Complementary Distribution Patterns of Arthropod Detritivores (Woodlice and Millipedes) Along Forest Edge‐To

Total Page:16

File Type:pdf, Size:1020Kb

Complementary Distribution Patterns of Arthropod Detritivores (Woodlice and Millipedes) Along Forest Edge‐To Insect Conservation and Diversity (2016) 9, 456–469 doi: 10.1111/icad.12183 Complementary distribution patterns of arthropod detritivores (woodlice and millipedes) along forest edge-to-interior gradients PALLIETER DE SMEDT,1 KAREN WUYTS,2 LANDER BAETEN,1 AN DE SCHRIJVER,1 WILLEM PROESMANS,1 PIETER DE FRENNE,1 EVY AMPOORTER,1 ELYN REMY,1 MERLIJN GIJBELS,1 MARTIN HERMY,3 4 1 DRIES BONTE andKRISVERHEYEN 1Forest & Nature Lab, Department of Forest and Water management, Ghent University, Melle (Gontrode), Belgium, 2ENdEMIC Research Group, Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium, 3Division Forest, Nature and Landscape, Department of Earth and Environmental Sciences, University of Leuven, Leuven, Belgium and 4Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium Abstract. 1. Worldwide, forest fragmentation induces edge effects, thereby strongly altering the forest microclimate and abiotic characteristics in the forest edge compared to the forest interior. The impact of edge-to-interior gradients on abiotic parameters has been extensively studied, but we lack insights on how biodiversity, and soil communities in particular, are structured along these gra- dients. 2. Woodlice (Isopoda) and millipedes (Diplopoda) are dominant macro-detriti- vores in temperate forests with acidic sandy soils. 3. We investigated the distribution of these macro-detritivores along forest edge-to-interior gradients in six different forest stands with sandy soils in north- ern Belgium. 4. Woodlouse abundance decreased exponentially with distance from the for- est edge, whereas millipede abundance did not begin to decrease until 7 m inside the forest stands. Overall, these patterns were highly species specific and could be linked to the species’ desiccation tolerance. Whereas the observed abundance patterns were independent from forest stand and dominant tree species, tree species had a large effect on community structure. 5. Edge gradients in macro-detritivores may consequently have implications for nutrient cycling, especially in smaller forest fragments with a large edge-to- interior ratio. Key words. Detritivores, diplopoda, edge effects, gradients, isopoda, soil fauna. Introduction (Janzen, 1986; Reed et al., 1996; Gascon et al., 2000; Harper et al., 2005; Fletcher et al., 2007; Echeverria et al., Forest habitats are profoundly fragmented around the 2008). Forest edges are characterised by enhanced light world (Wade et al., 2003). Such fragmentation induces a availability (Delgado et al., 2007), higher wind speeds reduction in forest patch sizes and strengthens edge effects (Wuyts et al., 2008a), higher air and soil temperatures (Delgado et al., 2007; Heithecker & Halpern, 2007), and lower relative humidity and soil moisture (Chen et al., Correspondence: Pallieter De Smedt, Forest & Nature Lab, 1995; Gehlhausen et al., 2000). They are also relative ‘hot- Department of Forest and Water management, Ghent University, spots’ for the deposition of eutrophying and acidifying Geraardsbergsesteenweg 267, 9090 Melle (Gontrode), Belgium. atmospheric pollutants (Weathers et al., 2001; Wuyts E-mail: [email protected] et al., 2008b,c) compared to the forest interior. The 456 Ó 2016 The Royal Entomological Society Arthropod detritivores in forest edges 457 magnitude and depth of influence of these edge effects are edge effects and macro-detritivore communities, we put strongly affected by the structure and composition of the forward the following hypotheses about the influence of edge itself (Weathers et al., 2001; Wuyts et al., 2008b,c). edge effects on woodlouse and millipede distribution: These abiotic edge gradients then give rise to secondary 1 More favourable environmental conditions (higher effects on biotic effects at the edge of forest ecosystems temperatures and higher litter quality) at the forest (Murcia, 1995; Harper