Wear Mechanisms in Microfabricated Ball Bearing Systems

Total Page:16

File Type:pdf, Size:1020Kb

Wear Mechanisms in Microfabricated Ball Bearing Systems Wear 326-327 (2015) 1–9 Contents lists available at ScienceDirect Wear journal homepage: www.elsevier.com/locate/wear Wear mechanisms in microfabricated ball bearing systems Brendan Hanrahan a,b, Saswat Misra c, C. Mike Waits d, Reza Ghodssi c,n a Formerly Materials Science and Engineering Department, University of Maryland, College Park, MD 20704, USA b Currently Oak Ridge Associated Universities Fellowship Program, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA c Electrical and Computer Engineering Department, Institute for Systems Research, University of Maryland, 2173 A.V. Williams Building, College Park, MD 20704, USA d U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA article info abstract Article history: Microfabricated ball bearings have been demonstrated successfully in a number of microsystems, Received 3 September 2014 although a complete understanding of their tribological properties remains elusive. This paper Received in revised form investigates the wear mechanisms for a microfabricated ball bearing platform that includes silicon 20 December 2014 and thin-film coated silicon raceway/steel ball materials systems. Adhesion of ball material, found to be Accepted 22 December 2014 the primary wear mechanism, is universally present in all tested materials systems. Volumetric adhesive Available online 31 December 2014 wear rates are observed between 4 Â 10 À4 and 4 Â 10 À5 mm3/mN Á rev. Pressured-induced phase changes Keywords: take place in the contact areas of the bare silicon raceways, observed with Raman spectroscopy. An Rolling friction understanding of the wear mechanisms within microfabricated ball bearings will help optimize Micro-abrasion operational parameters and materials systems for long-term reliability. Galling & 2015 Elsevier B.V. All rights reserved. Bearings Surface analysis 1. Introduction surface-to-volume ratio obtained from scaling features to shorter length scales, enhancing the influence adhesion; and (2) the specific Rolling bearings are universally employed in macroscale machin- materials systems used in integrated circuit microfabrication techni- ery to provide a low friction and wear contact for fast moving, loaded ques, which are often times non-ideal for mechanical/tribological components. Recently, rolling bearing technology has been extended applications. Wear studies within the MEMS domain are typically to the realm of micro-electromechanical systems (MEMS) in the split into two experimental categories[13]: in situ testing [11,14,15],in demonstration of high-performance linear and rotary micromachines. which wear is qualitatively described by observation or characterized The microscale rolling bearings differ from macro bearings in both byanumberofcyclesordevicelifetime[10]; and tribometer-based materials systems due to the use of silicon-based microfabrication studies [16–18], where contact is initiated in a pin-on-disc methodol- technology versus steel machining and size scales with feature sizes ogy using MEMS materials of interest. A classic example of in situ wear on the order of 100s of micrometers versus centimeters to meters. testing of micromachined silicon structures was performed by Meh- The understanding of wear mechanisms specific to rolling bearing regany et al., where the authors fabricated a side-drive polysilicon microsystems materials and geometries will ultimately enable the wobble motor [19]. Motor rotational speed is a function of the gap long-term use of high-performance micromachinery. between rotor and stator, which changes gradually with the wear of Microfabricated ball bearing systems provide long travel, mini- the contact bearing. The authors determined that there were three mal friction and wear, and good mechanical stability. Linear and primary regimes of operation for such a device: the burn-in period, rotary micromachines are attractive for power, sensing, and where large asperities on the bearing from the reactive ion etching are actuation applications, such as micropumps [1], microgenerators smoothed; the break-in period, where the speed of the motor [2], and micromotors [3–5]. Friction within the microball bearings gradually increases from smoothing of the surface roughness; and has been modeled in [6] and experimentally explored in [7–12]. the rotor slip region, where the rotor speed departs from the exciting The wear mechanisms present in microfabricated systems differ voltage due to slip. Tambe et al. published a study that highlighted the