Creatinine and Urea Biosensors Based on a Novel Ammonium Ion-Selective Copper-Polyaniline Nano-Composite

Total Page:16

File Type:pdf, Size:1020Kb

Creatinine and Urea Biosensors Based on a Novel Ammonium Ion-Selective Copper-Polyaniline Nano-Composite CORE Metadata, citation and similar papers at core.ac.uk Provided by MURAL - Maynooth University Research Archive Library Biosensors and Bioelectronics 77 (2016) 505–511 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite M. Zhybak a,b, V. Beni b,n, M.Y. Vagin c, E. Dempsey d, A.P.F. Turner b, Y. Korpan a,n a Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine b Biosensors & Bioelectronics Centre, IFM, Linköping University, 58183, Sweden c Applied Physics Division, IFM, Linköping University, Linköping, 58183, Sweden d Centre for Research in Electroanalytical Technologies, Department of Science, ITT Dublin, Tallaght, Dublin 24, Ireland article info abstract Article history: The use of a novel ammonium ion-specific copper-polyaniline nano-composite as transducer for hy- Received 22 July 2015 drolase-based biosensors is proposed. In this work, a combination of creatinine deaminase and urease Received in revised form has been chosen as a model system to demonstrate the construction of urea and creatinine biosensors to 29 September 2015 illustrate the principle. Immobilisation of enzymes was shown to be a crucial step in the development of Accepted 3 October 2015 the biosensors; the use of glycerol and lactitol as stabilisers resulted in a significant improvement, Available online 9 October 2015 especially in the case of the creatinine, of the operational stability of the biosensors (from few hours to at Keywords: least 3 days). The developed biosensors exhibited high selectivity towards creatinine and urea. The Creatinine sensitivity was found to be 8573.4 mA MÀ1 cmÀ2 for the creatinine biosensor and Urea À À 112 73.36 mA M 1 cm 2 for the urea biosensor, with apparent Michaelis–Menten constants (K ), Amperometric ammonium detection M,app obtained from the creatinine and urea calibration curves, of 0.163 mM for creatinine deaminase and Copper polyaniline composite 0.139 mM for urease, respectively. The biosensors responded linearly over the concentration range 1– 125 mM, with a limit of detection of 0.5 mM and a response time of 15 s. The performance of the biosensors in a real sample matrix, serum, was evaluated and a good cor- relation with standard spectrophotometric clinical laboratory techniques was found. & 2015 Elsevier B.V. All rights reserved. 1. Introduction this approach is quite complex, time consuming and has limited sensitivity/specificity. Ongoing demand for simple-to-use, cost Chronic kidney disease (CKD) is a common condition with a effective and decentralised diagnostic tools for clinical practice has high risk of death. The National Health and Nutrition Examination significantly boosted the development of alternative methods. In Survey in America has estimated the prevalence of the CKD to be this context, over the past few decades, electrochemical sensors/ about 16% (Haynes and Winearls, 2010). One of the main con- biosensors have been making inroads. Among the electrochemical sequences of CKD is a significant increase in the level of metabolic biosensors developed, potentiometric transduction based on the waste products in the blood, including urea and creatinine, that combination of ion-selective electrodes and ammonium ion-gen- are normally excreted by the kidney (Vaidya et al., 2008). In CKD erating enzymes, is the most common approach used (Magalhaes , patients, urea and creatinine levels can reach up to 10-fold those and Machado, 2002; Osaka et al., 1998; Radomska et al., 2004a , fi recorded in healthy patients, rising from 1.7–8.1 mM (Eggenstein 2004b). The rst example of a potentiometric biosensor for the detection of creatinine was proposed by Meyerhoff and Rechnitz, et al., 1999)to50–70 mM for urea (Walcerz et al., 1998) and