et al., 2005). edge will result in a higher abundance of macro-detri- Soil macro-invertebrates are dominant detritivores in tivores at this boundary, with abundance steadily temperate forests, which breakdown dead organic material declining towards interiors. If true, we expect the mass (Lavelle, 1997), thus affecting the physico-chemical char- of the ectorganic horizon to show the inverse trend acteristics of soil (Snyder & Hendrix, 2008). By reducing due to increasing rates of decomposition from the inte- the size of dead organic material on the forest floor rior to the forest edge. (Anderson, 1988; Grelle et al., 2000), they increase the 2 The response of macro-detritivores to edge proximity accessible surface area for further decomposition by is species specific, as each species exhibits different microbes (Harper et al., 2005). This results in a more temperature and humidity preferences. stable soil organic matter layer (Wolters, 2000). The trans- 3 Responses of detritivores to forest edge proximity can formation of fallen leaves into macro-detritivore faeces be related to changes in relevant abiotic parameters also has strong effects on the microbial response and con- (i.e. food quality, cation content of the soil, etc.). sequently on the breakdown of the leaf material (Joly et al., 2015). Exclusion of these soil macro-arthropods slows down decomposition rates (Riutta et al., 2012; Slade & Riutta, 2012), and their presence is therefore of vital Material and methods importance for nutrient cycling in forest ecosystems. The distribution of macro-arthropods, such as woodlice and Site description millipedes, within forests is highly scattered (Hornung, 2011) and aggregated towards forest edges (Riutta et al., We selected six forest stands in the northern part of 2012). The occurrence of abiotic edge effects raises the Belgium, located on poor, acidic, well-drained sandy soils question of whether the response from macro-arthropods (Haplic podzols) of the Campine and Sandy region. All also varies gradually as the forest edge is approached, and were recently created forests, formerly managed as heath- whether this is reflected in the accumulation of forest floor lands until 80–90 years ago. This heathland management material. Yet our understanding of how biotic factors, practice resulted in a significant depletion of soil nutrients such as different taxonomic groups of the soil fauna com- through sheep grazing and turf cutting on these already munity, change along edge-to-interior gradients and how naturally nutrient-poor soils. After some years of aban- this could affect the litter decomposition process is extre- donment, the sites were afforested with monocultures of mely limited (Hattenschwiler€ et al., 2005). Temperature pedunculate oak (Quercus robur L.; stands Q1 and Q2), and humidity are important, and highly species specific, silver birch (Betula pendula Roth.; stands B1 and B2), environmental triggers for survival and distribution of Corsican pine (Pinus nigra ssp. laricio Maire; stand P1), macro-detritivores (Warburg, 1964; Haacker, 1968; Meyer or Austrian pine (P. nigra ssp. nigra Arnold; stand P2) & Eisenbeis, 1985; Dias et al., 2013). On the other hand, (Table 1). The stands all had an abrupt forest edge, i.e. the spatial distribution of detritivores is also strongly they lacked a gradual transition with the adjacent open influenced by soil acidity and exchangeable base cations land, and were always oriented towards the southwest, (Kime, 1992; Van Straalen & Verhoef, 1997), as well as perpendicular to the prevailing wind direction. All were food quality (C/N ratio) (Hassall et al., 2002; David & located in the periphery of forest complexes, within a Handa, 2010; Gerlach et al., 2014). These environmental fragmented landscape dominated by agriculture and inten- parameters vary strongly along edge-to-interior gradients, sive livestock breeding. Forest edges were bordered by and we would therefore expect species distribution pat- grass pasture, extensively managed meadow (B1, Q1, and terns to be highly influenced by distance from the forest P2), or by