Analysis of the Characteristics in a Typical Thunderstorm Gale Event in South China*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Fujita Scale Is Used to Rate the Intensity of a Tornado by Examining the Damage Caused by the Tornado After It Has Passed Over a Man-Made Structure
The Fujita Scale is used to rate the intensity of a tornado by examining the damage caused by the tornado after it has passed over a man-made structure. The "Percentage of All Tornadoes 1950- 1994" pie chart reveals that the vast majority of tornadoes are either weak or do damage that can only be attributed to a weak tornado. Only a small percentage of tornadoes can be correctly classed as violent. Such a chart became possible only after the acceptance of the Fujita Scale as the official classification system for tornado damage. It is quite possible that an even higher percentage of all tornadoes are weak. Each year the National Weather Service documents about 1000 tornado touchdowns in the United States. There is evidence that 1000 or more additional weak tornadoes may occur each year and go completely undocumented. The "Percentage of Tornado-Related Deaths 1950-1994" pie chart shows that while violent tornadoes are few in number, they cause a very high percentage of tornado-related deaths. The Tornado Project has analyzed data prior to 1950, and found that the percentage of deaths from violent tornadoes was even greater in the past. This is because the death tolls prior to the introduction of the forecasting/awareness programs were enormous: 695 dead(Missouri-Illinois-Indiana, March 18, 1925); 317 dead(Natchez, Mississippi, May 7, 1840);.255 dead(St. Louis, Missouri and East St. Louis, Illinois, May 27, 1896); 216 dead(Tupelo, Mississippi, April 5, 1936); 203 dead(Gainesville, GA, April 6, 1936). In more recent times, no single tornado has killed more than 50 people since 1971. -
Temperature Change and Its Effects on the Great Lakes Climate
Temperature Change and its Effects on the Great Lake’s Climate. Ross Ellet Professor: Matthew Huber April 28, 2005 Temperature change and its effects on the Great Lakes climate. The Great Lakes create a very unique sub climate zone that is unlike most areas in the world. The Great Lakes act as a climate moderator. They contain some of the biggest fresh water lakes in the world. This allows temperature moderation to occur. Typically the lakes keep the eastward coastlines more humid. Since there is more humidity, clouds are more frequent. Thus the temperature fluctuation on a daily basis is a little less than areas not affected by the Great Lakes. This in turn affects the precipitation that falls, when it falls, and where it falls. In the winter time the cold air masses blow over the relatively warm water which creates lake-effect snowfall. This is a very important social and economical impact the climate has on the Great Lakes region. So what happens when a climate change occurs in this area? What types of impacts will it have on the Great Lakes region? Will it be any different than those areas directly west of the Great Lakes? Theory and Research Aral Sea In order to understand climate change in the Great Lakes, first one must understand the dynamics of what is already occurring. The Great Lakes is unlike most lakes in the world due to its size, power, and potential to affect climate. However, there is another body of water that is just as significant. The Aral Sea, which is located in Uzbekistan and Kazakhstan, is an important tool to see how much a large body of water affects climate. -
Analysis of the Characteristics in a Strong Convective Weather Process