from who used creatinine deiminase (CDI) coupled with an ammonia 40–150 mMto1–1.4 mM for creatinine (Ashwood et al., 2006). gas-sensing electrode (Meyerhoff and Rechnitz, 1976). Latter, CDI Consequently, frequent creatinine and urea monitoring, with rapid immobilised in a bovine serum albumin (BSA) (Soldatkin et al., availability of results, can be expected to be of significant benefit 2002a) and PVA/SbQ membrane (Soldatkin et al., 2002b) was used for critically ill patients with remarkable improvement in quality in combination with ion-sensitive field-effect transistors (ISFETs) of life for peritoneal dialysis patients (Udy et al., 2009). for creatinine detection and hemodialysis control (Zinchenko et al., Detection of creatinine dates back to the beginning of the 20th 2012). However, these biosensors suffer from the inherent lim- century when Jaffe method was developed (Jaffe, 1886). However, itations of potentiometry, i.e. vulnerability to interference from other ions present in the sample solutions, relatively slow re- n fl Corresponding authors. sponse times, and high detection limits in biological uids (Lad E-mail addresses: [email protected] (V. Beni), [email protected] (Y. Korpan). et al. ,2008). http://dx.doi.org/10.1016/j.bios.2015.10.009 0956-5663/& 2015 Elsevier B.V. All rights reserved. 506 M. Zhybak et al. / Biosensors and Bioelectronics 77 (2016) 505–511 In order to overcome the limitations of these potentiometric biosensor was between 50 and 250 mM, but it suffered from sig- sensors, several authors have explored the use of multiple en- nificant limitations when applied to biological samples, requiring zymes systems in combination with amperometric detection. One pretreatment with anion exchange separators for the removal of of the first examples of this approach was proposed in a paper by interferants (Rajesh et al. 2005). Tsuchida and Yoda (1983) in which the combination of three en- Polyaniline-Nafion composites have been used to develop am- zymes; creatininase, creatinase and sarcosine oxidase, was used perometric urea biosensors (Cho and Huang, 1998), both on Au for the amperometric detection of creatinine. Electrochemical (Luo and Do, 2004) and Pt support electrodes (Stasyuk et al., 2012). transduction was achieved via the oxidation of the hydrogen Experimental work over the past decade has shown that PANi- peroxide, generated as part of the enzymatic reaction, at a plati- film, deposited on a metallic electrode (Au, Pt), and in combination num electrode. A similar enzymatic reaction sequence was ex- with a cation exchange matrix (Nafion), is highly sensitive to plored by Nguyen et al. (1991), who coupled the three-enzyme ammonium ions (Strehlitz et al., 2000). system with a Clark oxygen electrode. Schneider et al. (1996) and In the current paper, we report the use of a novel ammonium Erlenkotter et al. (2002) reported a poly(carbamoyl)sulfonate ion-selective composite material, based on polyaniline and copper (PCS) hydrogel biosensor that presented significant improvement (Zhybak et al., 2015) for use as a transducer in electrochemical in storage stability (ca. 3 months at 8 C) and dynamic range. The hydrolase-based urea and creatinine biosensors. The experimental use of nano-composite electrodes based, for example, on zinc designs and analytical performance of the biosensors are detailed oxide or iron oxide nanoparticles or carbon nano-tubes, has been together with their application for the determination of creatinine also explored as a way of improving the performance of these and urea in serum samples from patients with CKD. biosensors (Pundir et al. 2013). However, the electrochemical de- tection of oxygen and/or hydrogen peroxide continued to present several limitations in terms of sensitivity and specificity. 