arable land (B2, Q2, and P1). A road with edge. Detailed empirical data that could be used to inves- roadside verges (~20 m in total) was present between the tigate these patterns is, however, to our knowledge very grassland or arable land and the forest edge of stands Q1 scarce. and Q2. The stands bordering arable land could have In northern Belgium, where forests are strongly frag- been exposed to drift of lime or fertiliser from agricultural mented, we investigated the distribution patterns of woo- applications. Under-storey vegetation was absent in all dlice and millipedes in transects that stretched from the stands except for (i) brambles (Rubus fruticosus agg.), forest edge towards the forest interior, for several differ- which occurred in the first 20 m from the edge in Q1 and ent forest stands (De Schrijver et al., 2007). On these further than 50 m from the edge in P1, and (ii) creeping acidic sandy forest soils, earthworms are very scarce or soft grass (Holcus mollis L.), which was present in the first even absent (Muys & Lust, 1992), and therefore woodlice 10 m from the edge in both P1 and P2. No significant and millipedes are the major macro-detritivore groups quantity of coarse woody debris was present in the stands. (Jeffery et al., 2010). Based on our knowledge of abiotic The edge patterns of soil nitrogen leaching, soil Ó 2016 The Royal Entomological Society, Insect Conservation and Diversity, 9, 456–469 458 Pallieter De Smedt et al. Table 1. Overview of the characteristics of the six investigated forest stands. Stand Location Dominant tree species Other species* Stand age (y) Soil pH(KCl) Q1 51°24044″N Quercus robur L. Alnus glutinosa L. 74 2.88 05°02045″E Sorbus aucuparia L. Q2 50°52008″N Quercus robur L. Alnus glutinosa L. 96 3.35 03°27059″E Prunus serotina Erhr. Sorbus aucuparia L B1 51°23030″N Betula pendula Roth Pinus nigra ssp. laricio Maire 35 3.40 05°02031″E Larix spec. Mill. B2 51°090220’N Betula pendula Roth Quercus robur L. 36-46 2.93 03°040480’E Sorbus aucuparia L. P1 51°26037″N Pinus nigra ssp. nigra Arnold Sorbus aucuparia L. 49 2.89 05°05014″E P2 51°08026″N Pinus nigra ssp. laricio Maire Betula pendula Roth 71 2.91 03°06036″E Quercus robur L.
Recommended publications
  • Subterranean Biodiversity and Depth Distribution of Myriapods in Forested Scree Slopes of Central Europe
    A peer-reviewed open-access journal ZooKeys Subterranean930: 117–137 (2020) biodiversity and depth distribution of myriapods in forested scree slopes of... 117 doi: 10.3897/zookeys.930.48914 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Subterranean biodiversity and depth distribution of myriapods in forested scree slopes of Central Europe Beáta Haľková1, Ivan Hadrián Tuf 2, Karel Tajovský3, Andrej Mock1 1 Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University, Košice, Slovakia 2 De- partment of Ecology and Environmental Sciences, Faculty of Science, Palacky University, Olomouc, Czech Republic 3 Institute of Soil Biology, Biology Centre CAS, České Budějovice, Czech Republic Corresponding author: Beáta Haľková ([email protected]) Academic editor: L. Dányi | Received 28 November 2019 | Accepted 10 February 2020 | Published 28 April 2020 http://zoobank.org/84BEFD1B-D8FA-4B05-8481-C0735ADF2A3C Citation: Haľková B, Tuf IH, Tajovský K, Mock A (2020) Subterranean biodiversity and depth distribution of myriapods in forested scree slopes of Central Europe. In: Korsós Z, Dányi L (Eds) Proceedings of the 18th International Congress of Myriapodology, Budapest, Hungary. ZooKeys 930: 117–137. https://doi.org/10.3897/zookeys.930.48914 The paper is dedicated to Christian Juberthie (12 Mar 1931–7 Nov 2019), the author of the concept of MSS (milieu souterrain superficiel) and the doyen of modern biospeleology Abstract The shallow underground of rock debris is a unique animal refuge. Nevertheless, the research of this habitat lags far behind the study of caves and soil, due to technical and time-consuming demands. Data on Myriapoda in scree habitat from eleven localities in seven different geomorphological units of the Czech and Slovak Republics were processed.
