Tracer Analysis of Sediment Redistribution of Tamar AMC Search and Estuary for Launceston Flood Authority ETS Worldwide Ltd

Total Page:16

File Type:pdf, Size:1020Kb

Tracer Analysis of Sediment Redistribution of Tamar AMC Search and Estuary for Launceston Flood Authority ETS Worldwide Ltd Thesis: Strategies for Sustainable Morphological Remediation of the Tamar River Estuary and other Similarly Degraded Estuaries by Ian M Kidd, BSc, Grad. Dip. of Computing Institute for Marine and Antarctic Studies Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania October 2016 Table of Contents Abstract ………………………………………………………………………….…...I General Declarations………….……………………….………………………..……II Acknowledgements………………………………………………………………….III List of Figures……………………………………………………………………….IV List of Tables……………………………….……………………………………..…V List of symbols and abbreviations used in the thesis……………….………………VI Chapter One: Introduction 1. Research Question………………………………………………………….……1 1.1 Background………………………………………………………………1 2. Literature review………………………………………………………………...1 2.1 Definition and classification of estuaries……………………………...1 2.2 Water circulation…………………….………………………………... 2 2.2.1 Classification of estuaries by circulation mode………………..3 2.3 Tides, tidal constituents and harmonics……………………………….3 2.3.1Tidal constituent analysis……………………………………...4 2.4 Sediment dynamics……………………………………………..………..4 2.4.1 Turbidity maximum, flocculation……….……………………..4 2.4.2 Tidal asymmetry……………………………….………………4 2.4.3 Sediment transport……………………………….……………5 2.4.4 Tidal asymmetry ratio…………………………………………7 2.4.5 Net sediment flux…………………….………………………..7 2.4.6 Sediment supply……………..……..……………………….....9 2.4.7 Sediment management………………...………………………9 Dredging……………………………..…………………………9 Silt raking………………..……………………………………10 Catchment management……………….……………….…..…10 2.5 Morphological change in estuaries………………….………………..11 2.5.1 Bathymetric migration………………………………………11 2.5.2 Morphological change due to sea-level rise……….…………12 2.5.3 Mitigation of sea-level rise………….………………………..15 2.5.4 Inter-tidal flats and saltmarsh…….………………………..…15 2.6 Morphological Modelling………………………………………………15 2.6.1 Hydrodynamic theory……………………………………..…17 2.7 Long-term evolution of estuaries………………………………………17 2.8 Problem estuaries and remediation projects………….………………19 3. The Tamar River estuary……………….....………………………………….…21 3.1 The present state……………………….…………………………….….23 3.2 The dynamic nature of the silt accretion…………….…………….….24 3.3 Some fundamental observations………………..…….…………….….24 3.4 Previous studies…………………………….……………………..….…26 3.5 Identification of problem, symptoms, causes and root-causes…...…..27 3.6 Datasets………………………….…………………..…………………..29 3.7 Tidal asymmetry in the upper Tamar……….….…………………..…29 4. Hypothesis ……………….…………………………………………………….…31 5. Methodology of this thesis……………...…………………………………….….32 5.1 Thesis structure…………………..………………………………...….33 5.2 Precision and accuracy of data………………………………………..38 CHAPTER TWO: (PAPER #1) EQUILIBRIUM IMBALANCE DUE TO SEDIMENT RAKING INFLUENCES M2 TIDAL CONSTITUENT, M4 AND M6 HARMONICS, TIDAL ASYMMETRY AND NET SEDIMENT FLUX (Kidd and Fischer, 2016) Abstract………………………………………………………………………...………. 41 Introduction……………………………………………………………………….…… 42 Methods………………………………………………………….………………..…… 48 Results………………………………………………………………………………….. 52 Discussion……………………………………………………………………………… 64 Conclusion…………………………………………………………………………… 71 Acknowledgements…………….……………………………………………………… 72 CHAPTER THREE: (PAPER #2) A FIRST-ORDER MORPHOLOGICAL RESPONSE MODEL (FORM) FOR PREDICTING HYDROLOGICALLY INDUCED BATHYMETRIC CHANGE IN COASTAL-PLAIN ESTUARIES (Kidd et al., 2016a) Abstract………………………………………………………………………...………. 74 Introduction……………………………………………………………………….…… 74 Methods………………………………………………………….………………..…… 79 Results………………………………………………………………………………….. 88 Discussion……………………………………………………………………………… 95 Conclusion…………………………………………………………………………… 99 Acknowledgements…………….……………………………………………………… 100 CHAPTER FOUR: (PAPER #3) A SCENARIO-BASED APPROACH TO EVALUATING POTENTIAL ENVIRONMENTAL OUTCOMES FOLLOWING A TIDAL BARRAGE INSTALLATION (Kidd et al., 2015) Abstract………………………………………………………………………...………. 102 Introduction……………………………………………………………………….…… 103 Methods………………………………………………………….………………..…… 106 Results………………………………………………………………………………….. 112 Discussion……………………………………………………………………………… 114 Conclusion…………………………………………………………………………… 125 Acknowledgements…………….