2. Material and methods In order to overcome these issues, the use of mediators to- gether with the three-enzyme cascade system was explored. Ra- 2.1. Reagents manavicius (2007) was one of the first to report on the use of a mediator, ferricyanide, for a creatine biosensor. This was despite Creatinine deiminase (EC 3.5.4.21, microbial, Z25 U/mg) was the fact that mediated electron transfer from sarcosine oxidase purchased from Sorachim (Spain). Urease (EC 3.5.1.5, from Cana- had been reported by a several authors earlier on (Taniguchi et al., valia ensiformis (Jack Beans), Z600,000 U/g), urea, creatinine 1988; Turner et al., 1987). However, the dominance of point-of- (anhydrous), hydrochloric acid, copper nitrate, nitric acid, sodium s care analysers (where sensors are required to be re-used) as op- chloride, KH2PO4,Na2HPO4,5%Nafion perfluorinated resin so- posed to home-use devices for this particular analyte has meant lution, glutarealdehyde (GA) (50% w/v aqueous solution), ethanol, that this approach has not found favour to date. This led authors to D-Lactitol monohydrate, glycerol, bovine serum albumin (fraction explore the use of a four enzyme system in which peroxidase V, 96%) were purchased from Sigma-Aldrich (Germany). Aniline (horseradish peroxidase) was added as biocatalyst for hydrogen (99%) was purchased from Sigma-Aldrich (Germany) and redis- peroxide to promote more effective electron transfer (Nieh et al., tilled before use (Important: only freshly prepared aniline should 2013). Unfortunately, when multiple reactions are run in the same be used for electropolymerisation). Ammonium chloride was membrane, optimal conditions for each reaction can often not be purchased from Fluka (Germany). All the chemicals and solvents satisfied and this means that in practice, none of the reactions runs used were of analytical-reagent grade and used without further at its optimum in terms of reaction rate and stability (Ricca et al., purification. 2011). 20 mM phosphate buffer solution (PBS) (prepared by mixing Unlike creatinine biosensors, urea biosensors are commonly and diluting 20 mM disodium hydrogen phosphate, 20 mM po- constructed using only one enzyme, urease (EC 3.5.1.5), as the tassium dihydrogen phosphate and 20 mM sodium chloride) pH biorecognition component, which catalyses the hydrolysis of urea 7.4, was used as the supporting electrolyte during all the electro- to ammonium and bicarbonate ions (Singh et al., 2008).
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug
    USOO9422609B2 (12) United States Patent (10) Patent No.: US 9.422,609 B2 Teichberg (45) Date of Patent: Aug. 23, 2016 (54) METHODS, COMPOSITIONS AND DEVICES (58) Field of Classification Search FOR MANTAINING CHEMICAL BALANCE CPC ........................ C02F 1/725; C12Y 305/01005 OF CHLORINATED WATER USPC ........................... 210/754; 435/195, 227 231 See application file for complete search history. (75) Inventor: Vivian I. Teichberg, Savyon (IL) (56) References Cited (73) Assignees: Mia Levite, Savyon (IL); Yaar Teichberg, Savyon (IL); Nof Lyle U.S. PATENT DOCUMENTS Teichberg, Savyon (IL) 4,793,935 A * 12/1988 Stillman ............... CO2F 1.5236 21Of727 (*) Notice: Subject to any disclaimer, the term of this 6,673,582 B2 * 1/2004 McTavish ..................... 435/122 patent is extended or adjusted under 35 U.S.C. 154(b) by 1044 days. (Continued) (21) Appl. No.: 12/225.18O FOREIGN PATENT DOCUMENTS y x- - - 9 AU 41971 5, 1979 (22) PCT Filed: Mar. 14, 2007 GB 2025919 1, 1980 (86). PCT No.: PCT/L2007/OOO336 (Continued) S 371 (c)(1) OTHER PUBLICATIONS (2), (4) Date: Sep. 16, 2008 Examiner's Report Dated Oct. 6, 2010 From the Australian Govern (87) PCT Pub. No.: WO2007/107.981 ment, IP Australia Re. Application No. 2007228391. (Continued) PCT Pub. Date: Sep. 27, 2007 (65) Prior Publication Data Primary Examiner — Peter Keyworth (74) Attorney, Agent, or Firm — Browdy and Neimark, US 201OfO270228A1 Oct. 28, 2010 PLLC Related U.S. Application Data (57) ABSTRACT (60) Provisional application No. 60/783,028, filed on Mar. A composition-of-matter for use in water treatment, com 17, 2006.
