An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda Derek Alan Hennen University of Arkansas, Fayetteville

Total Page:16

File Type:pdf, Size:1020Kb

An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda Derek Alan Hennen University of Arkansas, Fayetteville University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2015 An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda Derek Alan Hennen University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Biology Commons, Entomology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Hennen, Derek Alan, "An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda" (2015). Theses and Dissertations. 1423. http://scholarworks.uark.edu/etd/1423 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. An Inventory of Endemic Leaf Litter Arthropods of Arkansas with Emphasis on Certain Insect Groups and Diplopoda A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology by Derek Hennen Marietta College Bachelor of Science in Biology, 2012 December 2015 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Dr. Ashley P.G. Dowling Thesis Director ___________________________________ Dr. Frederick M. Stephen Committee Member ___________________________________ Dr. John David Willson Committee Member Abstract Endemic arthropods of Arkansas were sampled and their nomenclature and distributions were updated. The Arkansas endemic species list is updated to 121 species, including 16 species of millipedes. A study of the millipedes of Arkansas was undertaken, and resulted in the first checklist and key to all millipede species in the state. 68 species are known from Arkansas, including the genera Cylindroiulus and Polydesmus. The first state records for Ophyiulus pilosus, Cylindroiulus sp., and Ptyoiulus coveanus are reported, and new county records are reported for 16 species. This represents the first key to a state's species since 1980, and the first millipede checklist for a state since 2002. A study of the circadian rhythms of leaf litter arthropods via leaf litter collection methods was undertaken as well, and resulted in the collection of over 8,000 specimens. Three time periods, 6 AM (dawn), daylight, and darkness hours were identified as important to collecting abundance and diversity, and general circadian rhythm data on selected arthropod groups, including the Myriapoda, Formicidae, Staphylinidae, Carabidae, Curculionidae, and other Coleoptera families were reported and found to agree with similar data collected from pitfall trap studies. Acknowledgements Thanks are extended to my thesis committee for their help in the planning and execution of my projects, and for their helpful comments strengthening drafts of this thesis. I would also like to thank the Department of Entomology and its faculty, staff, and graduate students, particularly Clinton Trammel, Amber Tripodi, Joseph O'Neill, Sim Barrow, Fredericka Hamilton, Mark Janowiecki, Michael Skvarla, Danielle Fisher, and Ray Fisher. I also thank Jacqueline Guzy of the Department of Biology, and Joseph deSisto of the University of Connecticut Department of Biology, for their extraordinary help. A special thanks goes to Dr. Rowland Shelley, for enormous assistance in learning the taxonomy of millipedes, his identification of some specimens, and the generous gift of his time. I would also like to thank Dr. Bill Shear for his identification of some specimens and lending his helpful knowledge about the Chordeumatida. Table of Contents I. Introduction..........................................................................................................................1 II. Updates and Corrections to the Arkansas Endemic Fauna with a Focus on Myriapoda and Araneae................................................................................................................................4 A. Background..........................................................................................................................4 B. Methods................................................................................................................................8 C. Results..................................................................................................................................8 D. Discussion..........................................................................................................................19 E. References..........................................................................................................................19 III. A Review of the Millipedes (Arthropoda: Diplopoda) of Arkansas, with Keys to the State Fauna..................................................................................................................................23 A. Background........................................................................................................................23 B. Methods..............................................................................................................................27 C. Results................................................................................................................................28 i. Key to Arkansas Millipede Species...................................................................................29 ii. Species Accounts.............................................................................................................102 D. Discussion........................................................................................................................183 