significantly from macroscale counterparts, and therefore, need to be scale and material dependence of tribological phenomena using a specifically addressed. This difference is due to (1) the increased micro-tribometer for the microscale portion and a modified atomic force microscope (AFM) for the nanoscale study [20]. In this study, the adhesive force between contacting materials showed a strong depen- n Corresponding author. Tel.: þ1 301 405 8158. dence on residence time, humidity, and temperature, which can be E-mail address: [email protected] (R. Ghodssi). related to water vapor-derived meniscus forces developed between http://dx.doi.org/10.1016/j.wear.2014.12.032 0043-1648/& 2015 Elsevier B.V. All rights reserved. 2 B. Hanrahan et al. / Wear 326-327 (2015) 1–9 the contact point and substrate. Additionally, a velocity dependence on of publications [11,25]. A schematic of the microtribology device friction force was discovered for multiple material systems, further (MTD) with 100 285-mm-diameter 440C stainless steel balls is shown strengthening the argument that tribological phenomena are strongly in Fig. 1. scaledependent.Kuetal.bridgedthegapbetweenin situ testing and a The MTD was selected because it can perform normal-load- tribometer by fabricating silicon thrust contact bearing geometries to resolved friction testing, and has a high fabrication yield and act as the pin of the pin-on-disc methodology [21]. The authors found consistent surface quality within the races. As shown in [3], the asignificant dependence on surface state of the measured coefficient encapsulated bearings can be integrated into integrated circuit of friction and wear rates. This result was deduced from a comparison fabrication flows to create future motors, generators, and sensors. of samples tested immediately after oxygen plasma cleaning and Packaging of the MTD allows for independent turbine and thrust samples left out in “room air” for a period of 15 h. A majority of these flow while simultaneously measuring the speed via an optical studies are focused on sliding regime wear mechanisms on micro-to- displacement sensor (ODS) on etched equiradial tracking marks, nano length scales, with little focus on the unique realm of microscale the turbine input pressure and flow rate, and the thrust plenum rolling contact. pressure. The thrust plenum, created by an o-ring sealed cavity Thin-film coatings are capable of greatly affecting the tribologi- between the device and packaging, allows for variable normal loads cal properties of a system owing to the fact that friction and wear to be acted on the rotor independent of speed. phenomena generally initiate at the surface or near-surface of The MTD rotor is fabricated using two silicon wafers containing a contacting bodies. Two regimes exist for the use of solid thin films shallow and deep-etched race half to achieve an offset bearing-bond in a tribological system: those that act as lubrication and wear in a interface, with a third wafer comprising the air manifold layer manner that reduces friction, e.g.,graphite[22] or molybdenum (Fig. 1). The offset bond interface is used to prevent ball contact on disulfide [23]; and those that remain intact and reduce the chemical the corners of the bonded wafers. To obtain offset interfaces and affinity for the contacting surfaces or enhance the mechanical alignment pits simultaneously, an asymmetrical etching scheme is properties of the surfaces. Solid film lubricants are typically used employed, described thoroughly in [26]. The dimensions of a in situations where it is difficult to maintain a fluid film boundary completed bearing are presented in Fig. 2. layer, such as high load or high speed operation. Hard thin films are The bearing surfaces have been characterized to assure consis- used in applications where debris generation is not tolerable. In the tency among the tested devices. The roughness of the raceway is RMS current demonstration of microball bearings, hard film coatings are 5 nm. There is a slight radius to the bottom of the raceway, a typical employed to alter the surface mechanical and chemical properties in product of the etch process. For first approximations of contact an attempt to enhance the tribology of the overall system. Silicon mechanics, the raceway is assumed to be flat. The sidewall roughness carbide (SiC) thin-film coatings were shown to improve the per- is a function of the ratio of etching to deposition time in the deep formance of a microfabricated ball bearing by reducing the coefficient reactive-ion etching (DRIE) process, found to be 160-nm scallops. of friction (COF) from 0.002 to 0.0006 over bare silicon raceways [8]. Ideally, the balls will not contact the sidewall because the frictional At high loads (10–500 mN), fracture was observed for similar SiC force will keep them in place. Realistically, the balls are not all under coated raceways, while ultrananocrystalline diamond (UNCD) films equal load due to waviness in the raceway from the etch process; exhibited virtually no wear
