Natural Distribution of Parasitoids of Larvae of the Fall Armyworm, <I
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
£Arasites Associated with Lepidopterous Pests of Alfalfa in .Qklahoma
£ARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN .QKLAHOMA By KATHLEEN MARY SENST I' Bachelor of Arts Wartburg College Waverly, Iowa 1974 Master of Science Oklahoma State University Stillwater, Oklahoma 1978 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY July, 1982 PARASITES ASSOCIATED WITH LEPIDOPTEROUS PESTS OF ALFALFA IN OKLAHOMA Thesis Approved: . ~ \ . ii 1143730 j ACKNOWLEDGMENTS I w.isb. to expres.s. my deep appreciation to my major adviser, Dr. Ricb.ard Berberet, for hi:s willi.ngness. to advise and help, and for his friendsb.i.p duri.ng thi:s: s:tudy and preparation of this manuscript. Appreciation is. expressed to Ors. Ray Eikenbary, Jerry Young, Robert Burton, and John Caddel for serving as members of my graduate committee, and to Or. Ron McNeu for his help in analyzing the data. Thanks. are extended to Mary Hininger, Melinda Davis, Donna Ridge, Phoebe Courtney, and Debbie Lauchner for their assistance in the lab oratory, and to Doug Sander and Kevin Mussett for their assistance in the fi.el d. Special thanks goes to Ms. Anne Hunt for clerical review and typing of this manuscript. My most sincere appreciation is reserved for my husband, John (Soteres}, for his encouragement, understanding, and patience while I was completing this work. I share the credit for this work with my family, whose love and support have been a constant source of encourage ment in my life. iii TABLE OF CONTENTS Chapter Page I. GENERAL INTRODUCTION 1 II. -
To Us Insectometers, It Is Clear That Insect Decline in Our Costa Rican
SPECIAL FEATURE: PERSPECTIVE To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’sbekindto SPECIAL FEATURE: PERSPECTIVE the survivors Daniel H. Janzena,1 and Winnie Hallwachsa Edited by David L. Wagner, University of Connecticut, and accepted by Editorial Board Member May R. Berenbaum November 11, 2020 (received for review April 6, 2020) We have been field observers of tropical insects on four continents and, since 1978, intense observers of caterpillars, their parasites, and their associates in the 1,260 km2 of dry, cloud, and rain forests of Area´ de Conservaci ´onGuanacaste (ACG) in northwestern Costa Rica. ACG’s natural ecosystem restoration began with its national park designation in 1971. As human biomonitors, or “insectometers,” we see that ACG’s insect species richness and density have gradually declined since the late 1970s, and more intensely since about 2005. The overarching perturbation is climate change. It has caused increasing ambient tempera- tures for all ecosystems; more erratic seasonal cues; reduced, erratic, and asynchronous rainfall; heated air masses sliding up the volcanoes and burning off the cloud forest; and dwindling biodiversity in all ACG terrestrial ecosystems. What then is the next step as climate change descends on ACG’s many small-scale successes in sustainable biodevelopment? Be kind to the survivors by stimulating and facilitating their owner societies to value them as legitimate members of a green sustainable nation. Encourage national bioliteracy, BioAlfa. climate change | BioAlfa | conservation by rewilding | biodevelopment | insect decline As “insectometers,” also known as human biomoni- eventually focused into Area´ de Conservaci ´onGuana- tors, we have watched the conspicuous ongoing de- caste (ACG) in northwestern Costa Rica (8–13) (Fig. -
No Slide Title
Tachinidae: The “other” parasitoids Diego Inclán University of Padova Outline • Briefly (re-) introduce parasitoids & the parasitoid lifestyle • Quick survey of dipteran parasitoids • Introduce you to tachinid flies • major groups • oviposition strategies • host associations • host range… • Discuss role of tachinids in biological control Parasite vs. parasitoid Parasite Life cycle of a parasitoid Alien (1979) Life cycle of a parasitoid Parasite vs. parasitoid Parasite Parasitoid does not kill the host kill its host Insects life cycles Life cycle of a parasitoid Some facts about parasitoids • Parasitoids are diverse (15-25% of all insect species) • Hosts of parasitoids = virtually all terrestrial insects • Parasitoids are among the dominant natural enemies of phytophagous insects (e.g., crop pests) • Offer model systems for understanding community structure, coevolution & evolutionary diversification Distribution/frequency of parasitoids among insect orders Primary groups of parasitoids Diptera (flies) ca. 20% of parasitoids Hymenoptera (wasps) ca. 70% of parasitoids Described Family Primary hosts Diptera parasitoid sp Sciomyzidae 200? Gastropods: (snails/slugs) Nemestrinidae 300 Orth.: Acrididae Bombyliidae 5000 primarily Hym., Col., Dip. Pipunculidae 1000 Hom.:Auchenorrycha Conopidae 800 Hym:Aculeata Lep., Orth., Hom., Col., Sarcophagidae 1250? Gastropoda + others Lep., Hym., Col., Hem., Tachinidae > 8500 Dip., + many others Pyrgotidae 350 Col:Scarabaeidae Acroceridae 500 Arach.:Aranea Hym., Dip., Col., Lep., Phoridae 400?? Isop.,Diplopoda -
