Bibliography from ADS File: Dircontent.Bib August 16, 2021 1

Total Page:16

File Type:pdf, Size:1020Kb

Bibliography from ADS File: Dircontent.Bib August 16, 2021 1 Bibliography from ADS file: dircontent.bib Alam, S., Ata, M., Bailey, S., et al., “The clustering of galaxies in the completed August 16, 2021 SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample”, 2017MNRAS.470.2617A ADS Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al., “The Planck Collaboration, Akrami, Y., Arroja, F., et al., “Planck 2018 results. X. Apache Point Observatory Galactic Evolution Experiment (APOGEE)”, Constraints on inflation”, 2020A&A...641A..10P ADS 2017AJ....154...94M ADS Planck Collaboration, Aghanim, N., Akrami, Y., et al., “Planck 2018 results. VI. Blanton, M. R., Bershady, M. A., Abolfathi, B., et al., “Sloan Digital Sky Survey Cosmological parameters”, 2020A&A...641A...6P ADS IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe”, Virtanen, P., Gommers, R., Oliphant, T. E., et al., “SciPy 1.0: fundamental algo- 2017AJ....154...28B ADS rithms for scientific computing in Python”, 2020NatMe..17..261V ADS Abbott, B. P., Abbott, R., Abbott, T. D., et al., “GW170104: Observa- Abbott, B. P., Abbott, R., Abbott, T. D., et al., “GWTC-1: A Gravitational-Wave tion of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2”, Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo 2017PhRvL.118v1101A ADS during the First and Second Observing Runs”, 2019PhRvX...9c1040A Nojiri, S., Odintsov, S. D., & Oikonomou, V. K., “Modified grav- ADS ity theories on a nutshell: Inflation, bounce and late-time evolution”, Riess, A. G., Casertano, S., Yuan, W., Macri, L. M., & Scolnic, D., “Large 2017PhR...692....1N ADS Magellanic Cloud Cepheid Standards Provide a 1 Foundation for the Deter- Amaro-Seoane, P., Audley, H., Babak, S., et al., “Laser Interferometer Space mination of the Hubble Constant and Stronger Evidence for Physics beyond Antenna”, 2017arXiv170200786A ADS ΛCDM”, 2019ApJ...876...85R ADS Hui, L., Ostriker, J. P., Tremaine, S., & Witten, E., “Ultralight scalars as cos- Event Horizon Telescope Collaboration, Akiyama, K., Alberdi, A., et al., “First mological dark matter”, 2017PhRvD..95d3541H ADS M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al., “Seven temperate Black Hole”, 2019ApJ...875L...1E ADS terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1”, Ivezic,´ Ž., Kahn, S. M., Tyson, J. A., et al., “LSST: From Science Drivers to Ref- 2017Natur.542..456G ADS erence Design and Anticipated Data Products”, 2019ApJ...873..111I Savary, L. & Balents, L., “Quantum spin liquids: a review”, ADS 2017RPPh...80a6502S ADS Abbott, B. P., Abbott, R., Abbott, T. D., et al., “GW170817: Measurements of Akerib, D. S., Alsum, S., Araújo, H. M., et al., “Results from a Search for Dark Neutron Star Radii and Equation of State”, 2018PhRvL.121p1101A ADS Matter in the Complete LUX Exposure”, 2017PhRvL.118b1303A ADS Aprile, E., Aalbers, J., Agostini, F., et al., “Dark Matter Search Results from a Chambers, K. C., Magnier, E. A., Metcalfe, N., et al., “The Pan-STARRS1 Sur- One Ton-Year Exposure of XENON1T”, 2018PhRvL.121k1302A ADS veys”, 2016arXiv161205560C ADS Astropy Collaboration, Price-Whelan, A. M., Sipocz,˝ B. M., et al., “The As- Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al., “Gaia Data Re- tropy Project: Building an Open-science Project and Status of the v2.0 Core lease 1. Summary of the astrometric, photometric, and survey properties”, Package”, 2018AJ....156..123A ADS 2016A&A...595A...2G ADS Abbott, T. M. C., Abdalla, F. B., Alarcon, A., et al., “Dark Energy Survey year 1 Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al., “The Gaia