Analysis of the characteristics in a strong convective weather process in China Li Zuxian Huang Xiaoyu Deng Zhaoping Xu Lin Hunan Meteorological Observatory, Changsha, China, 410007 ABSTRACT Introduction From the mid-70s, through the double Doppler By using the numerical forecasting product, the weather radar observation to understand thunderstorm convention, the automatic weather station and system's internal structure, especially the system Doppler weather radar materials, it analyzed interior's three dimensional wind field (Ray et al.1975), Hunan strong convective weather process on April 4, discovered particularly the hail storms wind field has 2006. The result indicated: The preliminary weather the cyclone type circulation characteristic, the returns to warmer continually, and accumulate ascendant current located at the weak echo region. massive unstable energies, the vertical wind shear, Chisholm and Renick (1972) and Browning(1977) the power, the thermal energy and the water vapor divides into the multi-monomer storm and the super condition are advantageous to the strong convection monomer storm the storm through using the past storm weather production; During this process, ground and research and the recognition of the storm power and the upper air temperature, the humidity, the kinetic the structure of Micro physics ; The storm has four energy perturbation quantity, the ground temperature stages: initial development period, the beginning of perturbation is bigger than each level upper air of echo characteristic, mature stage, dissipation stage. the temperature perturbation obviously, it explained Klemp(1987) reorganizes many year findings, showing that the ground thermal energy function is bigger that the Mesoscale cyclone in the fierce convection than that of the high level; In the disturbance storm is the horizontal direction scroll which cuts by moisture field, transfers the weather to have the the environment vertical wind forms does after the region each level humidity is smaller than the convection development reverse creates. -
Supplemental Information
Supplemental information Table S1 Sample information for the 36 Bactrocera minax populations and 8 Bactrocera tsuneonis populations used in this study Species Collection site Code Latitude Longitude Accession number B. minax Shimen County, Changde SM 29.6536°N 111.0646°E MK121987 - City, Hunan Province MK122016 Hongjiang County, HJ 27.2104°N 109.7884°E MK122052 - Huaihua City, Hunan MK122111 Province 27.2208°N 109.7694°E MK122112 - MK122144 Jingzhou Miao and Dong JZ 26.6774°N 109.7341°E MK122145 - Autonomous County, MK122174 Huaihua City, Hunan Province Mayang Miao MY 27.8036°N 109.8247°E MK122175 - Autonomous County, MK122204 Huaihua City, Hunan Province Luodian county, Qiannan LD 25.3426°N 106.6638°E MK124218 - Buyi and Miao MK124245 Autonomous Prefecture, Guizhou Province Dongkou County, DK 27.0806°N 110.7209°E MK122205 - Shaoyang City, Hunan MK122234 Province Shaodong County, SD 27.2478°N 111.8964°E MK122235 - Shaoyang City, Hunan MK122264 Province 27.2056°N 111.8245°E MK122265 - MK122284 Xinning County, XN 26.4652°N 110.7256°E MK122022 - Shaoyang City,Hunan MK122051 Province 26.5387°N 110.7586°E MK122285 - MK122298 Baojing County, Xiangxi BJ 28.6154°N 109.4081°E MK122299 - Tujia and Miao MK122328 Autonomous Prefecture, Hunan Province 28.2802°N 109.4581°E MK122329 - MK122358 Guzhang County, GZ 28.6171°N 109.9508°E MK122359 - Xiangxi Tujia and Miao MK122388 Autonomous Prefecture, Hunan Province Luxi County, Xiangxi LX 28.2341°N 110.0571°E MK122389 - Tujia and Miao MK122407 Autonomous Prefecture, Hunan Province Yongshun County, YS 29.0023°N -
Ref. Accweather Weather History)
NOVEMBER WEATHER HISTORY FOR THE 1ST - 30TH AccuWeather Site Address- http://forums.accuweather.com/index.php?showtopic=7074 West Henrico Co. - Glen Allen VA. Site Address- (Ref. AccWeather Weather History) -------------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------------------- AccuWeather.com Forums _ Your Weather Stories / Historical Storms _ Today in Weather History Posted by: BriSr Nov 1 2008, 02:21 PM November 1 MN History 1991 Classes were canceled across the state due to the Halloween Blizzard. Three foot drifts across I-94 from the Twin Cities to St. Cloud. 