MEMS Fabrication1

Total Page:16

File Type:pdf, Size:1020Kb

MEMS Fabrication1 16 MEMS Fabrication1 Marc J. Madou 16.1 Wet Bulk Micromachining: Introduction Nanogen, Inc. 16.2 Historical Note 16.3 Silicon Crystallography Miller Indices • Crystal Structure of Silicon • Geometric Relationships between Some Important Planes in the Silicon Lattice 16.4 Silicon as a Substrate and Structural Material Silicon as Substrate • Silicon as a Structural Element in Mechanical Sensors 16.5 Wet Isotropic and Anisotropic Etching Wet Isotropic and Anisotropic: Empirical Observations • Chemical Etching Models 16.6 Etching With Bias and/or Illumination of the Semiconductor Electropolishing and Microporous Silicon 16.7 Etch-Stop Techniques Introduction • Boron Etch Stop • Electrochemical Etch-Stop Technique • Photo-Assisted Electrochemical Etch Stop (for n-Type Silicon) • Photo-Induced Preferential Anodization, PIPA (for p-Type Silicon) • Etch Stop at Thin Films-Silicon on Insulator 16.8 Problems with Wet Bulk Micromachining Introduction • Extensive Real Estate Consumption • Corner Compensation 16.9 Wet Bulk Micromachining Examples 16.10 Surface Micromachining: Introduction 16.11 Historical Note 16.12 Mechanical Properties of Thin Films Introduction • Adhesion • Stress in Thin Films • Strength of Thin Films 16.13 Surface Micromachining Processes Basic Process Sequence • Fabrication Step Details • Control of Film Stress • Dimensional Uncertainties • Sealing Processes in Surface Micromachining • IC Compatibility 16.14 Poly-Si Surface Micromachining Modifications Porous Poly-Si • Hinged Polysilicon • Thick Polysilicon • Milli-Scale Molded Polysilicon Structures 1This chapter was originally published in Madou, M.J. (1997) “Wet Bulk Micromachining” and “Surface Micro- machining” (chaps. 4 and 5), in Fundamentals of Microfabrication, CRC Press, Boca Raton, FL. © 2002 by CRC Press LLC 16.15 Non-Poly-Si Surface Micromachining Modifications Silicon on Insulator Surface Micromachining 16.16 Resists as Structural Elements and Molds in Surface Micromachining Introduction • Polyimide Surface Structures • UV Depth Lithography • Comparison of Bulk Micromachining with Surface Micromachining 16.17 Materials Case Studies Introduction • Polysilicon Deposition and Material Structure • Amorphous and Hydrogenated Amorphous Silicon • Silicon Nitride • CVD Silicon Dioxides 16.18 Polysilicon Surface Micromachining Examples 16.1 Wet Bulk Micromachining: Introduction In wet bulk micromachining, features are sculpted in the bulk of materials such as silicon, quartz, SiC, GaAs, InP, Ge and glass by orientation-dependent (anisotropic) and/or by orientation-independent (isotropic) wet etchants. The technology employs pools as tools [Harris, 1976], instead of the plasmas studied in Madou (1997, chap. 2). A vast majority of wet bulk micromachining work is based on single crystal silicon. There has been some work on quartz, some on crystalline Ge and GaAs, and a minor amount on GaP, InP and SiC. Micromachining has grown into a large discipline, comprising several tool sets for fashioning micro- structures from a variety of materials. These tools are used to fabricate microstructures either in parallel or serial processes. Madou (1997, Table 7.7) summarizes these tools. It is important to evaluate all the presented micromanufacturing methods before deciding on one specific machining method optimal for the application at hand—in other words, to zero-base the technological approach [Block, B., private communication]. The principle commercial Si micromachining tools used today are the well-established wet bulk micromachining and the more recently introduced surface micromachining (see Section 16.10). A typical structure fashioned in a bulk micromachining process is shown in Figure 16.1. This type of piezoresistive membrane structure, a likely base for a pressure sensor or an accelerometer, demonstrated that batch fabrication of miniature components does not need to be limited to integrated circuits (ICs). Despite all the emerging new micro- machining options, Si wet bulk micromachining, being the best characterized micromachining tool, remains FIGURE 16.1 A wet bulk micromachining process is used to craft a membrane with piezoresistive elements. Silicon micromachining selectively thins the silicon wafer from a starting thickness of about 400 µm. A diaphragm having a typical thickness of 20 µm or less with precise lateral dimensions and vertical thickness control results. © 2002 by CRC Press LLC most popular in industry. An emphasis in this chapter is on the wet etching process itself. Other machining steps typically used in conjunction with wet bulk micromachining, such as additive processes and bonding processes, are covered in Madou (1997, chaps. 