    [Show full text]
  • Supplemental Methods
    Supplemental Methods: Sample Collection Duplicate surface samples were collected from the Amazon River plume aboard the R/V Knorr in June 2010 (4 52.71’N, 51 21.59’W) during a period of high river discharge. The collection site (Station 10, 4° 52.71’N, 51° 21.59’W; S = 21.0; T = 29.6°C), located ~ 500 Km to the north of the Amazon River mouth, was characterized by the presence of coastal diatoms in the top 8 m of the water column. Sampling was conducted between 0700 and 0900 local time by gently impeller pumping (modified Rule 1800 submersible sump pump) surface water through 10 m of tygon tubing (3 cm) to the ship's deck where it then flowed through a 156 µm mesh into 20 L carboys. In the lab, cells were partitioned into two size fractions by sequential filtration (using a Masterflex peristaltic pump) of the pre-filtered seawater through a 2.0 µm pore-size, 142 mm diameter polycarbonate (PCTE) membrane filter (Sterlitech Corporation, Kent, CWA) and a 0.22 µm pore-size, 142 mm diameter Supor membrane filter (Pall, Port Washington, NY). Metagenomic and non-selective metatranscriptomic analyses were conducted on both pore-size filters; poly(A)-selected (eukaryote-dominated) metatranscriptomic analyses were conducted only on the larger pore-size filter (2.0 µm pore-size). All filters were immediately submerged in RNAlater (Applied Biosystems, Austin, TX) in sterile 50 mL conical tubes, incubated at room temperature overnight and then stored at -80oC until extraction. Filtration and stabilization of each sample was completed within 30 min of water collection.
    [Show full text]
  • A Novel, Low Power Biosensor for Real Time Monitoring of Creatinine and Urea in Peritoneal Dialysis
    A Novel, Low Power Biosensor for Real Time Monitoring of Creatinine and Urea in Peritoneal Dialysis Bhusana Premanode*, Chris Toumazou** *Department of Bioengineering, Imperial College, London, UK **The Institute of Biomedical Engineering, Imperial College, London, UK ABSTRACT based on the immobilization of urease or creatinase onto the surface of the gate insulator [1]. Novel biosensors, based on immobilized creatininase, The FET-based potentiometric biosensors of creatinine creatinase and urease are developed, using ISFETs with have several disadvantages namely, that there is interference weak inversion at pH 6-8 and 37.0oC. The ISFETs with due to ammonia and other ionic substances [1]. Another circuitry, demonstrate a linear relationship of urea and major drawback is that the response is very non-linear, creatinine at the range of 0-200 mM and 0-20 mM, caused by the fact that the induced changes in pH and respectively. Preliminary results show that biosensors temperature decrease the enzyme activity and stability operating in weak inversion mode can eliminate many of the drastically [2]. Moreover, the devices generate undesired disadvantages of ISFETs operating in the strong inversion extra coulomb charges. region, providing a wide dynamic range output in nanoAmp. Such characteristics fit the analytical requirements for 2 THEORETICAL CONSIDERATIONS improving real-time monitoring in Peritoneal Dialysis (PD). Further work covers stability of ISFET sensors biased with 2.1 Chemical Reactions of Creatinine and Urea CMOS circuits in the weak inversion mode working in the room temperature of 15°C to 40°C. Creatinine and urea are important for diagnosis of renal, thyroid and muscle dysfunctions.