……………………………………………………… 126 CHAPTER FIVE: (PAPER #4) TOTAL EXCLUSION BARRAGES AS SEA-LEVEL RISE MITIGATORS: THE GEOMORPHOLOGICAL TRADE-OFFS FOR NEW INSTALLATIONS (Kidd et al., 2016b) Abstract………………………………………………………………………...………. 128 Introduction……………………………………………………………………….…… 128 Methods………………………………………………………….………………..…… 131 Results………………………………………………………………………………….. 140 Discussion……………………………………………………………………………… 148 Conclusion…………………………………………………………………………… 156 Acknowledgements…………….……………………………………………………… 157 CHAPTER SIX: (PAPER #5) BATHYMETRIC REJUVENATION STRATEGIES FOR MORPHOLOGICALLY DEGRADED ESTUARIES Abstract………………………………………………………………………...………. 159 Introduction……………………………………………………………………….…… 159 Methods………………………………………………………….………………..…… 161 Results………………………………………………………………………………….. 170 Discussion……………………………………………………………………………… 176 Conclusion…………………………………………………………………………… 184 Acknowledgements…………….……………………………………………………… 185 CHAPTER SEVEN: GENERAL DISCUSSION Overview……………………………………………………………………………… 187 Discussion………………………………………………………………………..…… 187 Limitations of the study………………………………………………………….…… 195 Recommendations for further research………………………………………….…… 195 Management Implications…………………………………………………………… 196 Conclusion…………………………………………………………………..……… 198 Appendices A Identifying major stressors: the essential precursor to restoring cultural ecosystem 199 services in a degraded estuary (Davis and Kidd, 2012)……… B (Paper #6) Tidal heights in hyper-synchronous estuaries (Kidd et al., 2014)… 221 C 200 Years of Mud and Misunderstanding, (Kidd and Davis, 2015)…. 235 D Identification of problems, symptoms, causes and root-causes…………….. 243 E Modelling of the Lake Batman Project………………………………… 247 F GIS project: Potential tidal and flood inundation impacts on Launceston and suburbs……………………………………………………………………. 249 References……………………………………………………………………… 251 I Abstract When anthropogenically induced morphological change within estuaries becomes irreversible, hysteresis is established and mitigating projects are required to undo any degradation. The morphologically degraded Tamar River estuary in Tasmania Australia typifies the universality of problems and solutions pertaining to estuaries in Australia, North America, Europe and the UK. Historically, restoration projects proposed for the Tamar were analogues of projects elsewhere, for which full repercussions are emerging. Barrages and weirs for example, unintentionally altered the hydrodynamics with negative long-term morphological consequences. Within the Tamar, recently mooted projects supposedly reduced the flood dominance of tides. Since the 1880s, silt management was by dredging (now cost prohibitive); replaced in recent years by silt raking. Neither process addresses the root-cause of the degradation. The aim of this thesis was to develop and model sustainable solutions (proven and novel) for hysteretic degraded estuaries such as the Tamar, whilst identifying projects having potentially unacceptable trade-offs. The multifaceted methodology reviewed datasets pertaining to tidal heights, bathymetry and land elevations for the Tamar; examined asymmetrical tides, net sediment flux and establishment of equilibrium; developed a First Order Morphological Response Model (FORM) to review and evaluate proposed projects; used FORM on four international examples, and evaluated the effectiveness of barrages as mitigators of sea-level rise. Tidal asymmetry results showed that flood velocity bias persisted and maximised at equilibrium, the inference being their removal is counterproductive. A feedback loop developed at equilibrium (driven by M4 and M6 harmonics); deposition on the banks led to slumping into the constantly scoured channel resulting in a net zero sediment flux. FORM modelled the new equilibrium of five putative barrages within the Tamar. Equilibrium established from a persistent flood velocity bias, ultimately resulting in a net loss of physical amenity below the barrage and unsatisfactory ecological trade-offs both upstream and downstream. Another study of four international barraged systems showed morphological degradation with some mitigation of sea-level rise in each head-pond but potential to increase tidal ranges downstream, thereby exacerbating sea-level rise. Neither study justified the installation of a barrage in the Tamar. Projects designed to remove or mitigate reduced