Recommended publications
  • MEMS Fabrication1
    16 MEMS Fabrication1 Marc J. Madou 16.1 Wet Bulk Micromachining: Introduction Nanogen, Inc. 16.2 Historical Note 16.3 Silicon Crystallography Miller Indices • Crystal Structure of Silicon • Geometric Relationships between Some Important Planes in the Silicon Lattice 16.4 Silicon as a Substrate and Structural Material Silicon as Substrate • Silicon as a Structural Element in Mechanical Sensors 16.5 Wet Isotropic and Anisotropic Etching Wet Isotropic and Anisotropic: Empirical Observations • Chemical Etching Models 16.6 Etching With Bias and/or Illumination of the Semiconductor Electropolishing and Microporous Silicon 16.7 Etch-Stop Techniques Introduction • Boron Etch Stop • Electrochemical Etch-Stop Technique • Photo-Assisted Electrochemical Etch Stop (for n-Type Silicon) • Photo-Induced Preferential Anodization, PIPA (for p-Type Silicon) • Etch Stop at Thin Films-Silicon on Insulator 16.8 Problems with Wet Bulk Micromachining Introduction • Extensive Real Estate Consumption • Corner Compensation 16.9 Wet Bulk Micromachining Examples 16.10 Surface Micromachining: Introduction 16.11 Historical Note 16.12 Mechanical Properties of Thin Films Introduction • Adhesion • Stress in Thin Films • Strength of Thin Films 16.13 Surface Micromachining Processes Basic Process Sequence • Fabrication Step Details • Control of Film Stress • Dimensional Uncertainties • Sealing Processes in Surface Micromachining • IC Compatibility 16.14 Poly-Si Surface Micromachining Modifications Porous Poly-Si • Hinged Polysilicon • Thick Polysilicon • Milli-Scale Molded
    [Show full text]
  • Call for Papers | 2022 MRS Spring Meeting
    Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications.
    [Show full text]
  • As Filed with the Securities and Exchange Commission on June 30, 1999
    As filed with the Securities and Exchange Commission on June 30, 1999 -------------------------------------------------------------------------------- SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 20-F |_| REGISTRATION STATEMENT PURSUANT TO SECTION 12(b) OR (g) OF THE SECURITIES EXCHANGE ACT OF 1934 OR |X| ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES ACT OF 1934 For the fiscal year ended: December 31, 1998 OR |_| TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES ACT OF 1934 For the transition period from to Commission file number: 1-13546 STMicroelectronics N.V. (Exact name of Registrant as specified in its charter) Not Applicable The Netherlands (Translation of Registrant's (Jurisdiction of incorporation name into English) or organization) Technoparc du Pays de Gex -- B.P. 112 Route de Pre-Bois 165, rue Edouard Branly ICC Bloc A 01637 Saint Genis Pouilly 1215 Geneva 15 France Switzerland (Addresses of principal executive offices) Securities registered or to be registered pursuant to Section 12(b) of the Act: Name of each exchange on Title of each class: which registered: Common Shares, nominal value Euro 3.12 per share New York Stock Exchange Liquid Yield OptionTM Notes due June 10, 2008 New York Stock Exchange Securities registered or to be registered pursuant to Section 12(g) of the Act: None Securities for which there is a reporting obligation pursuant to Section 15(d) of the Act: None Indicate the number of outstanding shares of each of the issuer's classes of capital or common stock as of the close of the period covered by the annual report: 142,478,106 Common Shares Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • 2000 Annual Report (Form 20-F)
    As filed with the Securities and Exchange Commission on May 15, 2001 SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 20-F £ REGISTRATION STATEMENT PURSUANT TO SECTION 12(b) OR (g) OF THE SECURITIES EXCHANGE ACT OF 1934 OR T ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended: December 31, 2000 OR £ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission file number: 1-13546 STMicroelectronics N.V. (Exact name of Registrant as specified in its charter) Not Applicable The Netherlands (Translation of Registrant’s (Jurisdiction of incorporation name into English) or organization) Route de Pré-Bois ICC Bloc A1215 Geneva 15 Switzerland (Address of principal executive offices) Securities