    [Show full text]
  • Faunistic Survey of Terrestrial Isopods (Isopoda: Oniscidea) in the Boč Massif Area
    NATURA SLOVENIAE 16(1): 5-14 Prejeto / Received: 5.2.2014 SCIENTIFIC PAPER Sprejeto / Accepted: 19.5.2014 Faunistic survey of terrestrial isopods (Isopoda: Oniscidea) in the Boč Massif area Blanka RAVNJAK & Ivan KOS Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia; E-mails: [email protected], [email protected] Abstract. In 2005, terrestrial isopods were sampled in the Boč Massif area, eastern Slovenia, and their fauna compared at five different sampling sites: forest on dolomite, forest on limestone, thermophilous forest, young stage forest and extensive meadow. Two sampling methods were used: hand collecting and quadrate soil sampling with a subsequent heat extraction of animals. The highest species diversity (8 species) was recorded in the forest on dolomite and in young stage forest. No isopod species were found in samples from the extensive meadow. In the entire study area we recorded 12 different terrestrial isopod species and caught 109 specimens in total. The research brought new data on the distribution of two quite poorly known species in Slovenia: the Trachelipus razzauti and Haplophthalmus abbreviatus. Key words: species structure, terrestrial isopods, Boč Massif, Slovenia Izvleček. Favnistični pregled mokric (Isopoda: Oniscidea) na območju Boškega masiva – Leta 2005 smo na območju Boškega masiva v vzhodni Sloveniji opravili vzorčenje favne mokric. V raziskavi smo primerjali favno mokric na petih različnih vzorčnih mestih: v gozdu na dolomitu, v gozdu na apnencu, termofilnem gozdu, mladem gozdu in na ekstenzivnem travniku. Vzorčili smo z dvema metodama, in sicer z metodo ročnega pobiranja ter z odvzemom talnih vzorcev po metodi kvadratov.
    [Show full text]
  • Woodlice in Britain and Ireland: Distribution and Habitat Is out of Date Very Quickly, and That They Will Soon Be Writing the Second Edition
    • • • • • • I att,AZ /• •• 21 - • '11 n4I3 - • v., -hi / NT I- r Arty 1 4' I, • • I • A • • • Printed in Great Britain by Lavenham Press NERC Copyright 1985 Published in 1985 by Institute of Terrestrial Ecology Administrative Headquarters Monks Wood Experimental Station Abbots Ripton HUNTINGDON PE17 2LS ISBN 0 904282 85 6 COVER ILLUSTRATIONS Top left: Armadillidium depressum Top right: Philoscia muscorum Bottom left: Androniscus dentiger Bottom right: Porcellio scaber (2 colour forms) The photographs are reproduced by kind permission of R E Jones/Frank Lane The Institute of Terrestrial Ecology (ITE) was established in 1973, from the former Nature Conservancy's research stations and staff, joined later by the Institute of Tree Biology and the Culture Centre of Algae and Protozoa. ITE contributes to, and draws upon, the collective knowledge of the 13 sister institutes which make up the Natural Environment Research Council, spanning all the environmental sciences. The Institute studies the factors determining the structure, composition and processes of land and freshwater systems, and of individual plant and animal species. It is developing a sounder scientific basis for predicting and modelling environmental trends arising from natural or man- made change. The results of this research are available to those responsible for the protection, management and wise use of our natural resources. One quarter of ITE's work is research commissioned by customers, such as the Department of Environment, the European Economic Community, the Nature Conservancy Council and the Overseas Development Administration. The remainder is fundamental research supported by NERC. ITE's expertise is widely used by international organizations in overseas projects and programmes of research.
    [Show full text]
  • Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case
    Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst.
    [Show full text]
  • A New Species of Illacme Cook & Loomis, 1928
    A peer-reviewed open-access journal ZooKeys 626: 1–43A new (2016) species of Illacme Cook and Loomis, 1928 from Sequoia National Park... 1 doi: 10.3897/zookeys.626.9681 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida) Paul E. Marek1, Jean K. Krejca2, William A. Shear3 1 Virginia Polytechnic Institute and State University, Department of Entomology, Price Hall, Blacksburg, Virginia, USA 2 Zara Environmental LLC, 1707 W FM 1626, Manchaca, Texas, USA 3 Hampden-Sydney College, Department of Biology, Gilmer Hall, Hampden-Sydney, Virginia, USA Corresponding author: Paul E. Marek ([email protected]) Academic editor: R. Mesibov | Received 25 July 2016 | Accepted 19 September 2016 | Published 20 October 2016 http://zoobank.org/36E16503-BC2B-4D92-982E-FC2088094C93 Citation: Marek PE, Krejca JK, Shear WA (2016) A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626: 1–43. doi: 10.3897/zookeys.626.9681 Abstract Members of the family Siphonorhinidae Cook, 1895 are thread-like eyeless millipedes that possess an astounding number of legs, including one individual with 750. Due to their cryptic lifestyle, rarity in natural history collections, and sporadic study over the last century, the family has an unclear phylogenetic placement, and intrafamilial relationships remain unknown. Here we report the discovery of a second spe- cies of Illacme, a millipede genus notable for possessing the greatest number of legs of any known animal on the planet.