mission”, results: Cosmological constraints from galaxy clustering and weak lensing”, 2016A&A...595A...1G ADS 2018PhRvD..98d3526A ADS DESI Collaboration, Aghamousa, A., Aguilar, J., et al., “The DESI Experiment Tanabashi, M., Hagiwara, K., Hikasa, K., et al., “Review of Particle Physics∗”, Part I: Science,Targeting, and Survey Design”, 2016arXiv161100036D 2018PhRvD..98c0001T ADS ADS Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., & Andrae, R., Abazajian, K. N., Adshead, P., Ahmed, Z., et al., “CMB-S4 Science Book, First 2016arXiv161002743A “Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Edition”, ADS Abbott, B. P., Abbott, R., Abbott, T. D., et al., “Binary Black Hole Mergers in Gaia Data Release 2”, 2018AJ....156...58B ADS the First Advanced LIGO Observing Run”, 2016PhRvX...6d1015A ADS Lindegren, L., Hernández, J., Bombrun, A., et al., “Gaia Data Release 2. The Planck Collaboration, Ade, P. A. R., Aghanim, N., et al., “Planck 2015 results. astrometric solution”, 2018A&A...616A...2L ADS XX. Constraints on inflation”, 2016A&A...594A..20P ADS Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al., “Gaia Data Release 2. Planck Collaboration, Ade, P. A. R., Aghanim, N., et al., “Planck 2015 results. Summary of the contents and survey properties”, 2018A&A...616A...1G XIII. Cosmological parameters”, 2016A&A...594A..13P ADS ADS Planck Collaboration, Adam, R., Ade, P. A. R., et al., “Planck 2015 results. I. , “Binary Companions Price-Whelan, A. M., Hogg, D. W., Rix, H.-W., et al. Overview of products and scientific results”, 2016A&A...594A...1P ADS ∼ of Evolved Stars in APOGEE DR14: Search Method and Catalog of 5000 Riess, A. G., Macri, L. M., Hoffmann, S. L., et al., “A 2.4 Determination of the 2018AJ....156...18P Companions”, ADS Local Value of the Hubble Constant”, 2016ApJ...826...56R ADS Scolnic, D. M., Jones, D. O., Rest, A., et al., “The Complete Light- Abbott, B. P., Abbott, R., Abbott, T. D., et al., “GW151226: Observation of curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence”, and Cosmological Constraints from the Combined Pantheon Sample”, 2016PhRvL.116x1103A ADS 2018ApJ...859..101S ADS Abbott, B. P., Abbott, R., Abbott, T. D., et al., “Tests of General Relativity with Abbott, B. P., Abbott, R., Abbott, T. D., et al., “Prospects for observing and lo- GW150914”, 2016PhRvL.116v1101A ADS calizing gravitational-wave transients with Advanced LIGO, Advanced Virgo Choi, J., Dotter, A., Conroy, C., et al., “Mesa Isochrones and Stellar Tracks and KAGRA”, 2018LRR....21....3A ADS (MIST). I. Solar-scaled Models”, 2016ApJ...823..102C ADS Abolfathi, B., Aguado, D. S., Aguilar, G., et al., “The Fourteenth Data Re- Abbott, B. P., Abbott, R., Abbott, T. D., et al., “Observation of Gravitational lease of the Sloan Digital Sky Survey: First Spectroscopic Data from the Waves from a Binary Black Hole Merger”, 2016PhRvL.116f1102A ADS Extended Baryon Oscillation Spectroscopic Survey and from the Second Ackermann, M., Albert, A., Anderson, B., et al., “Searching for Dark Matter Phase of the Apache Point Observatory Galactic Evolution Experiment”, Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of 2018ApJS..235...42A ADS Fermi Large Area Telescope Data”, 2015PhRvL.115w1301A ADS Abbott, B. P., Abbott, R., Abbott, T. D., et al., “GW170608: Observation of a Paxton, B., Marchant, P., Schwab, J., et al., “Modules for Experiments 19 Solar-mass Binary Black Hole Coalescence”, 2017ApJ...851L..35A in Stellar Astrophysics (MESA): Binaries, Pulsations, and Explosions”, ADS 2015ApJS..220...15P ADS Aprile, E., Aalbers, J., Agostini, F., et al., “First Dark Matter Search Results Alam, S., Albareti, F. D., Allende Prieto, C., et