estuarine and freshwater flow would be beneficial in restoring some amenity to the Tamar with potentially up to 8 million m3 of silt permanently removed. Those projects synergistic with nature proved prospective, whereas those antagonistic to nature would fail. Results inform a more sustainable management of estuaries in general with emphasis on a proactive, rather than a reactive paradigm. II Declaration of originality I hereby declare that this thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material which infringes copyright. Copyright Notice This thesis does not contain any material which infringes copyright. Authority of access This thesis may be made available for loan and limited copying and communication
Recommended publications
  • EIA Final Report (PDF)
    YB299A ENVIRONMENTAL IMPACT ASSESSMENT REPORT FOR MODIFICATIONS TO THE PETITCODIAC RIVER CAUSEWAY Submitted to: New Brunswick Department of Supply and Services Fredericton, New Brunswick Submitted by: AMEC Earth & Environmental, A Division of AMEC Americas Limited Fredericton, New Brunswick September 30, 2005 TE23520.4 NB Department of Supply and Services EIA Report Modifications to the Petitcodiac River Causeway September 2005 EXECUTIVE SUMMARY Background This document is the Environmental Impact Assessment (EIA) Report for the Modifications to the Petitcodiac River Causeway Project. The Petitcodiac River causeway (“causeway”) is a gated dam structure with an installed vertical slot fishway that was built across the Petitcodiac River between the City of Moncton and the Town of Riverview. Figure 1 shows the location of the Petitcodiac River and Figure 2 shows an aerial view of the causeway. Completed in 1968, the causeway was intended to create a second transportation link between the two communities, offer flood protection for farmland between the causeway and the head of tide at Salisbury, and create a freshwater headpond with potential for recreation and as an industrial water source. A bridge would have achieved the transportation objective, but not the other benefits. As early as 1961, it was recognized by Fisheries and Oceans Canada (“DFO”) that fish passage would be an issue if a causeway was built across the Petitcodiac River. Consequently, DFO required that a fishway be included in the structure. However, the construction of the causeway with the fishway resulted in fish passage issues from the outset. The fishway proved ineffective for all fish species that require passage for life cycle purposes, including the Inner Bay of Fundy Atlantic salmon that is now also protected under the Species at Risk Act because of declining numbers.
    [Show full text]
  • Natural History and Values of the Kanamaluka/Tamar Estuary Formation, Function and Ecology
    TAMAR ESTUARY AND ESK RIVERS PROGRAM EDUCATION SERIES - FACT SHEET 2 nrmnorth.org.au Natural history and values of the kanamaluka/Tamar estuary Formation, function and ecology The kanamaluka/Tamar estuary is unique in South and North Esk rivers met at the mouth many ways. Fed by five major river systems, it of Corra Lynn Gorge. drains the largest catchment in Tasmania, and Between 35 and 47 million years ago, several the estuary itself is the longest navigable large lava flows occurred in the north, middle estuary in Australia. Home to many unique and southern parts of the valley. The lava and sometimes threatened plant and animal cooled to form basalt. In the middle sections species, it is truly a special place. the basalt capped the old lake sediments, HOW WAS IT FORMED? preserving them from further erosion. This can be seen at Grindelwald, Windermere, and In the early geological history of Tasmania, the north of Hillwood. Tamar Valley didn’t exist and was instead a large peneplain, or dolerite capped lowland Basalt at Rowella and Bell Bay forced the river area, that had been worn down by millions of to keep to its channel, preventing it from years of erosion. From 95 to 65 million years eating sideways into the old sediments and ago, stretching of the earth’s crust created blocking the river for some time at Whirlpool earthquakes that split this peneplain apart, Reach and Bell Bay, creating new lakes in the creating the highland areas of Mt Arthur, Mt valley again, which were eventually breached Barrow and Ben Lomond to the east and the and the Tamar resumed its old course.