registered or to be registered pursuant to Section 12(b) of the Act: Name of each exchange on Title of each class: which registered: Common Shares, nominal value € 1.04 per share New York Stock Exchange Liquid Yield OptionTM Notes due June 10, 2008 New York Stock Exchange Liquid Yield OptionTM Notes due September 22, 2009 New York Stock Exchange Securities registered or to be registered pursuant to Section 12(g) of the Act: None Securities for which there is a reporting obligation pursuant to Section 15(d) of the Act: None Indicate the number of outstanding shares of each of the issuer’s classes of capital or common stock as of the close of the period covered by the annual report: 889,881,287 Common Shares Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • Design and Micro-Fabrication of Tantalum Silicide Cantilever Beam Threshold Accelerometer
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Fall 1-31-1995 Design and micro-fabrication of tantalum silicide cantilever beam threshold accelerometer Chang Joo Kim New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Electrical and Electronics Commons Recommended Citation Kim, Chang Joo, "Design and micro-fabrication of tantalum silicide cantilever beam threshold accelerometer" (1995). Dissertations. 1117. https://digitalcommons.njit.edu/dissertations/1117 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution
    [Show full text]
  • Chapter 1 Markets and Applications
    SPI-B358: Smart MEMS and Sensor Systems ch01 CHAPTER 1 MARKETS AND APPLICATIONS 1.1. Technology at Crossroads This book concerns a particular class of Micro Electro Mechanical Systems (MEMS) device: Intelligent or smart sensors. The general area of MEMS is one that has been the subject of speculation and ‘futurology’ over the past few years, some of which has been quite unhelpful in providing a real appre- ciation of the huge potential of this technology. In the first days when micro- machining became feasible, there were extreme predictions of the potential of the new technologies — micromachines that would revolutionise every aspect of daily life were predicted, often based more on science fiction that any sober assessment of the capabilities of the technology. More recently, the futurologists have turned their attention to nanotechnology, MEMS being old news. Strangely, however, the prediction that MEMS technology would affect our daily lives has turned out to be entirely true, but the effect has been in ways both more subtle and profound than envisaged by the origi- nal forecasts. MEMS has indeed proved to be a potent technology and the application of MEMS that has been most important for the realisation of this potency has been sensors: sensing, a seemingly prosaic area of technol- ogy, has been revolutionised by MEMS to the extent that the basis has been laid for completely new types of engineering systems. There is now the pos- sibility of designing complex MEMS based systems that are sensitive and reactive to their environment and able to respond and adapt to it.
    [Show full text]
  • Development of Micromachined Millimeter-Wave Modules for Next-Generation Wireless Transceiver Front-Ends
    DEVELOPMENT OF MICROMACHINED MILLIMETER-WAVE MODULES FOR NEXT-GENERATION WIRELESS TRANSCEIVER FRONT-ENDS A Thesis Presented to The Academic Faculty by Bo PAN In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology August 2008 DEVELOPMENT OF MICROMACHINED MILLIMETER-WAVE MODULES FOR NEXT-GENERATION WIRELESS TRANSCEIVER FRONT-ENDS Approved by: Dr. Manos Tentzeris, co-advisor Dr. John Papapolymerou, co-advisor School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Joy Laskar Dr. John Cressler School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Gordon St¨uber Dr. John Z. Zhang School of Electrical and Computer School of Chemistry and Biochemistry Engineering Georgia Institute of Technology Georgia Institute of Technology Date Approved: 30 April 2008 To my beloved family iii ACKNOWLEDGEMENTS Spending five years for PhD in Georgia Tech is a hard journey. However, it becomes worthy when I have received a lot of help, companionship, and encouragement from people listed below. First, I want to thank my two advisors for their encouragement, insight and help. Their willing to share their life experiences with me, their professional attitudes towards high quality research, their belief and respect for innovation and hard work, and their generous financial support for all my research activities are a part of a life-time gift. I still keep their original comments on some papers I wrote. I always take it as a great privilege studying under their guidance.