al., “The Eleventh and Twelfth from the XENON1T Experiment”, 2017PhRvL.119r1301A ADS Data Releases of the Sloan Digital Sky Survey: Final Data from SDSS-III”, Abbott, B. P., Abbott, R., Abbott, T. D., et al., “GW170817: Obser- 2015ApJS..219...12A ADS vation of Gravitational Waves from a Binary Neutron Star Inspiral”, ALMA Partnership, Brogan, C. L., Pérez, L. M., et al., “The 2014 ALMA Long 2017PhRvL.119p1101A ADS Baseline Campaign: First Results from High Angular Resolution Observa- Abbott, B. P., Abbott, R., Abbott, T. D., et al., “GW170814: A Three-Detector tions toward the HL Tau Region”, 2015ApJ...808L...3A ADS Observation of Gravitational Waves from a Binary Black Hole Coalescence”, Acero, F., Ackermann, M., Ajello, M., et al., “Fermi Large Area Telescope Third 2017PhRvL.119n1101A ADS Source Catalog”, 2015ApJS..218...23A ADS Goldstein, A., Veres, P., Burns, E., et al., “An Ordinary Short Gamma-Ray Burst Ross, A. J., Samushia, L., Howlett, C., et al., “The clustering of the SDSS with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A”, DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15”, 2017ApJ...848L..14G ADS 2015MNRAS.449..835R ADS Abbott, B. P., Abbott, R., Abbott, T. D., et al., “Gravitational Waves and Baraffe, I., Homeier, D., Allard, F., & Chabrier, G., “New evolutionary mod- Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB els for pre-main sequence and main sequence low-mass stars down to the 170817A”, 2017ApJ...848L..13A ADS hydrogen-burning limit”, 2015A&A...577A..42B ADS Abbott, B. P., Abbott, R., Abbott, T. D., et al., “Multi-messenger Observations LIGO Scientific Collaboration, Aasi, J., Abbott, B. P., et al., “Advanced LIGO”, of a Binary Neutron Star Merger”, 2017ApJ...848L..12A ADS 2015CQGra..32g4001L ADS 1 Schaye, J., Crain, R. A., Bower, R. G., et al., “The EAGLE project: sim- Behroozi, P. S., Wechsler, R. H., & Conroy, C., “The Average Star For- ulating the evolution and assembly of galaxies and their environments”, mation Histories of Galaxies in Dark Matter Halos from z = 0-8”, 2015MNRAS.446..521S ADS 2013ApJ...770...57B ADS Ricker, G. R., Winn, J. N., Vanderspek, R., et al., “Transiting Exoplanet Survey Antoniadis, J., Freire, P. C. C., Wex, N., et al., “A Massive Pulsar in a Compact Satellite (TESS)”, 2015JATIS...1a4003R ADS Relativistic Binary”, 2013Sci...340..448A ADS Acernese, F., Agathos, M., Agatsuma, K., et al., “Advanced Virgo: Ferland, G. J., Porter, R. L., van Hoof, P.
Recommended publications
  • University of Iowa Instruments in Space
    University of Iowa Instruments in Space A-D13-089-5 Wind Van Allen Probes Cluster Mercury Earth Venus Mars Express HaloSat MMS Geotail Mars Voyager 2 Neptune Uranus Juno Pluto Jupiter Saturn Voyager 1 Spaceflight instruments designed and built at the University of Iowa in the Department of Physics & Astronomy (1958-2019) Explorer 1 1958 Feb. 1 OGO 4 1967 July 28 Juno * 2011 Aug. 5 Launch Date Launch Date Launch Date Spacecraft Spacecraft Spacecraft Explorer 3 (U1T9)58 Mar. 26 Injun 5 1(U9T68) Aug. 8 (UT) ExpEloxrpelro r1e r 4 1915985 8F eJbu.l y1 26 OEGxOpl o4rer 41 (IMP-5) 19697 Juunlye 2 281 Juno * 2011 Aug. 5 Explorer 2 (launch failure) 1958 Mar. 5 OGO 5 1968 Mar. 4 Van Allen Probe A * 2012 Aug. 30 ExpPloiorenre 3er 1 1915985 8M Oarc. t2. 611 InEjuxnp lo5rer 45 (SSS) 197618 NAouvg.. 186 Van Allen Probe B * 2012 Aug. 30 ExpPloiorenre 4er 2 1915985 8Ju Nlyo 2v.6 8 EUxpKlo 4r e(rA 4ri1el -(4IM) P-5) 197619 DJuenc.e 1 211 Magnetospheric Multiscale Mission / 1 * 2015 Mar. 12 ExpPloiorenre 5e r 3 (launch failure) 1915985 8A uDge.c 2. 46 EPxpiolonreeerr 4130 (IMP- 6) 19721 Maarr.. 313 HMEaRgCnIe CtousbpeShaetr i(cF oMxu-1ltDis scaatelell itMe)i ssion / 2 * 2021081 J5a nM. a1r2. 12 PionPeioenr e1er 4 1915985 9O cMt.a 1r.1 3 EExpxlpolorerer r4 457 ( S(IMSSP)-7) 19721 SNeopvt.. 1263 HMaalogSnaett oCsupbhee Sriact eMlluitlet i*scale Mission / 3 * 2021081 M5a My a2r1. 12 Pioneer 2 1958 Nov. 8 UK 4 (Ariel-4) 1971 Dec. 11 Magnetospheric Multiscale Mission / 4 * 2015 Mar.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • Ionospheric Cusp Flows Pulsed by Solar Wind Alfvén Waves