E. References........................................................................................................................185 IV. Circadian Rhythms of Leaf Litter Arthropods in a Temperate Deciduous Forest...........195 A. Background.....................................................................................................................195 B. Methods...........................................................................................................................197 C. Results.............................................................................................................................200 D. Discussion........................................................................................................................210 E. References........................................................................................................................217 V. Conclusions......................................................................................................................219 I. Introduction This project was undertaken as part of the Dowling Lab's continuing investigations of leaf litter arthropods in the western ecoregions of Arkansas, and is composed of three parts: an update to the list of known Arkansas endemic fauna, a first synopsis of all millipede species found in Arkansas, and an examination of day-night activity cycles of selected arthropod groups (particularly Myriapoda, Coleoptera, and Formicidae). Field work for these projects took place between July 2013 and June 2015, and most field work took place in western Arkansas, based on previously identified areas of interest. The diverse ecoregions found in the state contribute to its biodiverse assemblage of organisms (Robison & Allen 1995). The Interior Highlands region (namely the Ozark and Ouachita Mountains) has been previously identified as an area of high endemism (that is, organisms being found in only one geographic area), due to its place in geological history as glacial refugia (Robison & Allen 1995). The Interior Highlands have stood above surrounding ocean water for the past approximately 310 million years (Robison & Allen 1995), providing habitat for many organisms even while surrounding areas underwent glaciation or were covered in water. The region was also connected to the Appalachian Mountains during the Pennsylvanian era (Robison & Allen 1995), and this connection is seen in the genetic relationships of some organisms, such as millipedes and beetles. Previous work on the endemic flora and fauna of Arkansas informed this study, the most important of which was Robison & Allen's (1995) publication, which summarized earlier work by Allen (see Allen 1988, 1990) and expanded on the biogeographical significance of endemism in the Interior Highlands. Updates by Robison et al (2008) and McAllister et al (2009) refined the list further to include changes in nomenclature and additions and deletions of species. These 1 updates corrected some past mistakes, but lacked up-to-date information on the Myriapoda: no centipedes were included, and nomenclature in the Diplopoda contained errors. My work corrects these problems, and adds new species to the list. Knowledge of the millipedes of Arkansas is relatively good compared to other states in the U.S., but is scattered throughout the literature. The first attempt at listing the species in Arkansas was by Bollman (1887), in a short preliminary list. Later studies by Causey (see references) resulted in the collection and description of many species (though many were later synonymized), which gave useful distribution information. Concerted collecting and a series of papers by McAllister & Shelley
Recommended publications
  • The Phylogeny of Ptiliidae (Coleoptera: Staphylinoidea) – the Smallest Beetles and Their Evolutionary Transformations
    77 (3): 433 – 455 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. The phylogeny of Ptiliidae (Coleoptera: Staphylinoidea) – the smallest beetles and their evolutionary transformations ,1, 2 3 4 Alexey A. Polilov* , Ignacio Ribera , Margarita I. Yavorskaya , Anabela Cardoso 3, Vasily V. Grebennikov 5 & Rolf G. Beutel 4 1 Department of Entomology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia; Alexey A. Polilov * [polilov@gmail. com] — 2 Joint Russian-Vietnamese Tropical Research and Technological Center, Hanoi, Vietnam — 3 Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; Ignacio Ribera [[email protected]]; Anabela Cardoso [[email protected]] — 4 Institut für Zoologie und Evolutionsforschung, FSU Jena, Jena, Germany; Margarita I. Yavorskaya [[email protected]]; Rolf G. Beutel [[email protected]] — 5 Canadian Food Inspection Agency, Ottawa, Canada; Vasily V. Grebennikov [[email protected]] — * Cor- responding author Accepted on November 13, 2019. Published online at www.senckenberg.de/arthropod-systematics on December 06, 2019. Published in print on December 20, 2019. Editors in charge: Martin Fikáček & Klaus-Dieter Klass. Abstract. The smallest beetles and the smallest non-parasitic insects belong to the staphylinoid family Ptiliidae. Their adult body length can be as small as 0.325 mm and is generally smaller than 1 mm. Here we address the phylogenetic relationships within the family using formal analyses of adult morphological characters and molecular data, and also a combination of both for the frst time. Strongly supported clades are Ptiliidae + Hydraenidae, Ptiliidae, Ptiliidae excl. Nossidium, Motschulskium and Sindosium, Nanosellini, and a clade comprising Acrotrichis, Smicrus, Nephanes and Baeocrara. A group comprising Actidium, Oligella and Micridium + Ptilium is also likely monophy- letic.