2000 A brief tornado touched down 2 miles east and southeast of Prinsburg in Kandiyohi county. U.S. History # 1861 - A hurricane near Cape Hatteras, NC, battered a Union fleet of ships attacking Carolina ports, and produced high tides and high winds in New York State and New England. (David Ludlum) # 1966 - Santa Anna winds fanned fires, and brought record November heat to parts of coastal California. November records included 86 degrees at San Francisco, 97 degrees at San Diego, and 101 degrees at the International airport in Los Angeles. Fires claimed the lives of at least sixteen firefighters. (The Weather Channel) # 1968 - A tornado touched down west of Winslow, AZ, but did little damage in an uninhabited area. (The Weather Channel) # 1987 - Early morning thunderstorms in central Arizona produced hail an inch in diameter at Williams and Gila Bend, and drenched Payson with 1.86 inches of rain. Hannagan Meadows AZ, meanwhile, was blanketed with three inches of snow. Unseasonably warm weather prevailed across the Ohio Valley. Afternoon highs of 76 degrees at Beckley WV, 77 degrees at Bluefield WV, and 83 degrees at Lexington KY were records for the month of November. -
長沙遠大住宅工業集團股份有限公司 Changsha Broad Homes Industrial Group Co., Ltd
長沙遠大住宅工業集團股份有限公司 Changsha Broad Homes Industrial Group Co., Ltd. (A joint stock company incorporated in the People’s Republic of China with limited liability) Stock Code: 2163 GLOBAL OFFERING Joint Sponsors Joint Global Coordinators Joint Bookrunners and Joint Lead Managers IMPORTANT IMPORTANT: If you are in any doubt about the contents of this prospectus, you should obtain independent professional advice. Changsha Broad Homes Industrial Group Co., Ltd. 長沙遠大住宅工業集團股份有限公司 (A joint stock company incorporated in the People’s Republic of China with limited liability) Number of Offer Shares under : 121,868,000 H Shares (subject to the Over-allotment the Global Offering Option) Number of Hong Kong Offer Shares : 12,187,200 H Shares (subject to adjustment) Number of International Offer Shares : 109,680,800 H Shares (subject to adjustment and the Over-allotment Option) Maximum Offer Price : HK$12.48 per Offer Share, plus brokerage of 1.0%, SFC transaction levy of 0.0027% and Hong Kong Stock Exchange trading fee of 0.005% (payable in full on application in Hong Kong dollars and subject to refund) Nominal value : RMB1.00 per H Share Stock code : 2163 Joint Sponsors Joint Global Coordinators Joint Bookrunners and Joint Lead Managers Hong Kong Exchanges and Clearing Limited, The Stock Exchange of Hong Kong Limited and Hong Kong Securities Clearing Company Limited take no responsibility for the contents of this prospectus, make no representation as to the accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this prospectus. -
Pdf | 267.25 Kb
China: Floods "An estimated 255,300 people are reported to be IFRC Information Bulletin No. 1 homeless in China's Hunan province alone as a result of Issued 3 June 2005 severe flooding." GLIDE: FL-2005-000081-CHN Nei Mongol SITUATION Shijiazhuang Taiyuan Severe flooding destroyed around 30,000 homes and Yinchuan damaged thousands more. Rural farmers in Hunan, Ningxia Hebei Sichuan and Guizhou provinces have seen their crops, Shaanxi Shanxi Hui livestock, homes and belongings washed away by floods Xining Lanzhou triggered by heavy rains which began on Tuesday 31 May. Gansu ACTION Xi'an Luoyang Zhengzhou RCSC branch has distributed quilts, tents and disinfectant to flood victims. The branch is continuing to Henan run further checks on the disaster conditions and death CCHHIINNAA Anhui toll and has requested quilts, rice, tents, clothing and disinfectant from the RCSC’s headquarters-based relief Hubei division in Beijing. Sichuan Chengdu Dead: 47 Wuhan Map projection: Geographic Missing: 53 Map data source: ESRI. Xizang Dead: 4 Chongqing 590,000 people Code: IFRC Bulletin No. 01/2005 Missing: 5 Chongqing in need of food Hunan Yiyang Nanchang Neighbouring Countries Loudi Changsha Affected Provinces Dead: 17 INDIA Provinces Missing: 4 Xiangxi Huaihua Tujia-Miao Jiangxi Guizhou Worst Affected Prefectures Shaoyang Guiyang Populated Places Kunming Yunnan Guangxi Zhuang Guangdong Guangzhou Nanning Macau MYANMAR Fangcheng Gang Hong Kong VIETNAM LAO 0 100 200 300 Produced by the ReliefWeb Map Centre Km P.D.R Office for the Coordination of Humanitarian Affairs The names shown and the designations used on this map do not imply official endorsement or acceptance by the United Nations. -
Midwest to Northeast U.S. Winter Storm 12-13 March, 2014 By: Kwan-Yin Kong, WPC Meteorologist