Cutworms & Armyworms
Cutworms andArmyworms O & T Guide [T-#03] Carol A. Sutherland Extension and State Entomologist Cooperative Extension Service z College of Agriculture and Home Economics z October 2006 Cutworms and armyworms are drab, rangelands in the lower elevations. nocturnal, “hairless” caterpillar pests of Feeding as temperatures permit over the grass crowns, roots and blades as well as a fall and winter, army cutworms mature variety of crops, landscape and rangeland and pupate in late winter. As temperatures plants. The night-flying adult stages are called “miller moths” because they congregate around outdoor lights. They can be annoying then and also when adults seek shelter during the day in homes and buildings. Their shed wing scales can cause allergic reactions in some people. Metamorphosis: Complete Mouth Parts: chewing (larvae) Pest Stage: larvae, adults (minor) Fall armyworm larva, Spodoptera frugiperda. Typical Life Cycle: Eggs are laid in the Photo: Clemson Univ., USDA-Cooperative Extension Slide Series, www.forestryimages.org soil around shallow roots of host plants, on grass crowns or blades, or higher on host plants, depending upon species. Æ Series of Larvae. Larvae feed and disperse at night, hiding by day in soil crevices, thatch or other cover. ÆPupae are usually found in surface litter or several inches below the surface in soil not far from host plants; most require 7-14 days to mature in summer temperatures. ÆAdults typically emerge, fly, mate and lay eggs at night, seeking shelter by day. Depending upon species, one to many life cycles may be Fall armyworm, showing inverted Y on the completed annually. Adults of some head. -
Insects and Related Arthropods Associated with of Agriculture
USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H. -
Reproductive Biology and Longevity of Euplectrus Ronnai (Brèthes) (Hymenoptera: Eulophidae)
July - September 2003 481 BIOLOGICAL CONTROL Reproductive Biology and Longevity of Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) ANA C. YAMAMOTO AND LUÍS A. FOERSTER Depto. Zoologia, UFPR. C. postal 19.020, 81531-990, Curitiba, PR, e-mail: [email protected] Neotropical Entomology 32(3):481-485 (2003) Biologia Reprodutiva e Longevidade de Euplectrus ronnai (Brèthes) (Hymenoptera: Eulophidae) RESUMO - O ectoparasitóide Euplectrus ronnai (Brèthes) é um dos componentes do complexo de espécies que parasitam a lagarta do trigo Mythimna (Pseudaletia) sequax Franclemont (Lepidoptera: Noctuidae). Não há dados na literatura sobre o potencial de parasitismo, preferência por ínstares do hospedeiro e longevidade desse parasitóide, o que motivou a realização do presente trabalho. O parasitismo ocorreu entre o terceiro e o quinto ínstares do hospedeiro; lagartas de segundo instar inviabilizaram o desenvolvimento do parasitóide, e no primeiro e no sexto ínstares não houve oviposição pelas fêmeas de E. ronnai. O número de ovos depositados pelas fêmeas aumentou com o estádio de desenvolvimento do hospedeiro, variando de 1,5 ovos/lagarta no terceiro instar a 3,6 ovos/lagarta no quinto ínstar. A proporção de lagartas parasitadas entre os diferentes ínstares mostrou que E. ronnai apresenta preferência pelo quarto e quinto ínstares de M. sequax. Não houve diferença no tempo de desenvolvimento, na razão sexual, no número médio de lagartas parasitadas e na porcentagem de lagartas parasitadas em testes de livre escolha entre lagartas de quarto e de quinto ínstares. Entretanto, o número de parasitóides/hospedeiro foi significativamente maior em lagartas de quinto ínstar. A fecundidade média das fêmeas de E. ronnai foi de 63,7 ovos e cada fêmea parasitou a média de 20,3 lagartas. -
Pepper Pest Management
Pepper Pest Management Kaushalya Amarasekare Ph.D. Assistant Professor of Entomology Dept. of Agricultural and Environmental Sciences College of Agriculture Tennessee State University University of Maryland Nashville, Tennessee Extension snaped.fns.usda.gov Goal The goal of this training is to educate stakeholders on arthropods (pest insects and mites) that damage peppers and methods to manage them using integrated pest management (IPM) techniques Objectives Upon completion of this training, the participants will be able to 1) teach, 2) demonstrate and 3) guide growers, small farmers, backyard and community gardeners, master gardeners, and other stakeholders on management of pest arthropods in peppers Course Outline 1. Introduction: background information on bell