol • Major eucalypt pest • Previously controlled by parasitoid Enoggera nissaui • Biocontrol disrupted by hyperparasitoid in North Island since 2002 Enoggera nassaui on P. charybdis egg • Second parasitoid (Neopolycystus insectifurax) not as effective • Most plantations sprayed annually now THE JOINT FORCES OF CSIRO & SCION Paropsis charybdis Current research • PhD student Tara Murray (2nd year) • Studying biology of hyperparasitoid
    [Show full text]
  • The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Bud Worm and Armillaria Ostoyae on Grand Fir Seedlings
    AN ABSTRACT OF THE THESIS OF Catherine Gray Parks for the degree of Doctor of Philosophy in the Department of Forest Science, presented on April 28, 1993. Title: The Influence of Induced Host Moisture Stress on the Growth and Development of Western Spruce Budworm and Armillaria ostoyae on Grand Fir Seedlings. Abstract Approved: John D. Waistad This greenhouse study evaluates the influence of separately and simultaneously imposed water stress, western spruce budworm (Choristorneura occidentalis Freeman) defoliation, and inoculation with the root pathogen, Armillaria ostoyae (Romagn.) Herink, on the growth and biochemical features of Abies .grandis (Dougl.) Lindi. Seedling biomass, plant moisture status, bud phenology, and allocation patterns of phenolics, carbohydrates, and key nutrients (nitrogen, phosphorus, potassium and sulfur) are reported. Hypotheses are developed and testedon the impacts of water-stress, defoliation, and root inoculation, on westernspruce budworm growth and development, and Armillaria ostoyae-caused mortality and infection. Western spruce budworm larvae fedon water-stressed seedlings had higher survival rates, grew faster, and produced largerpupae than those fed on well- watered seedlings. There is no clear reason for the positive insectresponse, but changes in foliage nutrient patterns and phenolic chemistryare indicated. Insect caused defoliation has been earlier reported to enhance successful colonization of Armillaria spp. on deciduous trees in the forests of the northeastern United States. The positive response of the fungus was attributed to a weakened tree condition. Conversely, although this study conclusively found water-limited trees to have increased susceptibility to A. ostoyae, defoliation significantly lowered Armillaria-caused infection and mortality. The decline in infection success is attributed to defoliation-caused reduction in plant water stress and an alteration of root carbohydrate chemistry.
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Hymenoptera: Braconidae) Reared from Hypercompe Cunigunda (Lepidoptera: Erebidae) in Brazil
    Revista Brasileira de Entomologia 64(1):e201982, 2020 www.rbentomologia.com Diolcogaster choi sp. nov. from Brazil, a new gregarious microgastrine parasitoid wasp (Hymenoptera: Braconidae) reared from Hypercompe cunigunda (Lepidoptera: Erebidae) in Brazil Geraldo Salgado-Neto1* , Ísis Meri Medri2, José L. Fernández-Triana3, James Bryan Whitfield4 1Universidade Federal de Santa Maria, Departamento de Defesa Fitossanitária, Pós-graduação em Agronomia, Santa Maria, RS, Brasil. 2Universidade de Brasília, Departamento de Ecologia, Doutorado em Ecologia, Brasília, D F, Brasil. 3Canadian National Collection of Insects, Arachnids, and Nematodes, Ottawa, Ontario, Canada. 4University of Illinois at Urbana-Champaign, Department of Entomology, Urbana, USA. urn:lsid:zoobank.org:pub:28F860D2-5CDB-4D55-82BC-C41CFE1ADD0E ARTICLE INFO ABSTRACT Article history: A new species of Diolcogaster (Hymenoptera: Braconidae) is described and illustrated. Additionally, its position Received 23 August 2019 within the recently published key to New World species of the xanthaspis species-group (to which the described Accepted 17 December 2019 Diolcogaster belongs) is provided. The gregarious larval parasitoid Diolcogaster choi sp. nov. was collected in Available online 17 February 2020 Maringá, Paraná State, Brazil. This natural enemy was recovered from a caterpillar of Hypercompe cunigunda (Stoll, Associate Editor: Bernardo Santos 1781) (Lepidoptera: Erebidae) that was feeding on plant of passionflower, Passiflora edulis Sims (Passifloraceae). The fauna of the xanthaspis group in the New World now includes five species, including the new species from Brazil described in this paper. Diolcogaster choi sp. nov. differs anatomically, and is morphologically diagnosed, Keywords: from all other known member of the xanthaspis group of the genus Diolcogaster, to which it belongs. The species Caterpillar also differs in recorded host, and its DNA barcode appears to be distinctive among described Diolcogaster.