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • First Recorded Introduction of the Milliped Order Stemmiulida (Eugnatha: Nematophora): Potential Establishment in Florida, USA
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-24-2012 First recorded introduction of the milliped order Stemmiulida (Eugnatha: Nematophora): Potential establishment in Florida, USA, and new records from Mexico; northward range extension into southern Tamaulipas Rowland M. Shelley North Carolina State Museum of Natural Sciences, [email protected] G. B. Edwards Florida State Collection of Arthropods, [email protected] Arthur E. Bogan North Carolina State Museum of Natural Sciences, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Shelley, Rowland M.; Edwards, G. B.; and Bogan, Arthur E., "First recorded introduction of the milliped order Stemmiulida (Eugnatha: Nematophora): Potential establishment in Florida, USA, and new records from Mexico; northward range extension into southern Tamaulipas" (2012). Insecta Mundi. 757. https://digitalcommons.unl.edu/insectamundi/757 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0245 First recorded introduction of the milliped order Stemmiulida (Eugnatha: Nematophora): Potential establishment in Florida, USA, and new records from Mexico; northward range extension into southern Tamaulipas Rowland M. Shelley Research Laboratory North Carolina State Museum of Natural Sciences MSC #1626 Raleigh, NC 27699-1626 USA G. B. Edwards Florida State Collection of Arthropods Division of Plant Industry P. O.
    [Show full text]
  • Notes on Terrestrial Isopoda Collected in Dutch Greenhouses
    NOTES ON TERRESTRIAL ISOPODA COLLECTED IN DUTCH GREENHOUSES by L. B. HOLTHUIS On the initiative of Dr. A. D. J. Meeuse investigations were made on the fauna of the greenhouses of several Botanic Gardens in the Netherlands; material was also collected in greenhouses of other institutions and in those kept for commercial purposes. The isopods contained in the col• lection afforded many interesting species, so for instance six of the species are new for the Dutch fauna, viz., Trichoniscus pygmaeus Sars, Hylonis- cus riparius (Koch), Cordioniscus stebbingi (Patience), Chaetophiloscia balssi Verhoeff, Trichorhina monocellata Meinertz and Nagara cristata (Dollfus). Before the systematic review of the species a list of the localities from which material was obtained is given here with enumeration of the collected species. 1. Greenhouses of the Botanic Gardens, Amsterdam; October 24, 1942; leg. A. D. J. Meeuse (Cordioniscus stebbingi, Chaetophiloscia balssi, Por- cellio scaber, Nagara cristata, Armadillidium vulgare). 2. Greenhouses of the "Laboratorium voor Bloembollenonderzoek,, (Laboratory for Bulb Research), Lisse; June 13, 1943; leg. A. D. J. Meeuse (Oniscus asellus, Porcellio scaber, Porcellionides pruinosus, Ar• madillidium vulgare, Armadillidium nasutum). 3. Greenhouses of the Botanic Gardens, Leiden; May, 1924-November, 1942. leg. H. C. Blote, L. B. Holthuis, F. P. Koumans, A. D. J. Meeuse, A. L. J. Sunier and W. Vervoort (Androniscus dentiger, Cordioniscus stebbingi, Haplophthalmus danicus, Oniscus asellus, Porcellio scaber, For- cellionides pruinosus, Armadillidium vulgare, Armadillidium nasutum), 4. Greenhouses of the Zoological Gardens, The Hague; November 4, 1942; leg. A. D. J. Meeuse (Cordioniscus stebbingi, Oniscus asellus, Por• cellio dilatatus). 5. Greenhouse for grape culture, Loosduinen, near The Hague; October 30, 1942; leg.