    [Show full text]
  • MCP No 02-E.Cdr
    Silica Natural Resources Lands, Minerals and Petroleum Division Mineral Commodity Profile No. 2 ilicon (Si) is the second most common element on Earth after World Production and Reserves Soxygen. Si does not occur naturally in its pure state but instead is found chiefly in mineral form as either silica (SiO2) or silicates. Silica Silica deposits occur, and are mined, in most and/or silicate minerals are a constituent of nearly every rock type in countries. Global silica output is estimated at Earth's crust. roughly 120 Mt to 150 Mt per year (Dumont 2006). The most familiar silica mineral is quartz. In commodity terms, silica About 5.9 Mt of ferrosilicon were produced also refers to geological deposits enriched in quartz and/or other silica worldwide in 2006. The major contributors were minerals. Silica resources include 1) poorly consolidated quartzose China, Russia, United States, Brazil and South sand and gravel, 2) quartz sand/pebbles in consolidated rock (e.g. Africa (U.S. Geological Survey [USGS] 2006). quartzose sandstone), 3) quartzite , and 4) quartz veins. Global production of silicon metal reportedly Uses approached 1.2 Mt in 2006, almost half of which came from China (USGS 2006). Other important Silica is hard, chemically inert, has a high melting point, and functions producers are the United States, Brazil, Norway, as a semiconductor—characteristics that give it many industrial France, Russia, South Africa and Australia. applications. Silica deposits generally must be processed to remove iron, clay and other impurities. The most valuable resources contain Silica Consumption in Canada (Total = 2.57 Mt) >98% SiO2 and can be readily crushed into different sizes for the various end products.
    [Show full text]
  • Tidal Range Energy Resource and Optimization – Past
    1 Tidal range energy resource and optimization { past 2 perspectives and future challenges a,∗ b a 3 Simon P. Neill , Athanasios Angeloudis , Peter E. Robins , Ian c a d a 4 Walkington , Sophie L. Ward , Ian Masters , Matt J. Lewis , Marco a b b f 5 Piano , Alexandros Avdis , Matthew D. Piggott , George Aggidis , Paul g h f e 6 Evans , Thomas A. A. Adcock , Audrius Zidonisˇ , Reza Ahmadian , Roger e 7 Falconer a 8 School of Ocean Sciences, Bangor University, Marine Centre Wales, Menai Bridge, UK b 9 Department of Earth Science and Engineering, Imperial College London, UK c 10 School of Natural Sciences and Psychology, Department of Geography, Liverpool John 11 Moores University, Liverpool, UK d 12 College of Engineering, Swansea University, Bay Campus, Swansea, UK e 13 School of Engineering, Cardiff University, The Parade, Cardiff, UK f 14 Engineering Department, Lancaster University, Lancaster, UK g 15 Wallingford HydroSolutions, Castle Court, 6 Cathedral Road, Cardiff, UK h 16 Department of Engineering Science, University of Oxford, Oxford, UK 17 Abstract 18 Tidal energy is one of the most predictable forms of renewable energy. Al- 19 though there has been much commercial and R&D progress in tidal stream 20 energy, tidal range is a more mature technology, with tidal range power plants 21 having a history that extends back over 50 years. With the 2017 publication 22 of the \Hendry Review" that examined the feasibility of tidal lagoon power 23 plants in the UK, it is timely to review tidal range power plants. Here, we 24 explain the main principles of tidal range power plants, and review two main 25 research areas: the present and future tidal range resource, and the opti- 26 mization of tidal range power plants.