    [Show full text]
  • Reproductive Biology and Longevity of Euplectrus Ronnai (Brèthes) (Hymenoptera: Eulophidae)
    July - September 2003 481 BIOLOGICAL CONTROL Reproductive Biology and Longevity of Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) ANA C. YAMAMOTO AND LUÍS A. FOERSTER Depto. Zoologia, UFPR. C. postal 19.020, 81531-990, Curitiba, PR, e-mail: [email protected] Neotropical Entomology 32(3):481-485 (2003) Biologia Reprodutiva e Longevidade de Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) RESUMO - O ectoparasitóide Euplectrus ronnai (Brèthes) é um dos componentes do complexo de espécies que parasitam a lagarta do trigo Mythimna (Pseudaletia) sequax Franclemont (Lepidoptera: Noctuidae). Não há dados na literatura sobre o potencial de parasitismo, preferência por ínstares do hospedeiro e longevidade desse parasitóide, o que motivou a realização do presente trabalho. O parasitismo ocorreu entre o terceiro e o quinto ínstares do hospedeiro; lagartas de segundo instar inviabilizaram o desenvolvimento do parasitóide, e no primeiro e no sexto ínstares não houve oviposição pelas fêmeas de E. ronnai. O número de ovos depositados pelas fêmeas aumentou com o estádio de desenvolvimento do hospedeiro, variando de 1,5 ovos/lagarta no terceiro instar a 3,6 ovos/lagarta no quinto ínstar. A proporção de lagartas parasitadas entre os diferentes ínstares mostrou que E. ronnai apresenta preferência pelo quarto e quinto ínstares de M. sequax. Não houve diferença no tempo de desenvolvimento, na razão sexual, no número médio de lagartas parasitadas e na porcentagem de lagartas parasitadas em testes de livre escolha entre lagartas de quarto e de quinto ínstares. Entretanto, o número de parasitóides/hospedeiro foi significativamente maior em lagartas de quinto ínstar. A fecundidade média das fêmeas de E. ronnai foi de 63,7 ovos e cada fêmea parasitou a média de 20,3 lagartas.
    [Show full text]
  • Hymenoptera: Braconidae: Microgastrinae) Comb
    Revista Brasileira de Entomologia 63 (2019) 238–244 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution www.rbentomologia.com Systematics, Morphology and Biogeography First record of Cotesia scotti (Valerio and Whitfield, 2009) (Hymenoptera: Braconidae: Microgastrinae) comb. nov. parasitising Spodoptera cosmioides (Walk, 1858) and Spodoptera eridania (Stoll, 1782) (Lepidoptera: Noctuidae) in Brazil a b a a Josiane Garcia de Freitas , Tamara Akemi Takahashi , Lara L. Figueiredo , Paulo M. Fernandes , c d e Luiza Figueiredo Camargo , Isabela Midori Watanabe , Luís Amilton Foerster , f g,∗ José Fernandez-Triana , Eduardo Mitio Shimbori a Universidade Federal de Goiás, Escola de Agronomia, Setor de Entomologia, Programa de Pós-Graduac¸ ão em Agronomia, Goiânia, GO, Brazil b Universidade Federal do Paraná, Setor de Ciências Agrárias, Programa de Pós-Graduac¸ ão em Agronomia – Produc¸ ão Vegetal, Curitiba, PR, Brazil c Universidade Federal de São Carlos, Programa de Pós-Graduac¸ ão em Ecologia e Recursos Naturais, São Carlos, SP, Brazil d Universidade Federal de São Carlos, Departamento de Ecologia e Biologia Evolutiva, São Carlos, SP, Brazil e Universidade Federal do Paraná, Departamento de Zoologia, Curitiba, PR, Brazil f Canadian National Collection of Insects, Ottawa, Canada g Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Departamento de Entomologia e Acarologia, Piracicaba, SP, Brazil a b s t r a c t a r t i c l e i n f o Article history: This is the first report of Cotesia scotti (Valerio and Whitfield) comb. nov. in Brazil, attacking larvae of the Received 3 December 2018 black armyworm, Spodoptera cosmioides, and the southern armyworm, S.