    [Show full text]
  • Micromechanics of Engineered and Biological Systems
    Micromechanics of engineered and biological systems G K ANANTHASURESH1 and SUMAN CHAKRABORTY2 1Mechanical Engineering, Indian Institute of Science, Bangalore, India. e-mail: [email protected] 2Mechanical Engineering, Indian Institute of Technology, Kharagpur, India. e-mail: [email protected] This review paper is concerned with the mechanics issues at the micron scale. The topics consi- dered here are microsystems (microelectromechanical systems – MEMS), microfluidic devices, and biological cells. Mechanics is important for all the three fields. Micromechanics of solids is impor- tant for microsystems while microfluid mechanics is essential for microfluidics. Understanding the mechanics of cells requires both and much more. We highlight here some of the major advances and important challenges in all the three fields. 1. Introduction phenomena and systems – engineered or biological. Another critical aspect that ties the three topics of This review paper focuses on three aspects of this paper together is microfabrication and micro- mechanics of systems of small size: microsystems machinery. Without the ability to make intricate (microelectromechanical systems – MEMS – as structures of small size, to actuate and to control they are popularly known), microfluidics, and bio- them, these devices would not have come into exis- logical cells. The three topics are substantially tence. Without the micromachinery, which includes different from each other but there is significant sensors and actuators, quantitative investigation of interplay among them. The critical dimension of the behaviour of cells is unthinkable. To make it micron size is of course common to all three. How- all work, we need an understanding of mechanics ever, when we consider devices and systems, the issues and that is the focus of this paper.
    [Show full text]
  • Download Microelectronic Circuits Free Ebook
    MICROELECTRONIC CIRCUITS DOWNLOAD FREE BOOK Kenneth Smith, Adel S. Sedra | 1472 pages | 30 Dec 2015 | Oxford University Press Inc | 9780199339143 | English | New York, United States Microelectronic Circuits Diodes 5. Significantly revised with the input of two new coauthors, slimmed down, and updated with the latest innovations, Microelectronic CircuitsEighth Edition, remains the gold standard in providing the most comprehensive, flexible, accurate, and design-oriented treatment of electronic circuits available today. At smaller scales, the relative impact of intrinsic circuit properties such as interconnections may become more significant. Gaudet and Kenneth C. Gyrators can replace them in many applications. Oxford University Press Microelectronic Circuits a department of the University of Oxford. Download as PDF Printable version. To purchase, visit your preferred ebook provider. Belanger, E. No results were found Suggestions: Make sure the author's name is spelled correctly Make sure you are in the right Discipline Try searching only the last name. Electric Circuits Fundamentals Sergio Franco. A word from the authors about this important revision. Diodes 5. Feedback Operational Amplifiers 3. Unique wiring techniques such as wire bonding are also often used in microelectronics because of the unusually small size of the components, leads and pads. Namespaces Article Talk. Memory and Clocking Circuits Appendices A. It Microelectronic Circuits the best text for helping students progress from circuit analysis to circuit design, developing design skills and insights that are essential to successful practice in the field. Adler, Microelectronic Circuits N. Do be advised that shipments may be delayed due to extra safety precautions implemented at our centers and delays with local Microelectronic Circuits carriers.