    [Show full text]
  • Ecological Data of Isopods (Crustacea: Oniscidea) in Laurel Forests from the Western Canary Islands
    VIERAEA Vol. 33 41-50 Santa Cruz de Tenerife, diciembre 2005 ISSN 0210-945X Ecological data of isopods (Crustacea: Oniscidea) in laurel forests from the Western Canary Islands ERIK ARNDT* & DIRK MATTERN** * Anhalt University of Applied Sciences, Department LOEL, Strenzfelder Allee 28, D-06406 Bernburg, Germany. Correspondence address. **Ahornweg 15, D-99867 Gotha, Germany. ARNDT, E. & D. MATTERN (2005). Datos ecológicos de isópodos (Crustacea: Oniscidea) en bosques de laurisilva de las islas canarias occidentales. VIERAEA 33: 41-50. RESUMEN: Se examinó la fauna de isópodos en diferentes bosques de laurisilva de La Gomera, El Hierro y La Palma (Canarias Occidentales), con datos obtenidos de trampas pitfall y muestras de suelo, citándose un total de 11 especies. Las comunidades de especies de bosques de La Gomera y El Hierro por una parte, y las de La Palma por otra, fueron muy diferentes a pesar de la similitud de la estructura forestal, la vegetación arbórea y las condiciones climáticas en las tres islas. La especie nativa Porcellio meridionalis es dominante en La Gomera y El Hierro, y alcanza su mayor abundancia en localidades frescas y húmedas por encima de 1200 m s.n.m. En todas las localidades forestales de La Palma fue siempre dominante Armadillidium vulgare, a menudo acompañada por pequeños Trichoniscidae endogeos. Cinco de las especies mencionadas han sido introducidas en las islas por el hombre en fechas históricas. Esas especies invasoras dominan cuantitativamente en muchos sitios del estudio, con una media en la proporción de especímenes invasivos:nativos de 3,1:1 en trampas pitfall, y de 1,1:1 en muestras de suelo.
    [Show full text]
  • The Belgian Millipede Fauna (Diplopoda)
    I I BULLETIN DE L'INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE ENTOMOLOGIE, 74: 35-68, 200ll BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN ENTOMOLOGIE, 74: 35-68, 2004 The Belgian Millipede Fauna (Diplopoda) by R. Desmond KIME Summary (BIERNAUX, 1972) and the first Belgian millipede atlas concerning these two groups (BIERNAUX, 1971). Between The work done in the past on Belgian millipedes is briefly reviewed 1977 and 1980 MARQUET made a huge collection of soil and previous publications on the subject are cited. A check-list of Belgian Diplopoda is given. Biogeographical districts of Belgium are invertebrates taken from all regions of the country for the indicated and the distribution of millipedes within these is noted. Each Belgian Royal Institute ofNatural Science, the millipedes spedes is reviewed; its distribution in Belgium is related to its of which I identified and catalogued at the request of European geographical range and to knowledge of its ecology. Maps of distribution within Belgium are presented. There is discussion of the Dr Leon BAERT. My own collecting in Belgium began in origins, evolution and community composition of the Belgian milli­ 1974 and has continued to the present day. Detailed pede fauna. ecological studies were carried out from 1977 onwards, based in the laboratory of Professor Key words: Diplopoda, Belgium, check-list, biogeography, ecology, Philippe LEBRUN at faunal origins. Louvain-la-Neuve, some of these with colleagues at Gembloux, and at the Belgian Royal Institute of Natural Science. These studies gave rise to a number of publica­ tions adding to the knowledge of the Belgian fauna (KIME Introduction & WAUTHY, 1984; BRANQUART, 1991; KIME, 1992; KIME et al., 1992; BRANQUART et al., 1995, KIME, 1997).