    [Show full text]
  • Ataenius Heinekeni Wollatson, 1894 (Insecta: Coleoptera: Aphodiinae)
    (A. heinekeni) Ataenius heinekeni Wollatson, 1894 (Insecta: Coleoptera: Aphodiinae) By: Edrick Lugo Millán & Verónica Acevedo Ramírez, Juliana Cardona, Nico Franz Geographic Range: Bahamas (Andros), Barbados (probably introduced), Cuba, Hispaniola, Puerto Rico (Quebradillas- east of Lago Guajataca, Bayamón, Mayagüez), St. Thomas. USA (SC-FLTX), Mexico to Brazil, introduced to Ascension and Madeira islands. Habitat: A. heinekeni beetles were beaten from leaves, collected under leaves and logs on hard ground, under live-oak trees, on old rice-field dams, under roadside debris and at coastal coppice trap. (Jerath,1960). They are mainly found in animal dung and decaying material. Physical Description: Ataenius is distinguished from other genera of the Eupariini by a combination of characters, among them head narrower than pronotum, anterior clypeus visible from above, pronotum laterally without denticles and at most sparsely to moderately ciliate, sides of pronotum not explanate, elytra often with basal margination, front tibiae with slanted anterior margin, middle and hind tibiae not flattened, uniformly wider from base, hind tibiae straight with outer apical angle spiniformly prolonged, tarsi normal with first segment often as long as the following three segments combined (SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY, no 154). Length 4.3.-5.5 mm. Usually reddish-brown to black, few with color patterns, some dorsally setose.. Head moderately convex, surface smooth, granulate, wrinkled, or rugose. Abdominal fluting is distinct. External sexual dimorphisms are subtle, if present. Life Stages: The life cycle of Ataenius beetles is not well known but apparently they are humus feeders in the soil, with a few species attracted to decaying vegetation and to animal dung.
    [Show full text]
  • A New Genus of the Millipede Tribe Brachyiulini (Diplopoda: Julida: Julidae) from the Aegean Region
    European Journal of Taxonomy 70: 1-12 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2013.70 www.europeanjournaloftaxonomy.eu 2013 · Lazányi E. & Vagalinski B. This work is licensed under a Creative Commons Attribution 3.0 License. Research article urn:lsid:zoobank.org:pub:5E23F454-2A68-42F6-86FB-7D9952B2FE7B A new genus of the millipede tribe Brachyiulini (Diplopoda: Julida: Julidae) from the Aegean region Eszter LAZÁNYI1,4 & Boyan VAGALINSKI2,3,5 1 Corresponding author: Department of Zoology, Hungarian Natural History Museum, Baross u. 13, H-1088 Budapest, Hungary. E-mail: [email protected] 2 Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria. E-mail: [email protected] 3 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Yurii Gagarin Street, 1113, Sofia, Bulgaria. 4 urn:lsid:zoobank.org:author:02DB48F1-624C-4435-AF85-FA87168CD85A 5 urn:lsid:zoobank.org:author:973B8725-039E-4F29-8D73-96A7F52CF934 Abstract. A new genus of the julid tribe Brachyiulini, Enghophyllum gen. nov., is described, comprising two species from Greece. The type-species, E. naxium (Verhoeff, 1901) comb. nov. (ex Megaphyllum Verhoeff, 1894), appears to be rather widespread in the Aegean: it is known from Antiparos Island and Naxos Island (the type locality), both in the Cyclades, as well as East Mavri Islet, Dodecanese Archipelago (new record). The vulva of E. naxium is described for the first time. In addition,E. sifnium gen. et sp. nov. is described based on a single adult male from Sifnos Island, Cyclades. The new genus is distinct from other genera of the Brachyiulini mainly by its peculiar gonopod structure, apparently disjunct and at least mostly apomorphous: (1) promeres broad, shield-like, in situ protruding mostly posteriad, completely covering the opisthomeres and gonopodal sinus; (2) transverse muscles and coxal apodemes of promere fully reduced; (3) opisthomere with three differentiated processes, i.e., lateral, basal posterior and apical posterior; (4) solenomere rather simple, tubular.