    [Show full text]
  • Emerging Applications of Radiation in Nanotechnology Proceedings of a Consultants Meeting Held in Bologna, Italy, 22–25 March 2004
    IAEA-TECDOC-1438 Emerging applications of radiation in nanotechnology Proceedings of a consultants meeting held in Bologna, Italy, 22–25 March 2004 March 2005 IAEA-TECDOC-1438 Emerging applications of radiation in nanotechnology Proceedings of a consultants meeting held in Bologna, Italy, 22–25 March 2004 March 2005 The originating Section of this publication in the IAEA was: Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria EMERGING APPLICATIONS OF RADIATION IN NANOTECHNOLOGY IAEA, VIENNA, 2005 IAEA-TECDOC-1438 ISBN 92–0–100605–5 ISSN 1011–4289 © IAEA, 2005 Printed by the IAEA in Austria March 2005 FOREWORD Nanotechnology is one of the fastest growing new areas in science and engineering. The subject arises from the convergence of electronics, physics, chemistry, biology and material sciences to create new functional systems of nanoscale dimensions. Nanotechnology deals with science and technology associated with dimensions in the range of 0.1 to 100 nm. Nanotechnology is predicted to have a major impact on the manufacturing technology 20 to 30 years from now. The ability to fabricate structures with nanometric precision is of fundamental importance to any exploitation of nanotechnology. Nanofabrication involves various lithographies to write extremely small structures. Radiation based technology using X rays, e-beams and ion beams is the key to a variety of different approaches to micropattering. Other studies concern formation and synthesis of nanoparticles and nanocomposites. Radiation synthesis of copper, silver and nanoparticles of other metals is studied. Metal and salt–polymer composites are synthesized by this method.
    [Show full text]
  • Microfluidic Technology and Biomedical Field
    NATURENGS, MTU Journal of Engineering and Natural Sciences 2:1 (2021) 74-87 NATURENGS MTU Journal of Engineering and Natural Sciences https://dergipark.org.tr/tr/pub/naturengs DOI: 10.46572/naturengs.883706 Review Article Microfluidic Technology and Biomedical Field Zülfü TÜYLEK Electronics and Automation Department, Yesilyurt Vocational School, Malatya Turgut Ozal University, Malatya, Turkey. ( Received: 20.02.2021; Accepted: 21.05.2021) ABSTRACT: It is seen that the development of microfluidic laboratories working passively on chips has increased over the years. The field of microfluidics includes the use of microstructured devices, which typically have micrometer sizes and allow precise processing of low volumes. Nano fields are the main fields of nanotechnology, which includes science fields such as earth science, organic chemistry, molecular biology, semiconductor physics, micromachinery where the control of the atomic and molecular unit will take place. New techniques are needed to meet existing for the development phase. Micro and nano-volume multi-stage systems through micrometer-sized channels and microfluidics, which are applied science branches, have drawn significant attention in engineering. The circulation of fluids through micrometer-sized channels examines factors that can affect the behavior of fluids, such as surface tension, the utilization of energy, and fluid resistance in the system. Microfluidic devices and systems have a variety of functions to replace routine biomedical analysis and diagnostics. It emphasizes a higher level of system integration with advanced automation, control and High-Efficiency processing potential while consuming small amounts of sample and reagent in less time. Thanks to miniaturization, better diagnostic speed, cost-effectiveness, ergonomics and sensitivity are achieved.
    [Show full text]
  • Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering
    Polymers 2012, 4, 1349-1398; doi:10.3390/polym4031349 OPEN ACCESS polymers ISSN 2073-4360 www.mdpi.com/journal/polymers Review Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering Ahmed Alrifaiy 1,2, Olof A. Lindahl 1,2,3 and Kerstin Ramser 1,2,* 1 Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; E-Mails: [email protected] (A.A.); [email protected] (O.A.L.) 2 CMTF, Centre for Biomedical Engineering and Physics, Luleå University of Technology, SE-971 87 Luleå, Sweden 3 Department of Radiation Sciences, Biomedical Engineering, Umeå University, SE-901 87 Umeå, Sweden * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-920-491-648; Fax: +46-920-493-111. Received: 2 March 2012; in revised form: 4 May 2012 / Accepted: 18 June 2012 / Published: 3 July 2012 Abstract: This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polystyrene (PS), polycarbonate (PC), cyclic olefin copolymer (COC), glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.
    [Show full text]