3 and 8, respectively). Wet bulk micromachining had its genesis in the Si IC industry, but further development will require the adaptation of many different processes and materials. To emphasize the need for micromachinists to look beyond Si as the ultimate substrate and/or building material, we have presented many examples of non-Si micromachinery throughout the book. The need to incorporate new materials and processes is especially urgent for progress in chemical sensors and micro-instrumentation which rely on non-IC materials and often are relatively large. The merging of bulk micromachining with other new fabrication tools such as surface micromachining and electroplating and the adaptation of new materials such as Ni and polyimides has fostered a powerful new, nontraditional precision engineering method. A truly multidisciplinary engineering education will be required to design miniature systems with the most appropriate building philosophy. After a short historical note on wet bulk micromachining we begin this chapter with an introduction to the crystallography of single crystal Si and a listing of its properties, clarifying why Si is such an important sensor material. Some empirical data on wet etching are reviewed and different models for anisotropic and isotropic etching behavior follow. Then, etch stop techniques, which catapulted micro- machining into an industrial manufacturing technique, are discussed. Subsequently, a discussion of problems associated with bulk micromachining such as IC incompatibility, extensive real-estate usage, and issues involving corner compensation is presented. Finally, examples of applications of wet bulk micromachining in mechanical and chemical sensors are given. 16.2 Historical Note The earliest use of wet etching of a substrate, using a mask (wax) and etchants (acid-base), appears to be in the fifteenth century for decorating armor [Harris, 1976]. Engraving hand tools were not hard enough to work the armor and more powerful acid-base processes took over. By the early seventeenth century, etching to decorate arms and armor was a completely established process. Some pieces stemming from that period have been found where the chemical milling was accurate to within 0.5 mm. The masking in this traditional chemical milling was accomplished by cutting the maskant with a scribing tool and peeling the maskant off where etching was wanted. Harris (1976) describes in detail all of the improve- ments that, by the mid-1960s, made this type of chemical milling a valuable and reliable method of manufacturing. It is especially popular in the aerospace world. The method enables many parts to be produced more easily and cheaply than by other means and in many cases provides a means to design and produce parts and configurations not previously possible. Through the introduction of photosensitive masks by Niépce in 1822 [Madou, 1997, chap. 1], chemical milling in combination with lithography became a reality and a new level of tolerances came within reach. The more recent major applications of lithography-based chemical milling are the manufacture of printed circuit boards, started during the Second World War, and, by 1961, the fabrication of Si-integrated circuitry. Photochemical machining is also used for such precision parts as color television shadow masks, integrated circuit lead frames, light chopper and encoder discs, and decorative objects such as costume jewelry [Allen, 1986]. The geometry of a ‘cut’ produced when etching silicon integrated circuits is similar to the chemical-milling cut of the aerospace industry, but the many orders of magnitude difference in size and depth of the cut account for a major difference in achievable accuracy. Accordingly, the tolerances for fashioning integrated circuitry are many orders of magnitude smaller than in the chemical milling industry. In this book we are concerned with lithography and chemical machining used in the IC industry and in microfabrication. A major difference between these two fields is in the aspect ratio (height-to-width ratio) of the features crafted. In the IC industry one deals with mostly very small, flat structures with aspect ratios of 1 to 2. In the microfabrication field, structures typically are somewhat larger and aspect ratios might be as high as 400. © 2002 by CRC Press LLC Decorating armor. (From Harris, T. W., Chemical Milling, Clarendon Press, Oxford, 1976. With permission.) Isotropic etching has been used in silicon semiconductor processing since its beginning in the early 1950s. Representative work from that period is the impressive series of papers by Robbins and Schwartz (1959, 1960) and Schwartz and Robbins (1961, 1976) on chemical isotropic etching, and Uhlir’s paper on electrochemical isotropic etching [Uhlir, 1956]. The usual chemical isotropic etchant used for silicon was HF in combination with HNO3 with or
Recommended publications
  • Call for Papers | 2022 MRS Spring Meeting