    c Annales Geophysicae (2002) 20: 161–174 European Geophysical Society 2002 Annales Geophysicae Ionospheric cusp flows pulsed by solar wind Alfven´ waves P. Prikryl1, G. Provan2, K. A. McWilliams2, and T. K. Yeoman2 1Communications Research Centre, Ottawa, Ontario K2H 8S2, Canada 2Department of Physics and Astronomy, University of Leicester, UK Received: 7 February 2001 – Revised: 24 August 2001 – Accepted: 10 September 2001 Abstract. Pulsed ionospheric flows (PIFs) in the cusp foot- bow shock were the source of magnetopause surface waves print have been observed by the SuperDARN radars with inducing reconnection. periods between a few minutes and several tens of minutes. Key words. Interplanetary physics (MHD waves and PIFs are believed to be a consequence of the interplanetary turbulence) – Magnetospheric physics (magnetosphere- magnetic field (IMF) reconnection with the magnetospheric ionosphere interactions; solar wind-magnetosphere interac- magnetic field on the dayside magnetopause, ionospheric tions) signatures of flux transfer events (FTEs). The quasiperiodic PIFs are correlated with Alfvenic´ fluctuations observed in the upstream solar wind. It is concluded that on these occasions, the FTEs were driven by Alfven´ waves coupling to the day- 1 Introduction side magnetosphere. Case studies are presented in which the dawn-dusk component of the Alfven´ wave electric field mod- Ionospheric dynamics near the cusp footprint attest to pro- ulates the reconnection rate as evidenced by the radar obser- cesses at the dayside magnetopause and in particular, to vations of the ionospheric cusp flows. The arrival of the IMF pulsed magnetic reconnection (Cowley et al., 1991; Lock- southward turning at the magnetopause is determined from wood et al., 1993).
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • The Effect of Ionospheric Conductivity on Magnetospheric Dynamics
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2018 THE EFFECT OF IONOSPHERIC CONDUCTIVITY ON MAGNETOSPHERIC DYNAMICS Benjamin Joseph Jensen University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Jensen, Benjamin Joseph, "THE EFFECT OF IONOSPHERIC CONDUCTIVITY ON MAGNETOSPHERIC DYNAMICS" (2018). Doctoral Dissertations. 2414. https://scholars.unh.edu/dissertation/2414 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. THE EFFECT OF IONOSPHERIC CONDUCTIVITY ON MAGNETOSPHERIC DYNAMICS BY JOSEPH B. JENSEN BS, Physics, Utah State University, Logan UT, 2013 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics September 2018 ALL RIGHTS RESERVED ©2018 Joseph B. Jensen This dissertation has been examined and approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by: Dissertation Advisor, Joachim Raeder, Professor, Department of Physics University of New Hampshire Lynn Kistler, Professor,Department of Physics University of New Hampshire Kai Germaschewski, Associate Professor, Department of Physics University of New Hampshire Marc Lessard, Associate Professor, Department of Physics University of New Hampshire Simon G. Shepherd, Associate Professor of Engineering Thayer School of Engineering at Dartmouth College on 6 July 2018. Original approval signatures are on file with the University of New Hampshire Graduate School.