    [Show full text]
  • Assessment of Juvenile Eel Resources in South Eastern Australia and Associated Development of Intensive Eel Farming for Local Production
    ASSESSMENT OF JUVENILE EEL RESOURCES IN SOUTH EASTERN AUSTRALIA AND ASSOCIATED DEVELOPMENT OF INTENSIVE EEL FARMING FOR LOCAL PRODUCTION G J. Gooley, L. J. McKinnon, B. A. Ingram, B. Larkin, R.O. Collins and S.S. de Silva. Final Report FRDC Project No 94/067 FI SHERIE S RESEARCH & DEVELOPMENT Natural Resources CORPOR ATIO N and Environment AGRICULTURE RESOURCES COIISERVAT/Otl ASSESSMENT OF JUVENILE EEL RESOURCES IN SOUTH-EASTERN AUSTRALIA AND ASSOCIATED DEVELOPMENT OF INTENSIVE EEL FARMING FOR LOCAL PRODUCTION G.J Gooley, L.J. McKinnon, B.A. Ingram, B.J. Larkin, R.O. Collins and S.S. De Silva Final Report FRDC Project No 94/067 ISBN 0731143787 Marine and Freshwater Resources Institute, 1999. Copies of this document are available from: Marine and Freshwater Resources Institute Private Bag 20 Alexandra. VIC. 3714. AUSTRALIA.. This publication may be of assistance to you but the State of Victoria and its officers do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for error, loss or other consequence which may arise from you relying on any information in this publication. 1 TABLE OF CONTENTS 1 TABLE OF CONTENTS...............................................................................................................................i 2 ACKNOWLEDGMENTS.......................................................................................................................... iii 3 NON-TECHNICAL SUMMARY................................................................................................................!
    [Show full text]
  • Severn Tidal Power
    Department of Energy and Climate Change SEVERN TIDAL POWER Feasibility Study Conclusions and Summary Report OCTOBER 2010 Severn Tidal Power Feasibility Study: Conclusions and Summary Report Contents Executive summary .................................................................................................... 4 How to respond ....................................................................................................... 9 1. Background .......................................................................................................... 10 The UK’s wave and tidal opportunity ..................................................................... 10 Tidal Stream ...................................................................................................... 12 Wave ................................................................................................................. 12 Tidal range ......................................................................................................... 13 The Severn ........................................................................................................... 14 Schemes studied .................................................................................................. 16 Progress since public consultation ........................................................................ 18 2. The scale of the challenge ................................................................................... 21 2020 – Renewable Energy Strategy ....................................................................
    [Show full text]
  • B South Esk Catchment
    B SOUTH ESK CATCHMENT 1.0 Hydrology The South Esk River rises in the North Eastern highlands near Mathinna initially travelling southwards before passing through the Fingal Valley and finally turning northwards and draining into the Tamar River estuary at Launceston. Upstream of the confluences with the Macquarie and Meander rivers the major tributaries include the Break O’Day, St Pauls and Nile rivers. Many smaller streams contribute water to the South Esk mainly from the North- East highlands around Ben Lomond (eg Storeys Creek and Buffalo Brook). 1.1 Historical Background Measurement of river heights in the South Esk River has a long history. Unfortunately these measurements are not always useful indicators of flow due to changes in the channel such as growth and destruction of vegetation, aggradation and scouring of river beds, etc. Such changes provide unstable relationships between gauge height and flow. Nevertheless, many of the gauge height stations continue to be maintained and in many instances are the major tools used for flood warning. The South Esk is a relatively flat river for much of its length and there are often large areas where natural backwaters occur. There are therefore limited opportunities along the river to collect stream flow information and it was not until the 1950's that two reasonable locations were instrumented. These two sites - one at Llewellyn and the other at Perth - have collected streamflow information for around 40 years and are therefore invaluable in assessing the water yields, flood and drought behaviour of the river system. Unfortunately the early record at Llewellyn (prior to 1973) is subject to a major review by the Hydro-Electric Commission and could not be used for this study.
