From the Lower Cretaceous of South Korea and Its Paleobiogeographic Implication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annotated Checklist of Fossil Fishes from the Smoky Hill Chalk of the Niobrara Chalk (Upper Cretaceous) in Kansas
Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 193 ANNOTATED CHECKLIST OF FOSSIL FISHES FROM THE SMOKY HILL CHALK OF THE NIOBRARA CHALK (UPPER CRETACEOUS) IN KANSAS KENSHU SHIMADA1 AND CHRISTOPHER FIELITZ2 1Environmental Science Program and Department of Biological Sciences, DePaul University,2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601;2Department of Biology, Emory & Henry College, P.O. Box 947, Emory, Virginia 24327 Abstract—The Smoky Hill Chalk Member of the Niobrara Chalk is an Upper Cretaceous marine deposit found in Kansas and adjacent states in North America. The rock, which was formed under the Western Interior Sea, has a long history of yielding spectacular fossil marine vertebrates, including fishes. Here, we present an annotated taxo- nomic list of fossil fishes (= non-tetrapod vertebrates) described from the Smoky Hill Chalk based on published records. Our study shows that there are a total of 643 referable paleoichthyological specimens from the Smoky Hill Chalk documented in literature of which 133 belong to chondrichthyans and 510 to osteichthyans. These 643 specimens support the occurrence of a minimum of 70 species, comprising at least 16 chondrichthyans and 54 osteichthyans. Of these 70 species, 44 are represented by type specimens from the Smoky Hill Chalk. However, it must be noted that the fossil record of Niobrara fishes shows evidence of preservation, collecting, and research biases, and that the paleofauna is a time-averaged assemblage over five million years of chalk deposition. -
Cambridge University Press 978-1-107-17944-8 — Evolution And
Cambridge University Press 978-1-107-17944-8 — Evolution and Development of Fishes Edited by Zerina Johanson , Charlie Underwood , Martha Richter Index More Information Index abaxial muscle,33 Alizarin red, 110 arandaspids, 5, 61–62 abdominal muscles, 212 Alizarin red S whole mount staining, 127 Arandaspis, 5, 61, 69, 147 ability to repair fractures, 129 Allenypterus, 253 arcocentra, 192 Acanthodes, 14, 79, 83, 89–90, 104, 105–107, allometric growth, 129 Arctic char, 130 123, 152, 152, 156, 213, 221, 226 alveolar bone, 134 arcualia, 4, 49, 115, 146, 191, 206 Acanthodians, 3, 7, 13–15, 18, 23, 29, 63–65, Alx, 36, 47 areolar calcification, 114 68–69, 75, 79, 82, 84, 87–89, 91, 99, 102, Amdeh Formation, 61 areolar cartilage, 192 104–106, 114, 123, 148–149, 152–153, ameloblasts, 134 areolar mineralisation, 113 156, 160, 189, 192, 195, 198–199, 207, Amia, 154, 185, 190, 193, 258 Areyongalepis,7,64–65 213, 217–218, 220 ammocoete, 30, 40, 51, 56–57, 176, 206, 208, Argentina, 60–61, 67 Acanthodiformes, 14, 68 218 armoured agnathans, 150 Acanthodii, 152 amphiaspids, 5, 27 Arthrodira, 12, 24, 26, 28, 74, 82–84, 86, 194, Acanthomorpha, 20 amphibians, 1, 20, 150, 172, 180–182, 245, 248, 209, 222 Acanthostega, 22, 155–156, 255–258, 260 255–256 arthrodires, 7, 11–13, 22, 28, 71–72, 74–75, Acanthothoraci, 24, 74, 83 amphioxus, 49, 54–55, 124, 145, 155, 157, 159, 80–84, 152, 192, 207, 209, 212–213, 215, Acanthothoracida, 11 206, 224, 243–244, 249–250 219–220 acanthothoracids, 7, 12, 74, 81–82, 211, 215, Amphioxus, 120 Ascl,36 219 Amphystylic, 148 Asiaceratodus,21 -
The Scales of Mesozoic Actinopterygians
Mesozoic Fishes – Systematics and Paleoecology, G. Arratia & G. Viohl (eds.): pp. 83-93, 6 figs. © 1996 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 3-923871–90-2 The scales of Mesozoic actinopterygians Hans-Peter SCHULTZE Abstract Cycloid scales (elasmoid scales with circuli) are a unique character of teleosts above the level of Pholidophorus and Pholidophoroides. Cycloid scales have two layers. A bony layer, usually acellular, is superimposed on a basal plate composed of partially mineralized layers of plywoodlike laminated collagen fibres. The tissue of the basal layer is refered to here as elasmodin. Basal teleosts (sensu PATTERSON 1973) possess rhombic scales with a bony base overlain by ganoin (lepidosteoid ganoid scale). Amioid scales (elasmoid scales with longitudinally to radially arranged ridges or rods on the overlapped field) are found within halecomorphs. This scale type evolved more than once within primitive actinopterygians and other osteichthyan fishes. It may have even developed twice within halecomorphs, in