    [Show full text]
  • Downloaded from Mage and Compared
    bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta Florian U. Moeller1, Nicole S. Webster2,3, Craig W. Herbold1, Faris Behnam1, Daryl Domman1, 5 Mads Albertsen4, Maria Mooshammer1, Stephanie Markert5,8, Dmitrij Turaev6, Dörte Becher7, Thomas Rattei6, Thomas Schweder5,8, Andreas Richter9, Margarete Watzka9, Per Halkjaer Nielsen4, and Michael Wagner1,* 1Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, 10 Austria. 2Australian Institute of Marine Science, Townsville, Queensland, Australia. 3 Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of 15 Queensland, St Lucia, QLD, Australia 4Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark. 20 5Institute of Marine Biotechnology e.V., Greifswald, Germany 6Division of Computational Systems Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Austria. 25 7Institute of Microbiology, Microbial Proteomics, University of Greifswald, Greifswald, Germany 8Institute of Pharmacy, Pharmaceutical Biotechnology, University of Greifswald, Greifswald, Germany 9Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, 30 University of Vienna, Austria. *Corresponding author: Michael Wagner, Department of Microbiology and Ecosystem Science, Althanstrasse 14, University of Vienna, 1090 Vienna, Austria. Email: wagner@microbial- ecology.net 1 bioRxiv preprint doi: https://doi.org/10.1101/527234; this version posted January 23, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Chemical Transformations Encoded by a Gene Cluster in Streptomyces Coelicolor Containing an Unusual Gtp Cyclohydrolase
    Chemical Transformations Encoded by a Streptomyces coelicolor Gene Cluster with an Unusual GTP Cyclohydrolase Item Type text; Electronic Dissertation Authors Spoonamore, James Edward Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 11/10/2021 06:44:52 Link to Item http://hdl.handle.net/10150/194825 CHEMICAL TRANSFORMATIONS ENCODED BY A GENE CLUSTER IN STREPTOMYCES COELICOLOR CONTAINING AN UNUSUAL GTP CYCLOHYDROLASE by James Edward Spoonamore ______________________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF BIOCHEMISTRY AND MOLECULAR BIOPHYSICS In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2008 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by James Edward Spoonamore entitled Chemical Transformations Encoded by a Gene Cluster in Streptomyces coelicolor Containing an Unusual GTP Cyclohydrolase and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: April 16, 2008 Vahe Bandarian _______________________________________________________________________
    [Show full text]
  • Downloaded from the SEED Or Genbank Performed with Treedyn [119]
    Lawrence Berkeley National Laboratory Recent Work Title A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. Permalink https://escholarship.org/uc/item/0f2815fq Journal BMC genomics, 10(1) ISSN 1471-2164 Authors Haas, Crysten E Rodionov, Dmitry A Kropat, Janette et al. Publication Date 2009-10-12 DOI 10.1186/1471-2164-10-470 Peer reviewed eScholarship.org Powered by the California Digital Library University of California BMC Genomics BioMed Central Research article Open Access A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life Crysten E Haas1, Dmitry A Rodionov2,3, Janette Kropat4, Davin Malasarn4, Sabeeha S Merchant4 and Valérie de Crécy-Lagard*1 Address: 1Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA, 2Burnham Institute for Medical Research, La Jolla, CA, USA, 3Institute for Information Transmission Problems (the Kharkevich Institute), RAS, Moscow, Russia and 4Department of Chemistry and Biochemistry and Institute for Genomics and Proteomics, University of California at Los Angeles, Los Angeles, CA, USA Email: Crysten E Haas - [email protected]; Dmitry A Rodionov - [email protected]; Janette Kropat - [email protected]; Davin Malasarn - [email protected]; Sabeeha S Merchant - [email protected]; Valérie de Crécy-Lagard* - [email protected] * Corresponding author Published: 12 October 2009 Received: 25 June 2009 Accepted: 12 October 2009 BMC Genomics 2009, 10:470 doi:10.1186/1471-2164-10-470 This article is available from: http://www.biomedcentral.com/1471-2164/10/470 © 2009 Haas et al; licensee BioMed Central Ltd.