and chili pepper 2. Pests of pepper a) Seedling Pests b) Foliage Feeders c) Pod Feeders 3. Summary 4. References Introduction Bell /sweet pepper Peppers • Family Solanaceae • Capsicum annum L. • Bell/sweet peppers and chili agmrc.org Peppers: consumed as • Fresh • Dried chili pepper • Ground as spices • Processed (canned, pickled, brined or in salsas) 570cjk, Creative Commons wifss.ucdavis.edu Bell Pepper • 2017: U.S. consumption of fresh bell peppers ~ 11.4 lbs./person • High in vitamin C and dietary fiber • Provide small amounts of several vitamins and minerals • Usually sold as fresh produce Maturity Sugar Content Chili Pepper • 2017: U.S. consumption of chili peppers ~ 7.7 lbs./person • High in vitamin C • Small amounts of vitamin A and B-6, iron and magnesium 570cjk, Creative Commons wifss.ucdavis.edu • Sold as fresh produce and dried (whole peppers, crushed or powdered) pepperscale.com Myscha Theriault U.S. green pepper production • U.S. -
EXTERNAL GENITALIC MORPHOLOGY and COPULATORY MECHANISM of CYANOTRICHA NECYRIA (FELDER) (DIOPTIDAE) Genitalic Structure Has Been
Journal of the Lepidopterists' Society 42(2). 1988, 103-115 EXTERNAL GENITALIC MORPHOLOGY AND COPULATORY MECHANISM OF CYANOTRICHA NECYRIA (FELDER) (DIOPTIDAE) JAMES S. MILLER Curatorial Fellow, Department of Entomology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024 ABSTRACT. External genitalia of Cyanotricha necyria (Felder) exhibit characters that occur in the Notodontidae and Dioptidae. These provide further evidence that the two groups are closely related. Dissection of two C. necyria pairs in copula revealed two features unique among copulatory mechanisms described in Lepidoptera. First, only the male vesica, rather than the aedoeagus and vesica, are inserted into the female. Secondly, during copulation the female is pulled into the male abdomen, and his eighth segment applies dorsoventral pressure on the female's seventh abdominal segment. This mechanism is facilitated by a long membrane between the male eighth and ninth abdominal segments. The first trait is probably restricted to only some dioptid species, while the second may represent a synapomorphy for a larger group that would include all dioptids, and all or some notodontids. Additional key words: Noctuoidea, Notodontidae, Josiinae, functional morphology. Genitalic structure has been one of the most important sources of character information in Lepidoptera systematics. Taxonomists often use differences in genitalic morphology to separate species, and ho mologous similarities have provided characters for defining higher cat egories in Lepidoptera classification (Mehta 1933, Mutuura 1972, Dug dale 1974, Common 1975). Unfortunately, we know little concerning functional morphology of genitalia. A knowledge of function may aid in determining homology of genitalic structures, something that has proved to be extremely difficult and controversial. -
View the PDF File of the Tachinid Times, Issue 12
The Tachinid Times ISSUE 12 February 1999 Jim O’Hara, editor Agriculture & Agri-Food Canada, Biological Resources Program Eastern Cereal and Oilseed Research Centre C.E.F., Ottawa, Ontario, Canada, K1A 0C6 Correspondence: [email protected] The Tachinid Times began in 1988 when personal Evolution of Egg Structure in Tachinidae (by S.P. computers were gaining in popularity, yet before the Gaponov) advent of e-mail and the World Wide Web. A newsletter Using a scanning electron microscope I investigated distributed through the mail seemed like a useful the egg structure of 114 species of Tachinidae. The endeavour to foster greater awareness about the work of research was focused on the peculiarities of the egg others among researchers interested in the Tachinidae. surface and the structure of the aeropylar area. Data on Now, eleven years later, despite the speed and the method of egg-laying, the structure of the female convenience of e-mail and other advanced modes of reproductive system and the host range were also taken communication, this newsletter still seems to hold a place into consideration. Since any kind of adaptation is a in the distribution of news about the Tachinidae. If there result of evolution and every stage of ontogenesis, is sufficient interest - and submissions - over the course including the egg stage, is adapted to some specific of the next year, then another issue will appear in environmental conditions, each stage of ontogenesis February of the new millennium. As always, please send evolved more or less independently. The development of me your news for inclusion in the newsletter before the provisionary devices (coenogenetic adaptations) and their end of next January. -
Molecular Identification of a Parasitic