    [Show full text]
  • Huertas Familiares Y Comunitarias: Cultivando Soberanía Alimentaria
    Huertas familiares y comunitarias: cultivando soberanía alimentaria José Tomás Ibarra, Julián Caviedes, Antonia Barreau y Natalia Pessa editores Huertas familiares y comunitarias: cultivando soberanía alimentaria EDICIONES UNIVERSIDAD CATÓLICA DE CHILE Vicerrectoría de Comunicaciones Av. Libertador Bernardo O’Higgins 390, Santiago, Chile [email protected] www.ediciones.uc.cl FUNDACIÓN PARA LA INNOVACIÓN AGRARIA (FIA) HUERTAS FAMILIARES Y COMUNITARIAS: CULTIVANDO SOBERANÍA ALIMENTARIA José Tomás Ibarra, Julián Caviedes, Antonia Barreau y Natalia Pessa Registro de Propiedad Intelectual © Inscripción Nº 295.379 Derechos reservados Enero 2019, Villarrica, Chile. ISBN N° 978-956-14-2331-2 Ilustraciones: Belén Chávez Diseño: Leyla Musleh Impresor: Aimpresores CIP-Pontificia Universidad Católica de Chile Huertas familiares y comunitarias: cultivando soberanía alimentaria / José Tomás Ibarra [y otros], editores. Incluye bibliografías. 1. Huertos 2. Explotación agrícola familiar I. Ibarra Eliessetch, José Tomás, editor. 2018 635 + dc 23 RDA Cómo citar este libro: Ibarra, J. T., J. Caviedes, A. Barreau & N. Pessa (Eds). 2019. Huertas familiares y comunitarias: cultivando soberanía alimentaria. Ediciones Universidad Católica de Chile, Santiago, Chile. 228 pp. La presente publicación reúne una serie de experiencias relacionadas a la agricultura familiar y a huertas familiares y comunitarias en Chile. Este trabajo se desarrolló en el marco del proyecto “Huerta andina de La Araucanía como patrimonio biocultural: un enfoque agroecológico y agroturístico”
    [Show full text]
  • Larvae of Ataenius (Coleoptera: Scarabaeidae: Aphodiinae
    Eur. J. Entomol. 96: 57—68, 1999 ISSN 1210-5759 Larvae ofAtaenius (Coleóptera: Scarabaeidae: Aphodiinae): Generic characteristics and species descriptions José R. VERDÚ and E duardo GALANTE Departamento de Ciencias Ambientales y Recursos Naturales, Universidad de Alicante, E-03080 Alicante, Spain Key words.Scarabaeidae, Aphodiinae, Ataenius, larvae, description, key, dung beetles, turfgrass beetles, taxonomy Abstract. We compared the larval morphology of the genera Ataenius and Aphodius. The third larval instars of five Ataenius species: Ataenius opatrinus Harold, A. picinus Harold, A. platensis (Blanchard), A. simulator Harold and A. strigicauda Bates, are described or redescribed and illustrated. The most important morphological characteristics of the larvae of Ataenius are found in the respiratory plate of thoracic spiracle, the setation of venter of the last abdominal segment, the setation of the epicranial region and the morphology of the epipharynx. A key to larvae of the known species of Ataenius is included. INTRODUCTION del Sacramento (Uruguay). For the purpose of laboratory studies, a total of 10 to 20 adult specimens of each species were The genus Ataenius Harold comprises 320 species, of kept in cylindrical plastic breeding cages (20 cm high, 10 cm which 228 species are found in America, 49 in Australia, wide) with moist soil and dry cow dung from which they had 11 in Africa, 6 in East Asia, 2 in Madagascar, and single been collected. The lid was an opening (6 cm diameter) covered species in India, Sri Lanka, Turkestan, Japan, Hawaii and with gauze screen. These breeding cages were maintained in an Sumatra, respectively (Dellacasa, 1987). Despite the rich­ environmental chamber at 25 : 20°C (L : D), 80 ± 5% RH, with ness of this genus and its worldwide distribution, the lar­ a photoperiod of 15 : 9 (L : D).
    [Show full text]
  • Quick Guide for the Identification Of
    Quick Guide for the Identification of Maryland Scarabaeoidea Mallory Hagadorn Dr. Dana L. Price Department of Biological Sciences Salisbury University This document is a pictorial reference of Maryland Scarabaeoidea genera (and sometimes species) that was created to expedite the identification of Maryland Scarabs. Our current understanding of Maryland Scarabs comes from “An Annotated Checklist of the Scarabaeoidea (Coleoptera) of Maryland” (Staines 1984). Staines reported 266 species and subspecies using literature and review of several Maryland Museums. Dr. Price and her research students are currently conducting a bioinventory of Maryland Scarabs that will be used to create a “Taxonomic Guide to the Scarabaeoidea of Maryland”. This will include dichotomous keys to family and species based on historical reports and collections from all 23 counties in Maryland. This document should be cited as: Hagadorn, M.A. and D.L. Price. 2012. Quick Guide for the Identification of Maryland Scarabaeoidea. Salisbury University. Pp. 54. Questions regarding this document should be sent to: Dr. Dana L. Price - [email protected] **All pictures within are linked to their copyright holder. Table of Contents Families of Scarabaeoidea of Maryland……………………………………... 6 Geotrupidae……………………………………………………………………. 7 Subfamily Bolboceratinae……………………………………………… 7 Genus Bolbocerosoma………………………………………… 7 Genus Eucanthus………………………………………………. 7 Subfamily Geotrupinae………………………………………………… 8 Genus Geotrupes………………………………………………. 8 Genus Odonteus...……………………………………………… 9 Glaphyridae..............................................................................................