    [Show full text]
  • Subject Index Proc
    13088 Subject Index Proc. Natl. Acad. Sci. USA 91 (1994) Apoptosis in substantia nigra following developmental striatal excitotoxic Brine shrimp injury, 8117 See Artemia Visualizing hippocampal synaptic function by optical detection of Ca2l Broccol entry through the N-methyl-D-aspartate channel, 8170 See Brassica Amygdala modulation of hippocampal-dependent and caudate Bromophenacyl bromide nucleus-dependent memory processes, 8477 Bromophenacyl bromide binding to the actin-bundling protein I-plastin Distribution of corticotropin-releasing factor receptor mRNA expression inhibits inositol trisphosphate-independent increase in Ca2l in human in the rat brain and pituitary, 8777 neutrophils, 3534 Brownian dynamics Preproenkephalin promoter yields region-specific and long-term Adhesion of hard spheres under the influence of double-layer, van der expression in adult brain after direct in vivo gene transfer via a Waals, and gravitational potentials at a solid/liquid interface, 3004 defective herpes simplex viral vector, 8979 Browsers Intravenous administration of a transferrin receptor antibody-nerve Thorn-like prickles and heterophylly in Cyanea: Adaptations to extinct growth factor conjugate prevents the degeneration of cholinergic avian browsers on Hawaii?, 2810 striatal neurons in a model of Huntington disease, 9077 Bruton agammaglobulinemia Axotomy induces the expression of vasopressin receptors in cranial and Genomic organization and structure of Bruton agammaglobulinemia spinal motor nuclei in the adult rat, 9636 tyrosine kinase: Localization
    [Show full text]
  • Rhodococcus Erythropolis and Gordonia Alkanivorans: Interesting Desulfurizing
    IN SILICO MODELING AND ANALYSIS FOR IMPROVING DESULFURIZING BACTERIAL STRAINS SHILPI AGGARWAL (M.Tech., Indian Institute of Technology, Roorkee, India) A THESIS SUBMITTED FOR THE DEGREE OF PHD OF ENGINEERING DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2012 Declaration DECLARATION I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. Shilpi Aggarwal 10 April 2013 i Acknowledgments ACKNOWLEDGMENTS I take this chance to express my sincere gratitude and love for my parents (Mr Subash and Mrs Renu) for their undying faith, encouragement, and unconditional love throughout my life. This PhD thesis is dedicated to them as I could have never come so far without their support. It is with immense pleasure and respect I take this opportunity to express my thankfulness to all those who have helped me in shaping my research career and making my stay in Singapore a truly memorable one. With the term ‘PhD’, the first person who comes to my mind is my supervisor, Prof I. A. Karimi. I take this chance to thank him for giving me an opportunity to pursue my research career under his able guidance. As a mentor he has made me acquire skills for critical and logical thinking. His directions and guidance has helped me get deeper insights into the subject and made my learning a great experience.
    [Show full text]
  • B Number Gene Name Strand Orientation Protein Length Mrna
    list list sample) short list predicted B number Operon ID Gene name assignment Protein length mRNA present mRNA intensity Gene description Protein detected - Strand orientation Membrane protein detected (total list) detected (long list) membrane sample Proteins detected - detected (short list) # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides Functional category detected (membrane Protein detected - total Protein detected - long b0001 thrL + 21 1344 P 1 0 0 0 0 thr operon leader peptide Metabolism of small molecules 1 b0002 thrA + 820 13624 P 39 P 18 P 18 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules 1 b0003 thrB + 310 6781 P 9 P 3 3 P 3 0 homoserine kinase Metabolism of small molecules 1 b0004 thrC + 428 15039 P 18 P 10 P 11 P 10 0 threonine synthase Metabolism of small molecules 1 b0005 b0005 + 98 432 A 5 0 0 0 0 orf, hypothetical protein Open reading frames 2 b0006 yaaA - 258 1047 P 11 P 1 2 P 1 0 orf, hypothetical protein Open reading frames 3 b0007 yaaJ - 476 342 P 8 0 0 0 0 MP-GenProt-PHD inner membrane transport protein Miscellaneous 4 b0008 talB + 317 20561 P 20 P 13 P 16 P 13 0 transaldolase B Metabolism of small molecules 5 b0009 mog + 195 1296 P 7 0 0 0 0 required for the efficient incorporation of molybdate into molybdoproteins Metabolism of small molecules 6 b0010 yaaH - 188 407 A 2 0 0 0 0 PHD orf, hypothetical protein Open reading frames 7 b0011 b0011 - 237 338 P 13 0 0 0 0 putative oxidoreductase Miscellaneous 8 b0012 htgA
    [Show full text]
  • Microbial Enzymes: Industrial Progress in 21St Century
    3 Biotech (2016) 6:174 DOI 10.1007/s13205-016-0485-8 REVIEW ARTICLE Microbial enzymes: industrial progress in 21st century 1 1 2 3 Rajendra Singh • Manoj Kumar • Anshumali Mittal • Praveen Kumar Mehta Received: 8 April 2016 / Accepted: 1 August 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Biocatalytic potential of microorganisms have Introduction been employed for centuries to produce bread, wine, vinegar and other common products without understanding Microbes have been utilized since ancient human civi- the biochemical basis of their ingredients. Microbial lization with first reported commercial application of yeast enzymes have gained interest for their widespread uses in to produce alcoholic beverages from barley by the Baby- industries and medicine owing to their stability, catalytic lonians and Sumerians as early as 6000 BC. The microbial activity, and ease of production and optimization than plant enzymes have gained recognition globally for their wide- and animal enzymes. The use of enzymes in various spread uses in various sectors of industries, e.g., food, industries (e.g., food, agriculture, chemicals, and pharma- agriculture, chemicals, medicine, and energy. Enzyme ceuticals) is increasing rapidly due to reduced processing mediated processes are rapidly gaining interest because of time, low energy input, cost effectiveness, nontoxic and reduced process time, intake of low energy input, cost eco-friendly characteristics. Microbial enzymes are capable effective, nontoxic and eco-friendly characteristics (Li of degrading toxic chemical compounds of industrial and et al. 2012; Choi et al. 2015). Moreover, with the advent of domestic wastes (phenolic compounds, nitriles, amines recombinant DNA technology and protein engineering a etc.) either via degradation or conversion.