Midwest to Northeast U.S. Winter Storm 12-13 March, 2014 By: Kwan-yin Kong, WPC meteorologist Meteorological Overview: A fast-moving winter storm brought a swath of significant snowfall from the Midwest eastward through the lower Great Lakes and across northern New England during the second week of March 2014 (fig. 1 and 2). The storm was a consequence of baroclinic development as a progressive upper-level trough from the Pacific merged with a shortwave trough dropping southeastward from central Canada. The surface low pressure center of the storm can be tracked back to the foothills in northern Wyoming on 10 March when the Pacific upper trough began to move off the Rockies into the High Plains (fig. 1). At this time, the upper-level shortwave trough was beginning to head southward from central Canada but was still quite far away from the surface low center. With a lack of upper-level support, the surface low deepened very slowly along a nearly stationary front while moving east-southeastward across the central plains. By 11 March, the shortwave trough and the associated cold air mass was moving into the Upper Midwest and approached the low pressure system in the central plains (fig. 3a, b). As the two systems merged over the Midwest early on 12 March, a new low pressure center formed near the Illinois-Indiana border and began to intensify rapidly under a favorable baroclinic environment (fig. 3c, d). Precipitation with embedded thunderstorms formed north of the surface low and became heavy at times as the coverage expanded rapidly to the east-northeast into the lower Great Lakes and New England during the day on 12 March (fig. -
The Urban Flood Control Project in the Mountainous Area in Hunan Province Loaned by the Asian Development Bank
The Urban Flood Control Project in the Mountainous Area in Hunan Province Loaned by the Asian Development Bank The External Resettlement Monitoring & Assessment Report (Lengshuijiang City, Lianyuan City, Shuangfeng County, Shaoyang City, Shaodong County, Longhui County, Jiangyong County, Xintian County, Jianghua County, Qiyang County, Ningyuan County, Chenzhou City, Zhuzhou City, Liling City, Zhuzhou County and Youxian County) No.1, 2008 Total No. 1 Hunan Water & Electricity Consulting Corporation (HWECC) September, 2008 Approved by: Wang Hengyang Reviewed by: Long Xiachu Prepared by: Long Xiachu, Wei Riwen 2 Contents 1. Introduction 2. Project Outline 2.1 Project Outline 2.2 Resettlement Outline 3. Establishment and Operation of Resettlement Organizations 3.1 Organization Arrangement 3.2 Organization Operation 4. Project Implementation Progress 4.1 Jiangyong County 4.2 Chenzhou City 5. Resettlement Implementation Progress 5.1 Resettlement Implementation Schedule 5.2 Resettlement Policy and Compensation Standards 5.3 Progress of Land Acquisition 5.4 Progress of Resettlement Arrangement 5.5 Removal Progress of Enterprises and Institutions 5.6 Progress of Resettlement Area Construction 5.7 Arrival and Payment of the Resettlement Fund 6. Psychology and Complaint of the Resettled People 6.1 Complaint Channel 6.2 Complaint Procedures 7. Public Participation, Consultation and Information Publicizing 7.1 Jiangyong County 7.2 Chenzhou City 8. Existed Problems and Suggestions 3 1. Introduction The Urban Flood Control Project in the Mountainous -
Cui Chenzhou, Zhao Yongheng, CAO Zihuang, Kubánek Petr
Curriculum Vitae Chenzhou CUI National Astronomical Observatories, Chinese Academy of Sciences (NAOC) 20A Datun Road, Chaoyang District Beijing 100012, China Tel: 86-10-64872500 Fax: 86-10-64878240 Email: [email protected] http://www.lamost.org/~cb/ Personal Information: Gender: Male Date of Birth: January 27, 1976 (Chinese Lunar Calendar) Family Status: Married, one child Nationality: P. R. of China Current Position: Chief Information Officer, Professor, NAOC, 2006.1- Education: Ph.D. in Astrophysics, NAOC, Beijing, 2003.6 Concentrations: Virtual Observatory, Grid Technology, Web Services, Scientific Databases Thesis: System Design of Chinese Virtual Observatory Advisor: Prof. Yongheng ZHAO M.Sc. in Astrophysics, Beijing Astronomical Observatory, Beijing, 2000.6 Concentrations: Astronmical