    [Show full text]
  • Biological Control of Gonipterus Platensis
    BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS 2018 BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS JÚRI: Presidente: Doutora Maria Teresa Marques Ferreira Professora Catedrática Instituto Superior de Agronomia Universidade de Lisboa Vogais: Doutora Maria Rosa Santos de Paiva Professora Catedrática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa; Doutora Manuela Rodrigues Branco Simões Professora Auxiliar com Agregação Instituto Superior de Agronomia Universidade de Lisboa; Doutor José Carlos Franco Santos Silva Professor Auxiliar Instituto Superior de Agronomia Universidade de Lisboa; Doutor Edmundo Manuel Rodrigues de Sousa Investigador Auxiliar Instituto Nacional de Investigação Agrária e Veterinária. 2018 À Susana e à Leonor i Em memória da minha Avó, Maria dos Anjos Valente (1927-2017) ii Agradecimentos Agradeço, em primeiro lugar, à Professora Manuela Branco, pelo apoio incansável na orientação desta tese, a total disponibilidade e os inúmeros ensinamentos. Ao RAIZ, pelo financiamento do doutoramento, e à sua Direção, em particular ao Engenheiro Serafim Tavares, ao Engenheiro José Nordeste, ao Professor Carlos Pascoal Neto, à Engenheira Leonor Guedes, ao Gabriel Dehon e ao Nuno Borralho, pelo voto de confiança e incentivo que sempre me transmitiram. Deixo um especial agradecimento à Catarina Gonçalves e à Catarina Afonso, pela amizade, por terem ajudado a manter os projetos do RAIZ e a biofábrica a funcionar, pelas horas infindáveis passadas no laboratório e pelos excelentes contributos científicos que muito melhoraram a qualidade desta tese.
    [Show full text]
  • Tamarixia Radiata Behaviour Is Influenced by Volatiles from Both
    insects Article Tamarixia radiata Behaviour is Influenced by Volatiles from Both Plants and Diaphorina citri Nymphs Yan-Mei Liu 1,2 , Shu-Hao Guo 1, Fei-Feng Wang 1, Li-He Zhang 2, Chang-Fei Guo 2, Andrew G. S. Cuthbertson 3, Bao-Li Qiu 1,2 and Wen Sang 1,2,* 1 Key Laboratory of Bio-Pesticide Innovation and Application, Department of Entomology, South China Agricultural University, Guangzhou 510640, China; [email protected] (Y.-M.L.); [email protected] (S.-H.G.); wff[email protected] (F.-F.W.); [email protected] (B.-L.Q.) 2 Engineering Research Center of Biological control, Ministry of Education, Guangzhou 510640, China; [email protected] (L.-H.Z.); [email protected] (C.-F.G.) 3 Independent Science Advisor, York YO41 1LZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +86-20-8528-3717 Received: 7 March 2019; Accepted: 13 May 2019; Published: 16 May 2019 Abstract: Tamarixia radiata (Waterston) is an important ectoparasitoid of the Asian citrus psyllid, Diaphorina citri Kuwayama, a globally destructive pest of citrus. In the present study, a Y-tube olfactometer was employed to investigate whether the parasitoid T. radiata is capable of utilizing the odour source emitted by both plants and insect hosts during its foraging. The odour sources included Murraya paniculata (L.) shoots, 1st, 2nd, 3rd, 4th, and 5th D. citri instar nymphs, both individually and in combinations. Moreover, nymph-stage choice for parasitism, including 3rd, 4th, and 5th D. citri instar nymphs, was carried out. The results indicated that female T. radiata were only significantly attracted to volatiles emitted by M.
    [Show full text]