    Symposium CH01: Frontiers of In Situ Materials Characterization—From New Instrumentation and Method to Imaging Aided Materials Design Advancement in synchrotron X-ray techniques, microscopy and spectroscopy has extended the characterization capability to study the structure, phonon, spin, and electromagnetic field of materials with improved temporal and spatial resolution. This symposium will cover recent advances of in situ imaging techniques and highlight progress in materials design, synthesis, and engineering in catalysts and devices aided by insights gained from the state-of-the-art real-time materials characterization. This program will bring together works with an emphasis on developing and applying new methods in X-ray or electron diffraction, scanning probe microscopy, and other techniques to in situ studies of the dynamics in materials, such as the structural and chemical evolution of energy materials and catalysts, and the electronic structure of semiconductor and functional oxides. Additionally, this symposium will focus on works in designing, synthesizing new materials and optimizing materials properties by utilizing the insights on mechanisms of materials processes at different length or time scales revealed by in situ techniques. Emerging big data analysis approaches and method development presenting opportunities to aid materials design are welcomed. Discussion on experimental strategies, data analysis, and conceptual works showcasing how new in situ tools can probe exotic and critical processes in materials, such as charge and heat transfer, bonding, transport of molecule and ions, are encouraged. The symposium will identify new directions of in situ research, facilitate the application of new techniques to in situ liquid and gas phase microscopy and spectroscopy, and bridge mechanistic study with practical synthesis and engineering for materials with a broad range of applications.
    [Show full text]
  • As Filed with the Securities and Exchange Commission on June 30, 1999
    As filed with the Securities and Exchange Commission on June 30, 1999 -------------------------------------------------------------------------------- SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 20-F |_| REGISTRATION STATEMENT PURSUANT TO SECTION 12(b) OR (g) OF THE SECURITIES EXCHANGE ACT OF 1934 OR |X| ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES ACT OF 1934 For the fiscal year ended: December 31, 1998 OR |_| TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES ACT OF 1934 For the transition period from to Commission file number: 1-13546 STMicroelectronics N.V. (Exact name of Registrant as specified in its charter) Not Applicable The Netherlands (Translation of Registrant's (Jurisdiction of incorporation name into English) or organization) Technoparc du Pays de Gex -- B.P. 112 Route de Pre-Bois 165, rue Edouard Branly ICC Bloc A 01637 Saint Genis Pouilly 1215 Geneva 15 France Switzerland (Addresses of principal executive offices) Securities registered or to be registered pursuant to Section 12(b) of the Act: Name of each exchange on Title of each class: which registered: Common Shares, nominal value Euro 3.12 per share New York Stock Exchange Liquid Yield OptionTM Notes due June 10, 2008 New York Stock Exchange Securities registered or to be registered pursuant to Section 12(g) of the Act: None Securities for which there is a reporting obligation pursuant to Section 15(d) of the Act: None Indicate the number of outstanding shares of each of the issuer's classes of capital or common stock as of the close of the period covered by the annual report: 142,478,106 Common Shares Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • 2000 Annual Report (Form 20-F)
    As filed with the Securities and Exchange Commission on May 15, 2001 SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 20-F £ REGISTRATION STATEMENT PURSUANT TO SECTION 12(b) OR (g) OF THE SECURITIES EXCHANGE ACT OF 1934 OR T ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the fiscal year ended: December 31, 2000 OR £ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 For the transition period from to Commission file number: 1-13546 STMicroelectronics N.V. (Exact name of Registrant as specified in its charter) Not Applicable The Netherlands (Translation of Registrant’s (Jurisdiction of incorporation name into English) or organization) Route de Pré-Bois ICC Bloc A1215 Geneva 15 Switzerland (Address of principal executive offices) Securities registered or to be registered pursuant to Section 12(b) of the Act: Name of each exchange on Title of each class: which registered: Common Shares, nominal value € 1.04 per share New York Stock Exchange Liquid Yield OptionTM Notes due June 10, 2008 New York Stock Exchange Liquid Yield OptionTM Notes due September 22, 2009 New York Stock Exchange Securities registered or to be registered pursuant to Section 12(g) of the Act: None Securities for which there is a reporting obligation pursuant to Section 15(d) of the Act: None Indicate the number of outstanding shares of each of the issuer’s classes of capital or common stock as of the close of the period covered by the annual report: 889,881,287 Common Shares Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days.