    [Show full text]
  • Exploring Phylogenomic Relationships Within Myriapoda: Should High Matrix Occupancy Be the Goal?
    bioRxiv preprint doi: https://doi.org/10.1101/030973; this version posted November 9, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exploring phylogenomic relationships within Myriapoda: should high matrix occupancy be the goal? ROSA FERNÁNDEZ1, GREGORY D. EDGECOMBE2 AND GONZALO GIRIBET1 1Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA 2Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 1 bioRxiv preprint doi: https://doi.org/10.1101/030973; this version posted November 9, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract.—Myriapods are one of the dominant terrestrial arthropod groups including the diverse and familiar centipedes and millipedes. Although molecular evidence has shown that Myriapoda is monophyletic, its internal phylogeny remains contentious and understudied, especially when compared to those of Chelicerata and Hexapoda. Until now, efforts have focused on taxon sampling (e.g., by including a handful of genes in many species) or on maximizing matrix occupancy (e.g., by including hundreds or thousands of genes in just a few species), but a phylogeny maximizing sampling at both levels remains elusive. In this study, we analyzed forty Illumina transcriptomes representing three myriapod classes (Diplopoda, Chilopoda and Symphyla); twenty-five transcriptomes were newly sequenced to maximize representation at the ordinal level in Diplopoda and at the family level in Chilopoda.
    [Show full text]
  • A New Species of Illacme Cook & Loomis, 1928
    A peer-reviewed open-access journal ZooKeys 626: 1–43A new (2016) species of Illacme Cook and Loomis, 1928 from Sequoia National Park... 1 doi: 10.3897/zookeys.626.9681 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida) Paul E. Marek1, Jean K. Krejca2, William A. Shear3 1 Virginia Polytechnic Institute and State University, Department of Entomology, Price Hall, Blacksburg, Virginia, USA 2 Zara Environmental LLC, 1707 W FM 1626, Manchaca, Texas, USA 3 Hampden-Sydney College, Department of Biology, Gilmer Hall, Hampden-Sydney, Virginia, USA Corresponding author: Paul E. Marek ([email protected]) Academic editor: R. Mesibov | Received 25 July 2016 | Accepted 19 September 2016 | Published 20 October 2016 http://zoobank.org/36E16503-BC2B-4D92-982E-FC2088094C93 Citation: Marek PE, Krejca JK, Shear WA (2016) A new species of Illacme Cook & Loomis, 1928 from Sequoia National Park, California, with a world catalog of the Siphonorhinidae (Diplopoda, Siphonophorida). ZooKeys 626: 1–43. doi: 10.3897/zookeys.626.9681 Abstract Members of the family Siphonorhinidae Cook, 1895 are thread-like eyeless millipedes that possess an astounding number of legs, including one individual with 750. Due to their cryptic lifestyle, rarity in natural history collections, and sporadic study over the last century, the family has an unclear phylogenetic placement, and intrafamilial relationships remain unknown. Here we report the discovery of a second spe- cies of Illacme, a millipede genus notable for possessing the greatest number of legs of any known animal on the planet.
    [Show full text]
  • Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding
    Ordinal-Level Phylogenomics of the Arthropod Class Diplopoda (Millipedes) Based on an Analysis of 221 Nuclear Protein-Coding Loci Generated Using Next- Generation Sequence Analyses Michael S. Brewer1,2*, Jason E. Bond3 1 Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America, 2 Department of Biology, East Carolina University, Greenville, North Carolina, United States of America, 3 Department of Biological Sciences and Auburn University Museum of Natural History, Auburn University, Auburn, Alabama, United States of America Abstract Background: The ancient and diverse, yet understudied arthropod class Diplopoda, the millipedes, has a muddled taxonomic history. Despite having a cosmopolitan distribution and a number of unique and interesting characteristics, the group has received relatively little attention; interest in millipede systematics is low compared to taxa of comparable diversity. The existing classification of the group comprises 16 orders. Past attempts to reconstruct millipede phylogenies have suffered from a paucity of characters and included too few taxa to confidently resolve relationships and make formal nomenclatural changes. Herein, we reconstruct an ordinal-level phylogeny for the class Diplopoda using the largest character set ever assembled for the group. Methods: Transcriptomic sequences were obtained from exemplar taxa representing much of the diversity of millipede orders using second-generation (i.e., next-generation or high-throughput) sequencing. These data were subject to rigorous orthology selection and phylogenetic dataset optimization and then used to reconstruct phylogenies employing Bayesian inference and maximum likelihood optimality criteria. Ancestral reconstructions of sperm transfer appendage development (gonopods), presence of lateral defense secretion pores (ozopores), and presence of spinnerets were considered.