    [Show full text]
  • Plasma Wave Turbulence at the Magnetopause&Colon
    VOL. 84, NO. A12 JOURNAL OF GEOPHYSICAL RESEARCH DECEMBER 1, 1979 Plasma Wave Turbulence at the Magnetopause: Observations From ISEE 1 and 2 D. A. GURNETT,l R. R. ANDERSON,l B. T. TSURUTANI,2 E. J. SMITH,2 G. PASCHMANN,3 G. HAERENDEL,3 $. J. BAME,4 AND C. T. RUSSELLs In this paper we investigateplasma wave electric and magnetic fields in the vicinity of the magneto- pauseby usingrecent measurements from the ISEE 1 and 2 spacecraft.Strong electric and magneticfield turbulenceis often observedat the magnetopause.The electricfield spectrumof this turbulencetypically extendsover an extremelylarge frequencyrange, from lessthan a few hertz to above 100 kHz, and the magneticfield turbulencetypically extends from a few hertz to about 1 kHz. The maximum intensities usually occur in the magnetopausecurrent layer and plasmaboundary layer. Somewhatsimilar turbu- lence spectraare also sometimesobserved in associationwith flux transfer events and possible'in- clusions'of boundarylayer plasma in the magnetosphere.In addition to the broad-bandelectric and magneticfield turbulence,narrow-band electrostatic emissions are occasionallyobserved near the elec- tron plasmafrequency in the vicinity of the magnetopause.Two possibleplasma instabilities, the elec- trostaticion-cyclotron instability and the lower-hybrid-driftinstability, are consideredthe primary can- didatesfor explaining the broad-bandelectric field turbulence.The narrow-bandelectrostatic emissions near the local electron plasma frequency are believed to be either plasma oscillationsor electrostatic wavesnear the upper-hybrid-resonancefrequency. 1. INTRODUCTION waves. Although the magnetopauseis known to be very tur- bulent in the low-frequency MHD portion of the spectrum, Becauseof the many important questionswhich have been relatively little is known about the plasma wave intensitiesat raised recently concerning the physical processeswhich occur higher frequenciesin the region of primary importance for at the earth's magnetopauseboundary [Heikkila, 1975; Hae- microscopicplasma processes.Neugebauer et al.
    [Show full text]
  • Citation and Similar Papers at Core.Ac.Ukw
    4 https://ntrs.nasa.gov/search.jsp?R=19670007176 2020-03-16T18:43:02+00:00Z View metadata, citation and similar papers at core.ac.ukw .. -. brought to you by CORE I provided by NASA Technical Reports Server 1 . National Aeronautics and STace Administration Goddard Space Flight Center C ont r ac t No NAS -5 -f 7 60 THE OUTERMOST BELT OF CFLARGED PARTICLES _- .- - by K. I, Grin,yaue t: M, 2. I~alOkhlOV cussa 3 GPO PRICE $ CFSTI PRICE(S) $ 17 NOVEbI3ER 1965 Hard copy (HC) .J d-0 Microfiche (M F) ,J3’ ff 853 July 85 Issl. kosniicheskogo prostrznstva by K. N. Gringaua Trudy Vsesoyuzrloy koneferentsii & M. z. Khokhlov po kosaiches?%inlucham, 467 - 482 Noscon, June 1965. This report deals with the result of the study of a eone of char- ged pxticles with comparatively low ener-ies (from -100 ev to 10 - 4Okev), situated beyond the outer rzdiation belt (including the new data obtained on Ilectron-2 and Zond-2). 'The cutkors review, first of all, an2 in chronolo~icalorder, the space probes on which data on soft electrons 'and protons were obtained beyond the rsdistion belts. A brief review is given of soae examples of regis- tration of soft electrons at high geominetic latitudes by Mars-1 and Elec- tron-2. It is shown that here, BS in other space probes, the zones of soft electron flwcys are gartly overlap7inr with the zones of trapped radiation. The spatial distributio;: of fluxcs of soft electrons is sixdied in liqht of data oStziined fro.1 various sFnce probes, such as Lunik-1, Explorer-12, Explorer-18, for the daytime rerion along the map-etosphere boundary &om the sumy side.