Databasese, Galactic Abundances Thesis: Setup of SAGE Astronomical Database and Statistical Analyses of Galactic Abundances Advisor: Prof. Gang ZHAO B.S.E. in Mechanical Engineering, Hebei University of Technology, Tianjin, 1997.6 Research Interests: Astro-Informatics, Virtual Observatory, Grid Technology, Astronomical Databases, Astronomical Data Center, Data Processing and Analysis, Galactic Structure and Evolution, Stellar Abundance Work Experiences: Professor, NAOC, 2013.2 - Associated Professor, NAOC, 2006.1- 2013.1 Lecturer, NAOC, 2003.6-2005.12 Visiting Experiences: Visiting Scientist, Johns Hopkins University, USA, 2007.11.26-2007.12.24 Lecture, International School for Young Astronomers 2007, International Astronomical Union (IAU), Malaysia, -
April 3, 1974 Super Outbreak Poster
Overview Across Indiana The Super Tornado Outbreak on April 3-4, 1974 was Twenty-one tornadoes affected 46 counties causing the worst tornado outbreak in United States history. one of Indiana’s worst tornado outbreak. Many of these Within a 16-hour period, 148 tornadoes touched down tornadoes traveled at nearly a mile a minute, and across 13 states from the Great Lakes to the Southeast. several were visually observed to have multiple When the storms finally dissipated, 330 people were funnels. killed, over 6,000 were injured, and thousands more The tornado devastation started in Boone county were left homeless. The damage path created by this when a brief F2 tornado touched down around 9:30 am tragic event covered 2,500 miles across the Midwest EST on April 3, 1974. The main event, however, with damage costs totaling around 600 million dollars. commenced in Indiana later that day at 2:20 pm EST Tornado damage at the Monticello court house (left) and throughout and lasted until 8:00 pm EST as 20 additional tornadoes the town of Monticello, IN (right). ripped through the state. Courtesy of the Monticello Herald Journal IN Counties Affected by Tornadoes Among the most destructive Indiana tornados was (Storm Prediction Center, Significant Tornadoes by T.P. Grazulis & the Monticello tornado. This half mile wide F4 tornado Superoutbreak 1974 map by T.T. Fujita) Summary tracked from just northwest of Lafayette through The Super Tornado Outbreak of April 3-4, 1974 Monticello to north of Fort Wayne killing 19 people. It will always be remembered by those who Tornado Strength had a path length of 121 miles which was the longest F0 – Blue witnessed and survived the event. -
Ethnic Minority Development Plan
Ethnic Minority Development Plan May 2018 People’s Republic of China: Hunan Xiangjiang River Watershed Existing Solid Waste Comprehensive Treatment Project Prepared by the ADB-financed Project Management Office of the Lanshan County Government and the Yongzhou City Government for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 30 April 2018) Currency unit – yuan (CNY) CNY1.00 = $0.158 $1.00 = CNY6.3 34 ABBREVIATIONS 3R – reduce, reuse, and recycle ADB – Asian Development Bank ACWF – All China Women’s Federat ion DI – design institute EMDP – ethnic minority development plan EM – ethnic minority EMG – ethnic minority group EMT – ethnic minority township EMAC – ethnic minority autonomous county EMP – environmental management plan EMRA O – Ethnic Minority and Religion Affairs Office ESB – Environment Sanitation Bureau FGD – focus group discussion GDP – gross domestic product GRM – Grievance redress mechanism HH – household HIV – human immunodeficiency virus HPMO – Hunan project management office IA – Implementing agency IP – indigenous pe oples LSSB – Labor and Social Security Bureau MSW – Municipal solid waste PA – Project areas PRC – People’s Republic of China PMO – project management office SPS – Safeguard Policy Statement STI – sexually transmitted infection TA – technic al assistance XRW – Xiangjiang River watershed YME – Yao minority township NOTE In this report, "$" refers to United States dollars. This ethnic minority development plan is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. Your attention is directed to the “terms of use” section of this website. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area.