    [Show full text]
  • Design and Micro-Fabrication of Tantalum Silicide Cantilever Beam Threshold Accelerometer
    New Jersey Institute of Technology Digital Commons @ NJIT Dissertations Electronic Theses and Dissertations Fall 1-31-1995 Design and micro-fabrication of tantalum silicide cantilever beam threshold accelerometer Chang Joo Kim New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/dissertations Part of the Electrical and Electronics Commons Recommended Citation Kim, Chang Joo, "Design and micro-fabrication of tantalum silicide cantilever beam threshold accelerometer" (1995). Dissertations. 1117. https://digitalcommons.njit.edu/dissertations/1117 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution
    [Show full text]
  • Wear Mechanisms in Microfabricated Ball Bearing Systems
    Wear 326-327 (2015) 1–9 Contents lists available at ScienceDirect Wear journal homepage: www.elsevier.com/locate/wear Wear mechanisms in microfabricated ball bearing systems Brendan Hanrahan a,b, Saswat Misra c, C. Mike Waits d, Reza Ghodssi c,n a Formerly Materials Science and Engineering Department, University of Maryland, College Park, MD 20704, USA b Currently Oak Ridge Associated Universities Fellowship Program, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA c Electrical and Computer Engineering Department, Institute for Systems Research, University of Maryland, 2173 A.V. Williams Building, College Park, MD 20704, USA d U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA article info abstract Article history: Microfabricated ball bearings have been demonstrated successfully in a number of microsystems, Received 3 September 2014 although a complete understanding of their tribological properties remains elusive. This paper Received in revised form investigates the wear mechanisms for a microfabricated ball bearing platform that includes silicon 20 December 2014 and thin-film coated silicon raceway/steel ball materials systems. Adhesion of ball material, found to be Accepted 22 December 2014 the primary wear mechanism, is universally present in all tested materials systems. Volumetric adhesive Available online 31 December 2014 wear rates are observed between 4 Â 10 À4 and 4 Â 10 À5 mm3/mN Á rev. Pressured-induced phase changes Keywords: take place in the contact areas of the bare silicon raceways, observed with Raman spectroscopy. An Rolling friction understanding of the wear mechanisms within microfabricated ball bearings will help optimize Micro-abrasion operational parameters and materials systems for long-term reliability.
    [Show full text]
  • Chapter 1 Markets and Applications
    SPI-B358: Smart MEMS and Sensor Systems ch01 CHAPTER 1 MARKETS AND APPLICATIONS 1.1. Technology at Crossroads This book concerns a particular class of Micro Electro Mechanical Systems (MEMS) device: Intelligent or smart sensors. The general area of MEMS is one that has been the subject of speculation and ‘futurology’ over the past few years, some of which has been quite unhelpful in providing a real appre- ciation of the huge potential of this technology. In the first days when micro- machining became feasible, there were extreme predictions of the potential of the new technologies — micromachines that would revolutionise every aspect of daily life were predicted, often based more on science fiction that any sober assessment of the capabilities of the technology. More recently, the futurologists have turned their attention to nanotechnology, MEMS being old news. Strangely, however, the prediction that MEMS technology would affect our daily lives has turned out to be entirely true, but the effect has been in ways both more subtle and profound than envisaged by the origi- nal forecasts. MEMS has indeed proved to be a potent technology and the application of MEMS that has been most important for the realisation of this potency has been sensors: sensing, a seemingly prosaic area of technol- ogy, has been revolutionised by MEMS to the extent that the basis has been laid for completely new types of engineering systems. There is now the pos- sibility of designing complex MEMS based systems that are sensitive and reactive to their environment and able to respond and adapt to it.
    [Show full text]
  • Development of Micromachined Millimeter-Wave Modules for Next-Generation Wireless Transceiver Front-Ends
    DEVELOPMENT OF MICROMACHINED MILLIMETER-WAVE MODULES FOR NEXT-GENERATION WIRELESS TRANSCEIVER FRONT-ENDS A Thesis Presented to The Academic Faculty by Bo PAN In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology August 2008 DEVELOPMENT OF MICROMACHINED MILLIMETER-WAVE MODULES FOR NEXT-GENERATION WIRELESS TRANSCEIVER FRONT-ENDS Approved by: Dr. Manos Tentzeris, co-advisor Dr. John Papapolymerou, co-advisor School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Joy Laskar Dr. John Cressler School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Gordon St¨uber Dr. John Z. Zhang School of Electrical and Computer School of Chemistry and Biochemistry Engineering Georgia Institute of Technology Georgia Institute of Technology Date Approved: 30 April 2008 To my beloved family iii ACKNOWLEDGEMENTS Spending five years for PhD in Georgia Tech is a hard journey. However, it becomes worthy when I have received a lot of help, companionship, and encouragement from people listed below. First, I want to thank my two advisors for their encouragement, insight and help. Their willing to share their life experiences with me, their professional attitudes towards high quality research, their belief and respect for innovation and hard work, and their generous financial support for all my research activities are a part of a life-time gift. I still keep their original comments on some papers I wrote. I always take it as a great privilege studying under their guidance.