    [Show full text]
  • Beetles in a Suburban Environment: a New Zealand Case Study. The
    tl n brbn nvrnnt: lnd td tl n brbn nvrnnt: lnd td h Idntt nd tt f Clptr n th ntrl nd dfd hbtt f nfld Alnd (4-8 GKhl . : rh At SI lnt rttn Mnt Albrt rh Cntr rvt Alnd lnd • SI lnt rttn prt • EW EAA EAME O SCIEIIC A IUSIA ESEAC 199 O Ο Ν Ε W Ε Ν ttr Grnt rd Τ Ε Ρ Ο Ι Ο Τ ie wi e suo o a oey Sciece eseac Ga om e ew eaa oey Gas oa is suo is gaeuy ackowege Ρ EW EAA SI ' EAME O lnt SCIEIIC A rttn IUSIA Wāhn ESEAC Mn p Makig Sciece Wok o ew eaa KUSCE G eees i a suua eiome a ew eaa case suy e ieiy a saus o Coeoea i e aua a moiie aias o yie Aucka (197-199 / G Kusce — Aucka SI 199 (SI a oecio eo ISS 11-1 ; o3 IS -77-59- I ie II Seies UC 5957(93111 © Cow Coyig uise y SI a oecio M Ae eseac Cee iae ag Aucka ew eaa eceme 199 ie y Geea iig Seices eso ew eaa Etiam pristina in aua Asο i a aua seig summa securitas et futura sweet tranquility and nature ., OISIECE e oe-eeig emoyci eee ioycus uuus (ou o is aie ooca os kaikaea (acycaus acyioies om e yie eee suey aea Aucka ew eaa e wie gaues o e eee ae oe cuses a ass ees is eee as a eic saus o uike a o e uaaa (Seoo as ossi eiece sows a e weei gou was iig i uassic imes way ack i e ea o e iosaus a gymosems moe a 1 miio yeas ago OEWO As a small boy in the 1930s I used to collect butterflies on the South Downs in southern England.
    [Show full text]
  • Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis
    Some Aspects of the Ecology of Millipedes (Diplopoda) Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Monica A. Farfan, B.S. Graduate Program in Evolution, Ecology, and Organismal Biology The Ohio State University 2010 Thesis Committee: Hans Klompen, Advisor John W. Wenzel Andrew Michel Copyright by Monica A. Farfan 2010 Abstract The focus of this thesis is the ecology of invasive millipedes (Diplopoda) in the family Julidae. This particular group of millipedes are thought to be introduced into North America from Europe and are now widely found in many urban, anthropogenic habitats in the U.S. Why are these animals such effective colonizers and why do they seem to be mostly present in anthropogenic habitats? In a review of the literature addressing the role of millipedes in nutrient cycling, the interactions of millipedes and communities of fungi and bacteria are discussed. The presence of millipedes stimulates fungal growth while fungal hyphae and bacteria positively effect feeding intensity and nutrient assimilation efficiency in millipedes. Millipedes may also utilize enzymes from these organisms. In a continuation of the study of the ecology of the family Julidae, a comparative study was completed on mites associated with millipedes in the family Julidae in eastern North America and the United Kingdom. The goals of this study were: 1. To establish what mites are present on these millipedes in North America 2. To see if this fauna is the same as in Europe 3. To examine host association patterns looking specifically for host or habitat specificity.
    [Show full text]
  • Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ScholarWorks@UARK Journal of the Arkansas Academy of Science Volume 56 Article 16 2002 Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex. II. Distributional Records for Some Species of Western and Central Arkansas and Easter and Southeastern Oklahoma Chris T. McAllister Texas A&M University-Texarkana Rowland M. Shelley North Carolina State Museum of Natural Sciences James T. McAllister III W. T. White High School Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation McAllister, Chris T.; Shelley, Rowland M.; and McAllister, James T. III (2002) "Millipeds (Arthropoda: Diplopoda) of the Ark-La- Tex. II. Distributional Records for Some Species of Western and Central Arkansas and Easter and Southeastern Oklahoma," Journal of the Arkansas Academy of Science: Vol. 56 , Article 16. Available at: http://scholarworks.uark.edu/jaas/vol56/iss1/16 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected]. Journal of the Arkansas Academy of Science, Vol.
    [Show full text]