    [Show full text]
  • Mcqs in BIOCHEMISTRY
    This page intentionally left blank Copyright © 2008, New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers All rights reserved. No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. All inquiries should be emailed to [email protected] ISBN (13) : 978-81-224-2627-4 PUBLISHING FOR ONE WORLD NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com Dedicated to PROF. DR. F.V. MANVI SecretarySecretarySecretary KLE Society, BELGAUM KARNATAKA. “To My First Pharmacy teacher with Love” This page intentionally left blank FOREWORD Competitive Examinations are the order of the day. All Colleges conducting professional courses at PG level are admitting students based on common entrance examination, which is of objective type. In Pharmacy, M.Pharm admissions are based on qualifying the GATE enterance examination conducted by Govt. of India. In this book, The author has done good work in preparing several objective questions which help the students to face the subject in the examination with poise and confidence. The book is well balanced and consists of multiple choice questions from all the important topics like carbohydrate metabolism and other important Biochemical aspects. The typesetting and quality of printing is good. The author is also well experienced in taking up this type of work. I recommend this book to all the students preparing for GATE examination and also for Medical and Pharmacy College libraries.
    [Show full text]
  • Osu1056980709.Pdf (5.18
    COORDINATION OF CELL CYCLE AND CELL DIFFERENTIATION BY RECEPTOR ACTIVATOR OF NF-KAPPA-B LIGAND DURING OSTEOCLAST DIFFERENTIATION DISSERTATION Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Uma Sankar ***** The Ohio State University 2003 Dissertation Committee: Approved by Professor Michael C. Ostrowski, Adviser Professor Gustavo W. Leone Adviser Professor Natarajan Muthusamy Molecular, Cellular and Professor Russell J. Hill Developmental Biology ABSTRACT Osteoclasts are bone resorbing multinuclear cells formed by the fusion of hematopoietic mononuclear precursor cells of the macrophage/monocyte lineage. Microphthalmia transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor that is important for the differentiation of many cell types, including osteoclasts and melanocytes. MITF regulates the expression of osteoclast-differentiation marker genes, Tartrate-resistant acid phosphatase (TRAP) and cathepsin K. Deletion in arginine 215 in the basic domain of MITF results in severe osteopetrosis in homozygous recessive mice (Mitfmi/mi). A substitution of arginine 216, in the basic domain, with lysine results in age resolving osteopetrosis in mice in the homozygous condition (Mitfor/or). However, mice that are homozygous recessive for a substitution of isoleucine to asparagine in the basic domain of this transcription factor (Mitfwh/wh) do not exhibit any osteopetrosis. We identified several novel genes regulated by Mitf with potential roles in osteoclast differentiation via microarray analysis of cDNA from WT and Mitfmi/mi osteoclasts. In particular, Eos, HOX11L2, Hematopoietic cell phosphatase (HCP) and p9 were confirmed to be expressed in lower levels in Mitfmi/mi osteoclasts compared to the WT.
    [Show full text]