Caturidae and Amiidae, from rhombic scales of lepidosteoid type. Some basal genera of halecomorphs show remains of a dentine layer between ganoin and bone that is characteristic of actinopterygians below the halecostome level. The Semionotidae placed at the base of the Halecostomi, exhibit scale histology transitional between the palaeoniscoid and lepidosteoid scale type. Introduction Actinopterygians, from primitive Coccolepididae to advanced teleosts, are represented in the Solnhofen lithographic limestone. These are fishes with rhombic and round scales. Ganoid scales of the lepidosteoid type are found in the following fishes: semionotid Lepidotes and Heterostrophus, macrosemiids Histionotus, Macrosemius, Notagogus and Propterus, ophiopsid Ophiopsis, caturids Furo and Brachyichthys, aspido- rhynchid Belonostomus, pleuropholid Pleuropholis, and pholidophorid Pholidophorus. -
Ichthyodectiform Fishes from the Late Cretaceous
Mesozoic Fishes 5 – Global Diversity and Evolution, G. Arratia, H.-P. Schultze & M. V. H. Wilson (eds.): pp. 247-266, 12 figs., 2 tabs. © 2013 by Verlag Dr. Friedrich Pfeil, München, Germany – ISBN 978-3-89937-159-8 Ichthyodectiform fi shes from the Late Cretaceous (Campanian) of Arkansas, USA Kelly J. IRWIN and Christopher FIELITZ Abstract Several specimens of the ichthyodectiform fishes Xiphactinus audax and Saurocephalus cf. S. lanciformis are reported from the Upper Cretaceous (Campanian) Brownstown Marl and Ozan formations of southwestern Arkansas, U.S.A. Seven individuals of Xiphactinus, based on incomplete specimens, are represented by various elements: disarticu- lated skull bones, jaw fragments, pectoral fin-rays, or vertebrae. The circular vertebral centra are diagnostic for X. audax rather than X. vetus. The specimen of Saurocephalus consists of a three-dimensional skull, lacking much of the skull roof bones. It is identified as Saurocephalus based on the shape of the predentary bone. This specimen provides the first record of entopterygoid teeth in Saurocephalus. These specimens represent new geographic and geologic distribution records of these taxa from the western Gulf Coastal Plain, which biogeographically links records from the eastern Gulf Coastal Plain with those from the Western Interior Sea. Introduction LEIDY (1854) was the first to report the presence of Cretaceous marine vertebrate fossils from Arkansas, yet in the intervening 150+ years, the body of work on the paleoichthyofauna of Arkansas remains limited (WILSON & BRUNER 2004). BARDACK (1965), GOODY (1976), CASE (1978), and RUSSELL (1988) re- ported geographic and geologic distributions for specific taxa, but few descriptive works on fossil fishes are available (see HUSSAKOF 1947; MEYER 1974; BECKER et al. -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Considerations About the Late Cretaceous Genus Chirocentrites
BULLETIN DE L’INSTITUT ROYAL DES SCIENCES NATURELLES DE BELGIQUE SCIENCES DE LA TERRE, 78: 209-228, 2008 BULLETIN VAN HET KONINKLIJK BELGISCH INSTITUUT VOOR NATUURWETENSCHAPPEN AARDWETENSCHAPPEN, 78: 209-228, 2008 Considerations about the Late Cretaceous genus Chirocentrites and erection of the new genus Heckelichthys (Teleostei, Ichthyodectiformes) - A new visit inside the ichthyodectid phylogeny by Louis TAVERNE TAVERNE, L., 2008 – Considerations about the Late Cretaceous Cretaceous (Maastrichtian)(1), presenting an almost genus Chirocentrites and erection of the new genus Heckelichthys worldwide distribution. Their representatives were (Teleostei, Ichthyodectiformes) - A new visit inside the ichthyodectid long-bodied, with a dorsal fin shifted backward to near phylogeny. In: STEURBAUT, E., JAGT, J.W.M. & JAGT-YAZYKOVA, E.A. (Editors), Annie V. Dhondt Memorial Volume. Bulletin de the tail, opposite to the anal fin, and with a protruded l’Institut royal des Sciences naturelles de Belgique, Sciences de lower jaw, which led to their nickname of “bull-dog” la Terre, 78: 209-228, 10 figs, 1 table, Brussels, October 31, 2008 fishes (Fig. 1). These fishes, the size of which ranged – ISSN 0374-6291. from a few centimetres to almost six meters, were among the major predators within the Cretaceous marine fish communities, as shown by their frequently enlarged dentition. In the floor of the nasal fossa they Abstract possess a very peculiar endochondral bone, the latero- basal ethmoid (= ethmopalatine), not present in other The author describes briefly the osteology of the three valid species of the Late Cretaceous genus Chirocentrites. He shows that only teleosts, except in their osteoglossomorph close allies, the type species, C. -