    [Show full text]
  • Download Full Article 2.9MB .Pdf File
    June 1946 MEM. NAT. Mus. V1cT., 14, PT. 2, 1946. https://doi.org/10.24199/j.mmv.1946.14.06 THE SUNKLANDS OF PORT PHILLIP BAY AND BASS STRAIT By R. A. Keble, F.G.S., Palaeontologist, National Jiiiseurn of Victoria. Figs. 1-16. (Received for publication 18th l\fay, 1945) The floors of Port Phillip Bay and Bass Strait were formerly portions of a continuous land surface joining Victoria with Tasmania. This land surface was drained by a river system of which the Riv-er Y arra was part, and was intersected by two orogenic ridges, the Bassian and King Island ridges, near its eastern and western margins respectively. \Vith progressive subsidence and eustatic adjustment, these ridges became land bridges and the main route for the migration of the flora and fauna. At present, their former trend is indicated by the chains of islands in Bass Strait and the shallower portions of the Strait. The history of the development of the River Yarra is largely that of the former land surface and the King Island land bridge, and is the main theme for this discussion. The Yarra River was developed, for the most part, during the Pleistocene or Ice Age. In Tasmania, there is direct evidence of the Ice Age in the form of U-shaped valleys, raised beaches, strandlines, and river terraces, but in Victoria the effects of glaciation are less apparent. A correlation of the Victorian with the Tasmanian deposits and land forms, and, incidentally, with the European and American, can only be obtained by ascertaining the conditions of sedimentation and accumulation of such deposits in Victoria, as can be seen at the surface1 or as have been revealed by bores, particularly those on the N epean Peninsula; by observing the succession of river terraces along the Maribyrnong River; and by reconstructing the floor of Port Phillip Bay, King Bay, and Bass Strait, and interpreting the submerged land forms revealed by the bathymetrical contours.
    [Show full text]
  • To Download the PDF File
    The Dispossession of the Míkmaq Indians from Chignecto to Elsipogtog1: A Case Study Analysis of the Health Determinants of the Physical Environment by Patrick J. Augustine A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Indigenous and Canadian Studies Carleton University Ottawa, Ontario © 2021, Patrick J. Augustine 1 The community uses the Pacifique orthography, while the Francis-Smith system spells it L’sipuktuk (Sable & Francis, 2012). Abstract Traditionally, the Míkmaq enjoyed an interconnected relationship with the land, harvesting what they needed from the earth and the ocean, guided by the concept of Netukulimk, the practice of sustainability. Upon the arrival of European settlers, new trade practices were introduced, and what was once plentiful was quickly depleted. Although the original inhabitants were assured that their lands would be protected by agreements and treaties, these assurances proved to be false, and the traditional relationship with the land was threatened, as the Míkmaq—presaging the fate of most Indigenous Peoples in Canada—were dispossessed of their historical lands and forced to live on reserves; many of them far away from the environments to which they had had biological and spiritual ties. Land is central to our understanding of current Indigenous health issues; centering around how the Míkmaq traditionally employed land and resources, what changes in that relationship were brought about by colonization, and how their removal to reserves influenced their relationship vis-à-vis their environment. In addressing the ways that land policies, post-first contact, were developed and implemented over time, it is possible and necessary to juxtapose that history with the story of the forced mobilization of the Míkmaq and examine the effects that the dispossession of land had upon their livelihood and economic activity.
    [Show full text]
  • 2748 English
    -B N 37 ’ M RUNSWICK OUVEAU DU ARCHÉOLOGIE L SUR ANUSCRITS H K RISTMANSON ELEN A SHORT HISTORY OF BEAUMONT, NEW BRUNSWICK : PAR BY: -B N B B RUNSWICK OUVEAU AU EAUMONT E ITRQEDE HISTORIQUE REF HELEN KRISTMANSON NEW BRUNSWICK MANUSCRIPTS IN ARCHAEOLOGY 37 A Short History of Beaumont, New Brunswick NEW BRUNSWICK MANUSCRIPTS IN ARCHAEOLOGY 37 By Helen Kristmanson Culture and Sport Secretariat 2 New Brunswick Manuscripts in Archaeology 37 A Short History of Beaumont, New Brunswick 3 This series is designed to facilitate the distribution of manuscripts relating to New Brunswick archaeology. They will be published in small quantities and will generally be available by special request only. © Helen Kristmanson and the Province of New Brunswick New Brunswick Manuscripts in Archaeology 37, 2004. Published and edited by: Archaeological Services, Heritage Branch Culture and Sport Secretariat P.O. Box 6000 Fredericton, N.B. E3B 5H1, Canada ISBN 1-55396-559-0 Printed in Canada CNB 2748 2 New Brunswick Manuscripts in Archaeology 37 A Short History of Beaumont, New Brunswick 3 Table of Contents List of Figures. 4 Abstract. 5 Acknowledgements . 5 Introduction . 7 The Mi’kmaq. 7 The Chapel . 9 Related Sites: A Network of Mi’kmaq Communities . 10 Beaumont: Part of a Larger Community . 11 Fort Folly Point . 11 Industry . 13 Boudreau Quarry . 14 Beaumont Quarry . 15 Beaumont Brickyard . 16 Conclusions . 16 References . 17 4 New Brunswick Manuscripts in Archaeology 37 A Short History of Beaumont, New Brunswick 5 List of Figures 1. General location map . 6 2. St. Anne’s Chapel Exterior . 9 3. St. Anne’s Chapel Interior .