    [Show full text]
  • New Species of Troglomyces and Diplopodomyces (Laboulbeniales, Ascomycota) from Millipedes (Diplopoda)
    https://doi.org/10.5852/ejt.2018.429 www.europeanjournaloftaxonomy.eu 2018 · Santamaría S. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Research article New species of Troglomyces and Diplopodomyces (Laboulbeniales, Ascomycota) from millipedes (Diplopoda) Sergi SANTAMARÍA 1,*, Henrik ENGHOFF 2 & Ana Sofía P.S. REBOLEIRA 3 1 Unitat de Botànica, Departament de Biologia Animal, de Biologia Vegetal i d’Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain. 2,3 Natural History Museum of Denmark (Zoological Museum), University of Copenhagen, Universitetsparken 15, DK-2100 København Ø, Denmark. * Corresponding author: [email protected] 2 Email: henghoff @snm.ku.dk 3 Email: [email protected] Abstract. We describe fi ve new species of fungi of the order Laboulbeniales Lindau growing on millipedes and belonging to the genera Diplopodomyces W.Rossi & Balazuc and Troglomyces S.Colla. Three new species of Diplopodomyces, viz. Diplopodomyces coronatus Santam., Enghoff & Reboleira sp. nov. living on Serboiulus spelaeophilus Gulicka, 1967 from Bulgarian caves, Diplopodomyces liguliphorus Santam., Enghoff & Reboleira sp. nov. on an unidentifi ed species of Spirobolida from Sri Lanka, and Diplopodomyces ramosus Santam., Enghoff & Reboleira sp. nov. on Pachyiulus spp. from Turkey, Macedonia and Serbia; and two new species of Troglomyces, viz. Troglomyces dioicus Santam., Enghoff & Reboleira sp. nov. on Nepalmatoiulus sp. from Myanmar, and Troglomyces tetralabiatus Santam., Enghoff & Reboleira sp. nov. on Caucaseuma Strasser, 1970 and Heterocaucaseuma Antić & Makarov, 2016 from caves in Western Caucasus. Troglomyces dioicus sp. nov. is the fi rst dioecious species described in the genus Troglomyces. Keys for all hitherto known species of Diplopodomyces and Troglomyces are presented, as is a discussion of the status of both genera.
    [Show full text]
  • Distribution of Millipedes (Myriapoda, Diplopoda) Along a Forest Interior – Forest Edge – Grassland Habitat Complex
    A peer-reviewed open-access journal ZooKeys 510: 181–195Distribution (2015) of millipedes (Myriapoda, Diplopoda) along a forest interior.. 181 doi: 10.3897/zookeys.510.8657 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior – forest edge – grassland habitat complex Dávid Bogyó1,2, Tibor Magura1, Dávid D. Nagy3, Béla Tóthmérész3 1 Department of Ecology, University of Debrecen, P.O. Box 71, Debrecen H-4010, Hungary 2 Hortobágy National Park Directorate, P.O. Box 216, Debrecen H-4002, Hungary 3 MTA-DE Biodiversity and Ecosystem Services Research Group, P.O. Box 71, Debrecen H-4010, Hungary Corresponding author: Dávid Bogyó ([email protected]) Academic editor: Ivan H. Tuf | Received 27 September 2014 | Accepted 4 May 2015 | Published 30 June 2015 http://zoobank.org/47B52B34-E4BB-4F13-B5BE-162C2CD2AE7B Citation: Bogyó D, Magura T, Nagy DD, Tóthmérész B (2015) Distribution of millipedes (Myriapoda, Diplopoda) along a forest interior – forest edge – grassland habitat complex. In: Tuf IH, Tajovský K (Eds) Proceedings of the 16th International Congress of Myriapodology, Olomouc, Czech Republic. ZooKeys 510: 181–195. doi: 10.3897/zookeys.510.8657 Abstract We studied the distribution of millipedes in a forest interior-forest edge-grassland habitat complex in the Hajdúság Landscape Protection Area (NE Hungary). The habitat types were as follows: (1) lowland oak forest, (2) forest edge with increased ground vegetation and shrub cover, and (3) mesophilous grassland. We collected millipedes by litter and soil sifting. There were overall 30 sifted litter and soil samples: 3 habitat types × 2 replicates × 5 soil and litter samples per habitats.
    [Show full text]