    [Show full text]
  • Micromechanics of Engineered and Biological Systems
    Micromechanics of engineered and biological systems G K ANANTHASURESH1 and SUMAN CHAKRABORTY2 1Mechanical Engineering, Indian Institute of Science, Bangalore, India. e-mail: [email protected] 2Mechanical Engineering, Indian Institute of Technology, Kharagpur, India. e-mail: [email protected] This review paper is concerned with the mechanics issues at the micron scale. The topics consi- dered here are microsystems (microelectromechanical systems – MEMS), microfluidic devices, and biological cells. Mechanics is important for all the three fields. Micromechanics of solids is impor- tant for microsystems while microfluid mechanics is essential for microfluidics. Understanding the mechanics of cells requires both and much more. We highlight here some of the major advances and important challenges in all the three fields. 1. Introduction phenomena and systems – engineered or biological. Another critical aspect that ties the three topics of This review paper focuses on three aspects of this paper together is microfabrication and micro- mechanics of systems of small size: microsystems machinery. Without the ability to make intricate (microelectromechanical systems – MEMS – as structures of small size, to actuate and to control they are popularly known), microfluidics, and bio- them, these devices would not have come into exis- logical cells. The three topics are substantially tence. Without the micromachinery, which includes different from each other but there is significant sensors and actuators, quantitative investigation of interplay among them. The critical dimension of the behaviour of cells is unthinkable. To make it micron size is of course common to all three. How- all work, we need an understanding of mechanics ever, when we consider devices and systems, the issues and that is the focus of this paper.
    [Show full text]
  • Download Microelectronic Circuits Free Ebook
    MICROELECTRONIC CIRCUITS DOWNLOAD FREE BOOK Kenneth Smith, Adel S. Sedra | 1472 pages | 30 Dec 2015 | Oxford University Press Inc | 9780199339143 | English | New York, United States Microelectronic Circuits Diodes 5. Significantly revised with the input of two new coauthors, slimmed down, and updated with the latest innovations, Microelectronic CircuitsEighth Edition, remains the gold standard in providing the most comprehensive, flexible, accurate, and design-oriented treatment of electronic circuits available today. At smaller scales, the relative impact of intrinsic circuit properties such as interconnections may become more significant. Gaudet and Kenneth C. Gyrators can replace them in many applications. Oxford University Press Microelectronic Circuits a department of the University of Oxford. Download as PDF Printable version. To purchase, visit your preferred ebook provider. Belanger, E. No results were found Suggestions: Make sure the author's name is spelled correctly Make sure you are in the right Discipline Try searching only the last name. Electric Circuits Fundamentals Sergio Franco. A word from the authors about this important revision. Diodes 5. Feedback Operational Amplifiers 3. Unique wiring techniques such as wire bonding are also often used in microelectronics because of the unusually small size of the components, leads and pads. Namespaces Article Talk. Memory and Clocking Circuits Appendices A. It Microelectronic Circuits the best text for helping students progress from circuit analysis to circuit design, developing design skills and insights that are essential to successful practice in the field. Adler, Microelectronic Circuits N. Do be advised that shipments may be delayed due to extra safety precautions implemented at our centers and delays with local Microelectronic Circuits carriers.