A Synoptic Review of the Vertebrate Fauna from the “Green Series
A synoptic review of the vertebrate fauna from the “Green Series” (Toarcian) of northeastern Germany with descriptions of new taxa: A contribution to the knowledge of Early Jurassic vertebrate palaeobiodiversity patterns I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Sebastian Stumpf geboren am 9. Oktober 1986 in Berlin-Hellersdorf Greifswald, Februar 2017 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Ingelore Hinz-Schallreuter 2. Gutachter: Prof. Dr. Paul Martin Sander Tag des Promotionskolloquiums: 22. Juni 2017 2 Content 1. Introduction .................................................................................................................................. 4 2. Geological and Stratigraphic Framework .................................................................................... 5 3. Material and Methods ................................................................................................................... 8 4. Results and Conclusions ............................................................................................................... 9 4.1 Dinosaurs .................................................................................................................................. 10 4.2 Marine Reptiles ....................................................................................................................... -
Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare. -
Relationships of Lower Euteleostean Fishes
CHAPTER 12 Relationships of Lower Euteleostean Fishes G. DAVID JOHNSON COLIN PATTERSON National Museum of Natural History Natural History Museum Smithsonian Institution London, England Washington, D.C.- We all make mistakes; then we're sorry. What are the relationships of and within the Os- Popular song meroidei? (6) What are the relationships of and within Salmonidae? (7) Where does Lepidogalaxias belong? (8) What are the relationships within stomiiform fishes? (9) What of the Myctophoidei, as recognized by I. Introduction Greenwood et al. (1966, i.e., Aulopiformes and Myc- tophiformes in current terminology)? In that agenda, In the first Interrelationships of Fishes lower eutel- items (8) and (9) are treated elsewhere in this volume eosts, or "protacanthopterygians" as they were then and do not concern us, but items (1) through (7) do. called, were omitted, with only a comment in the Some classifications and/or cladograms of lower eu- Preface citing Weitzman (1967, on osmeroids and teleosts, dating back to the first application of cladistic stomiatoids), McDowall (1969, on osmeroids and ga- method, are summarized in Fig. 1. As is obvious from laxioids), Rosen and Greenwood (1970, on gonoryn- incongruence between all the patterns in Fig. 1, there chiforms and ostariophysans), Greenwood and Rosen has been protracted argument on how lower euteleos- (1971, on argentinoids and alepocephaloids), and Nel- tean groups are interrelated, how they are related to son (1970b, on salangids and argentinids; 1972, on neoteleosts (stomiiforms and eurypterygians, John- esocoids and galaxioids). son, 1992), and what group is basal to other euteleosts. Ten years later, in Ontogeny and Systematics of Fishes, The most substantial treatment of these problems is Fink (1984a) summarized the history of protacantho- in Begle's (1991,1992) cladistic analyses of Osmeroidei pterygians as "erosion" and "attrition, most notably (1991) and Argentinoidei (1992) (Fig. -
New Material and Phylogenetic Position of Aidachar Paludalis Nesov, 1981 (Actinopterygii, Ichthyodectiformes) from the Late Cretaceous of Uzbekistan
Proceedings of the Zoological Institute RAS Vol. 315, No. 2, 2011, рр. 181–192 УДК 567.5 NEW MATERIAL AND PHYLOGENETIC POSITION OF AIDACHAR PALUDALIS NESOV, 1981 (ACTINOPTERYGII, ICHTHYODECTIFORMES) FROM THE LATE CRETACEOUS OF UZBEKISTAN T.G. Mkhitaryan1 and A.O. Averianov2* 1Department of Vertebrate Zoology, Faculty of Biology and Soil Sciences, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia; e-mail: [email protected] 2Zoological Institute of the Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint Petersburg, Russia; e-mail: [email protected] ABSTRACT Aidachar paludalis Nesov, 1981 from the Upper Cretaceous (Turonian) Bissekty Formation of Uzbekistan is referable to the teleost order Ichthyodectiformes