& Herpeto gy lo lo gy o : h C it u n r r r e O n , t y R g e o l Entomology, Ornithology & s o e a m r o c t Guerra et al, Entomol Ornithol Herpetol 2014, 3:3 h n E DOI: 10.4172/2161-0983.1000131 ISSN: 2161-0983 Herpetology: Current Research Short Communication Open Access Molecular Identification of a Parasitic Fly (Diptera: Tachinidae) from the Introduced Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil Guerra WD1, Guerra ALLD2, Ribas LN3, Gonçalves RM4 and Mastrangelo T4* 1Ministry of Agriculture, Livestock and Food Supply, Federal Agricultural Superintendence in Mato Grosso, 78115-000, Brazil 2Federal University of Mato Grosso, 78060-900, Brazil 3Associação dos Produtores de Soja e Milho do Mato Grosso (Aprosoja), 78049-908, Brazil 4 Center for Molecular Biology and Genetic Engineering, State University of Campinas, 13083-875, Brazil *Corresponding author: Thiago Mastrangelo, Center for Molecular Biology and Genetic Engineering, State University of Campinas (UNICAMP), Av. Candido Rondon 400, 13083-875, Campinas, SP, Brazil, Tel: +55 19 3521 1141; E-mail: [email protected] Rec date: June 24, 2014;Acc date: June 26, 2014;Pub date: Jul 13, 2014 Copyright: © 2014 Guerra WD, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract The African cotton bollworm, Helicoverpa armigera Hubner (Lepidoptera: Noctuidae) was detected in Brazil, triggering a major phytosanitary crisis during the 2012/2013 harvest. Despite its recent introduction, larvae were found being parasitized by indigenous dipterans with estimated parasitism rates even higher than 30% at some localities. -
1 Modern Threats to the Lepidoptera Fauna in The
MODERN THREATS TO THE LEPIDOPTERA FAUNA IN THE FLORIDA ECOSYSTEM By THOMSON PARIS A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2011 1 2011 Thomson Paris 2 To my mother and father who helped foster my love for butterflies 3 ACKNOWLEDGMENTS First, I thank my family who have provided advice, support, and encouragement throughout this project. I especially thank my sister and brother for helping to feed and label larvae throughout the summer. Second, I thank Hillary Burgess and Fairchild Tropical Gardens, Dr. Jonathan Crane and the University of Florida Tropical Research and Education center Homestead, FL, Elizabeth Golden and Bill Baggs Cape Florida State Park, Leroy Rogers and South Florida Water Management, Marshall and Keith at Mack’s Fish Camp, Susan Casey and Casey’s Corner Nursery, and Michael and EWM Realtors Inc. for giving me access to collect larvae on their land and for their advice and assistance. Third, I thank Ryan Fessendon and Lary Reeves for helping to locate sites to collect larvae and for assisting me to collect larvae. I thank Dr. Marc Minno, Dr. Roxanne Connely, Dr. Charles Covell, Dr. Jaret Daniels for sharing their knowledge, advice, and ideas concerning this project. Fourth, I thank my committee, which included Drs. Thomas Emmel and James Nation, who provided guidance and encouragement throughout my project. Finally, I am grateful to the Chair of my committee and my major advisor, Dr. Andrei Sourakov, for his invaluable counsel, and for serving as a model of excellence of what it means to be a scientist. -
A Wasp Parasitoid, Cotesia Marginiventris (Cresson) (Insecta: Hymenoptera: Braconidae)1 Andrei Sourakov and Everett Mitchell2
EENY-123 A Wasp Parasitoid, Cotesia marginiventris (Cresson) (Insecta: Hymenoptera: Braconidae)1 Andrei Sourakov and Everett Mitchell2 Distribution This species was originally described from Cuba and is native to the West Indies. It also occurs in the United States: Delaware south to Florida, west to Indiana, Kansas and Texas, Wisconsin, Arizona, California, Hawaii. It is also present in Mexico and South America. Description Egg Oval, three times longer than wide, with a small projection. Figure 1. Early and late larval stages of Cotesia marginiventris (Cresson), It is clear and shiny, like a piece of glass. Size increases after a wasp parasitoid. the egg is laid. Larva hatches two days after oviposition by Credits: Andrei Sourakov, Florida Museum of Natural History the adult. Larva When dissected from the host, the Cotesia larvae are soft-skinned and bear a “bubble”—a caudal vesicle—in the posterior region. If not submerged in water, the larva dries out shortly after being dissected. Larvae are located in the host’s posterior end. The first instar larvae are only 0.06 mm long, while mature (third instar) larvae are 5.5 mm long. When they emerge from the host, they are much more rug- ged and immediately begin spinning a tight silky cocoon. Figure 2. Cocoon of Cotesia marginiventris (Cresson), a wasp parasitoid. Pupa Credits: Andrei Sourakov, Florida Museum of Natural History The cocoon is white, tight and 4 mm long. 1. This document is EENY-123, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. Original publication date March 2000.