    [Show full text]
  • Emerging Applications of Radiation in Nanotechnology Proceedings of a Consultants Meeting Held in Bologna, Italy, 22–25 March 2004
    IAEA-TECDOC-1438 Emerging applications of radiation in nanotechnology Proceedings of a consultants meeting held in Bologna, Italy, 22–25 March 2004 March 2005 IAEA-TECDOC-1438 Emerging applications of radiation in nanotechnology Proceedings of a consultants meeting held in Bologna, Italy, 22–25 March 2004 March 2005 The originating Section of this publication in the IAEA was: Industrial Applications and Chemistry Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria EMERGING APPLICATIONS OF RADIATION IN NANOTECHNOLOGY IAEA, VIENNA, 2005 IAEA-TECDOC-1438 ISBN 92–0–100605–5 ISSN 1011–4289 © IAEA, 2005 Printed by the IAEA in Austria March 2005 FOREWORD Nanotechnology is one of the fastest growing new areas in science and engineering. The subject arises from the convergence of electronics, physics, chemistry, biology and material sciences to create new functional systems of nanoscale dimensions. Nanotechnology deals with science and technology associated with dimensions in the range of 0.1 to 100 nm. Nanotechnology is predicted to have a major impact on the manufacturing technology 20 to 30 years from now. The ability to fabricate structures with nanometric precision is of fundamental importance to any exploitation of nanotechnology. Nanofabrication involves various lithographies to write extremely small structures. Radiation based technology using X rays, e-beams and ion beams is the key to a variety of different approaches to micropattering. Other studies concern formation and synthesis of nanoparticles and nanocomposites. Radiation synthesis of copper, silver and nanoparticles of other metals is studied. Metal and salt–polymer composites are synthesized by this method.
    [Show full text]
  • Microfluidic Technology and Biomedical Field
    NATURENGS, MTU Journal of Engineering and Natural Sciences 2:1 (2021) 74-87 NATURENGS MTU Journal of Engineering and Natural Sciences https://dergipark.org.tr/tr/pub/naturengs DOI: 10.46572/naturengs.883706 Review Article Microfluidic Technology and Biomedical Field Zülfü TÜYLEK Electronics and Automation Department, Yesilyurt Vocational School, Malatya Turgut Ozal University, Malatya, Turkey. ( Received: 20.02.2021; Accepted: 21.05.2021) ABSTRACT: It is seen that the development of microfluidic laboratories working passively on chips has increased over the years. The field of microfluidics includes the use of microstructured devices, which typically have micrometer sizes and allow precise processing of low volumes. Nano fields are the main fields of nanotechnology, which includes science fields such as earth science, organic chemistry, molecular biology, semiconductor physics, micromachinery where the control of the atomic and molecular unit will take place. New techniques are needed to meet existing for the development phase. Micro and nano-volume multi-stage systems through micrometer-sized channels and microfluidics, which are applied science branches, have drawn significant attention in engineering. The circulation of fluids through micrometer-sized channels examines factors that can affect the behavior of fluids, such as surface tension, the utilization of energy, and fluid resistance in the system. Microfluidic devices and systems have a variety of functions to replace routine biomedical analysis and diagnostics. It emphasizes a higher level of system integration with advanced automation, control and High-Efficiency processing potential while consuming small amounts of sample and reagent in less time. Thanks to miniaturization, better diagnostic speed, cost-effectiveness, ergonomics and sensitivity are achieved.
    [Show full text]
  • Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering
    Polymers 2012, 4, 1349-1398; doi:10.3390/polym4031349 OPEN ACCESS polymers ISSN 2073-4360 www.mdpi.com/journal/polymers Review Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering Ahmed Alrifaiy 1,2, Olof A. Lindahl 1,2,3 and Kerstin Ramser 1,2,* 1 Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden; E-Mails: [email protected] (A.A.); [email protected] (O.A.L.) 2 CMTF, Centre for Biomedical Engineering and Physics, Luleå University of Technology, SE-971 87 Luleå, Sweden 3 Department of Radiation Sciences, Biomedical Engineering, Umeå University, SE-901 87 Umeå, Sweden * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-920-491-648; Fax: +46-920-493-111. Received: 2 March 2012; in revised form: 4 May 2012 / Accepted: 18 June 2012 / Published: 3 July 2012 Abstract: This paper reviews microfluidic technologies with emphasis on applications in the fields of pharmacy, biology, and tissue engineering. Design and fabrication of microfluidic systems are discussed with respect to specific biological concerns, such as biocompatibility and cell viability. Recent applications and developments on genetic analysis, cell culture, cell manipulation, biosensors, pathogen detection systems, diagnostic devices, high-throughput screening and biomaterial synthesis for tissue engineering are presented. The pros and cons of materials like polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polystyrene (PS), polycarbonate (PC), cyclic olefin copolymer (COC), glass, and silicon are discussed in terms of biocompatibility and fabrication aspects. Microfluidic devices are widely used in life sciences. Here, commercialization and research trends of microfluidics as new, easy to use, and cost-effective measurement tools at the cell/tissue level are critically reviewed.
    [Show full text]