by combination of the following diagnostic characters: large and massive intercalar, forming part of the hyomandibular facet and a canal for the jugular vein; deep premaxilla- maxilla attachment; deep dentary symphysis; angled coronoid process of the dentary; teeth forming a single series in the jaws. It shares a unique character with Aidachar pankowskii (Forey et Cavin, 2007), comb. nov., from the Cenomanian of Morocco: hyomandibular facet clearly divided into two parts. Key words: Aidachar, Ichthyodectiformes, Late Cretaceous, Uzbekistan НОВЫЙ МАТЕРИАЛ И ФИЛОГЕНЕТИЧЕСКОЕ ПОЛОЖЕНИЕ AIDACHAR PALUDALIS NESOV, 1981 (ACTINOPTERYGII, ICHTHYODECTIFORMES) ИЗ ПОЗДНЕГО МЕЛА УЗБЕКИСТАНА T.Г. Мхитарян1 и A.O. Аверьянов2* 1Кафедра зоологии позвоночных, Биолого-почвенный факультет, -
Teleostei: Ichthyodectiformes) from the Cenomanian of Morocco
Palaeontologia Electronica http://palaeo-electronica.org A NEW SPECIES OF CLADOCYCLUS (TELEOSTEI: ICHTHYODECTIFORMES) FROM THE CENOMANIAN OF MOROCCO Peter L. Forey and Lionel Cavin Peter L. Forey. Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BD, England. [email protected] Lionel Cavin. Department of Geology and Palaeontology, Muséum d'Histoire Naturelle, CP 6434 1211, Genève 6, Switzerland. [email protected] ABSTRACT A species of ichthyodectiform fish, Cladocyclus pankowskii sp.nov. is described based on a single well-preserved braincase specimen from the Cenomanian Kem Kem beds of southern Morocco. It differs from the type species, C. gardneri, in the propor- tions of the skull roof. The presence of a species of Cladocyclus in Morocco adds yet another vicariant taxon shared between Brazil and Africa in the mid-Cretaceous, when Africa was separating from South America during the formation of the South Atlantic. Key Words: new species; anatomy; actinopterygian; palaeobiogeography INTRODUCTION more derived ichthyodectiforms (see below). Ich- thyodectiforms are an extinct group of about 30 The braincase described here belongs to an species of primitive teleosts ranging in time from ichthyodectiform teleost. It shows a well-developed the Bathonian to Maastrichtian. Most were marine ethmopalatine (a synapomorphy of all but the most fishes and many had structural adaptations sug- primitive of ichthyodectiforms), as well as the fol- gesting they were fast open water swimmers. lowing combination of features: median parietals Some must have been the top predators of their meeting in front of a large supraoccipital, large day. The phylogeny of ichthyodectiforms has been intercalar that forms a significant part of the hyo- addressed on several occasions (Bardack 1965; mandibular facet as well as the skull roof, a jugular Patterson and Rosen 1977; Maisey 1991; Stewart canal opening into the floor of a deep subtemporal 1999; Taverne and Chanet 2000). -
Family-Group Names of Fossil Fishes
European Journal of Taxonomy 466: 1–167 ISSN 2118-9773 https://doi.org/10.5852/ejt.2018.466 www.europeanjournaloftaxonomy.eu 2018 · Van der Laan R. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:1F74D019-D13C-426F-835A-24A9A1126C55 Family-group names of fossil fishes Richard VAN DER LAAN Grasmeent 80, 1357JJ Almere, The Netherlands. Email: [email protected] urn:lsid:zoobank.org:author:55EA63EE-63FD-49E6-A216-A6D2BEB91B82 Abstract. The family-group names of animals (superfamily, family, subfamily, supertribe, tribe and subtribe) are regulated by the International Code of Zoological Nomenclature. Particularly, the family names are very important, because they are among the most widely used of all technical animal names. A uniform name and spelling are essential for the location of information. To facilitate this, a list of family- group names for fossil fishes has been compiled. I use the concept ‘Fishes’ in the usual sense, i.e., starting with the Agnatha up to the †Osteolepidiformes. All the family-group names proposed for fossil fishes found to date are listed, together with their author(s) and year of publication. The main goal of the list is to contribute to the usage of the correct family-group names for fossil fishes with a uniform spelling and to list the author(s) and date of those names. No valid family-group name description could be located for the following family-group names currently in usage: †Brindabellaspidae, †Diabolepididae, †Dorsetichthyidae, †Erichalcidae, †Holodipteridae, †Kentuckiidae, †Lepidaspididae, †Loganelliidae and †Pituriaspididae. Keywords. Nomenclature, ICZN, Vertebrata, Agnatha, Gnathostomata.