    [Show full text]
  • Kanamaluka Tamar River Headwaters Natural Restoration Plan 2021 - 2025
    kanamaluka Tamar River Headwaters Natural Restoration Plan 2021 - 2025 Tamar River Headwaters Natural Restoration Plan 1 This Restoration Plan. The Tamar Yacht Club, on behalf of other stakeholders, has developed this restoration Definition - The Headwaters of the Tamar plan based on the best available engineering River (kanamaluka) are defined by the area of and academic bodies of work that primarily the confluence of the South Esk with the focus on a return to the natural conditions of Tamar, forming the Yacht Basin from the the Tamar River (kanamaluka) headwaters that Kings Bridge to the North Esk confluence as existed prior to the construction of the well as the contiguous zone known as Home Trevallyn Dam and Power Station. Reach from Home Point to Ti Tree Bend. Tamar River Headwaters Natural Restoration Plan 2 The Tamar Yacht Club (TYC) is one of the oldest Yacht Clubs in the southern hemisphere and is amongst the longest existing landholders in the headwaters of the Tamar River. POSITION STATEMENT 1. The TYC has taken the decision to enter and lead the community debate regarding the future of the Tamar River. 2. The TYC will now focus on the overdue return of the Tamar River to its fully natural state as existed prior to the hydro development. Tamar River Headwaters Natural Restoration Plan 3 OUR PLAN The TYC Plan is to facilitate the first step in the restoration of the Tamar River headwaters area to its natural state, as existed prior to the Trevallyn hydro development. This Plan... 3. Is proposed following the public announcement that the Tasmanian and 1.
    [Show full text]
  • 191 Launceston Tasmania 7250 State Secretary: [email protected] Journal Editors: [email protected] Home Page
    Tasmanian Family History Society Inc. PO Box 191 Launceston Tasmania 7250 State Secretary: [email protected] Journal Editors: [email protected] Home Page: http://www.tasfhs.org Patron: Dr Alison Alexander Fellows: Dr Neil Chick, David Harris and Denise McNeice Executive: President Anita Swan (03) 6326 5778 Vice President Maurice Appleyard (03) 6248 4229 Vice President Peter Cocker (03) 6435 4103 State Secretary Muriel Bissett (03) 6344 4034 State Treasurer Betty Bissett (03) 6344 4034 Committee: Judy Cocker Jim Rouse Kerrie Blyth Brian Hortle Leo Prior John Gillham Libby Gillham Helen Stuart Judith Whish-Wilson By-laws Officer Denise McNeice (03) 6228 3564 Assistant By-laws Officer Maurice Appleyard (03) 6248 4229 Webmaster Robert Tanner (03) 6231 0794 Journal Editors Anita Swan (03) 6326 5778 Betty Bissett (03) 6344 4034 LWFHA Coordinator Anita Swan (03) 6394 8456 Members’ Interests Compiler John Gillham (03) 6239 6529 Membership Registrar Muriel Bissett (03) 6344 4034 Publications Coordinator Denise McNeice (03) 6228 3564 Public Officer Denise McNeice (03) 6228 3564 State Sales Officer Betty Bissett (03) 6344 4034 Branches of the Society Burnie: PO Box 748 Burnie Tasmania 7320 [email protected] Devonport: PO Box 587 Devonport Tasmania 7310 [email protected] Hobart: PO Box 326 Rosny Park Tasmania 7018 [email protected] Huon: PO Box 117 Huonville Tasmania 7109 [email protected] Launceston: PO Box 1290 Launceston Tasmania 7250 [email protected] Volume 29 Number 1 June 2008 ISSN 0159 0677 Contents Editorial ..................................................................................................................
    [Show full text]