    [Show full text]
  • <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA
    1 SATELITES ARTIFICIALES. Capítulo 5º Subcap. 10 <> CRONOLOGIA DE LOS SATÉLITES ARTIFICIALES DE LA TIERRA. Esta es una relación cronológica de todos los lanzamientos de satélites artificiales de nuestro planeta, con independencia de su éxito o fracaso, tanto en el disparo como en órbita. Significa pues que muchos de ellos no han alcanzado el espacio y fueron destruidos. Se señala en primer lugar (a la izquierda) su nombre, seguido de la fecha del lanzamiento, el país al que pertenece el satélite (que puede ser otro distinto al que lo lanza) y el tipo de satélite; este último aspecto podría no corresponderse en exactitud dado que algunos son de finalidad múltiple. En los lanzamientos múltiples, cada satélite figura separado (salvo en los casos de fracaso, en que no llegan a separarse) pero naturalmente en la misma fecha y juntos. NO ESTÁN incluidos los llevados en vuelos tripulados, si bien se citan en el programa de satélites correspondiente y en el capítulo de “Cronología general de lanzamientos”. .SATÉLITE Fecha País Tipo SPUTNIK F1 15.05.1957 URSS Experimental o tecnológico SPUTNIK F2 21.08.1957 URSS Experimental o tecnológico SPUTNIK 01 04.10.1957 URSS Experimental o tecnológico SPUTNIK 02 03.11.1957 URSS Científico VANGUARD-1A 06.12.1957 USA Experimental o tecnológico EXPLORER 01 31.01.1958 USA Científico VANGUARD-1B 05.02.1958 USA Experimental o tecnológico EXPLORER 02 05.03.1958 USA Científico VANGUARD-1 17.03.1958 USA Experimental o tecnológico EXPLORER 03 26.03.1958 USA Científico SPUTNIK D1 27.04.1958 URSS Geodésico VANGUARD-2A
    [Show full text]
  • Two-Stage Oscillatory Response of the Magnetopause to a Tangential Discontinuity/Vortex Sheet Followed by Northward IMF: Cluster Observations C
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, A03208, doi:10.1029/2007JA012800, 2008 Click Here for Full Article Two-stage oscillatory response of the magnetopause to a tangential discontinuity/vortex sheet followed by northward IMF: Cluster observations C. J. Farrugia,1,2 F. T. Gratton,3,4 E. J. Lund,1 P. E. Sandholt,5 S. W. H. Cowley,6 R. B. Torbert,1,2 G. Gnavi,3 I. R. Mann,7 L. Bilbao,3 C. Mouikis,1 L. Kistler,1,2 C. W. Smith,1 H. J. Singer,8 and J. F. Watermann9 Received 6 September 2007; revised 23 November 2007; accepted 10 December 2007; published 19 March 2008. [1] We discuss the motion and structure of the magnetopause/boundary layer observed by Cluster in response to a joint tangential discontinuity/vortex sheet (TD/VS) observed by the Advanced Composition Explorer spacecraft on 7 December 2000. The observations are then supplemented by theory. Sharp polarity reversals in the east-west components of the field and flow By and Vy occurred at the discontinuity. These rotations were followed by a period of strongly northward interplanetary magnetic field (IMF). These two factors elicited a two-stage response at the magnetopause, as observed by Cluster situated in the boundary layer at the duskside terminator. First, the magnetopause suffered a large deformation from its equilibrium position, with large-amplitude oscillations of 3-min period being set up. These are argued to be mainly the result of tangential stresses associated with DVy the contribution of dynamic pressure changes being small in comparison. This strengthens recent evidence of the importance to magnetospheric dynamics of changes in azimuthal solar wind flow.
    [Show full text]
  • Index of Astronomia Nova
    Index of Astronomia Nova Index of Astronomia Nova. M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS, 883 DOI 10.1007/978-3-319-03416-4, © Springer International Publishing Switzerland 2014 Bibliography Books are classified in sections according to the main themes covered in this work, and arranged chronologically within each section. General Mechanics and Geodesy 1. H. Goldstein. Classical Mechanics, Addison-Wesley, Cambridge, Mass., 1956 2. L. Landau & E. Lifchitz. Mechanics (Course of Theoretical Physics),Vol.1, Mir, Moscow, 1966, Butterworth–Heinemann 3rd edn., 1976 3. W.M. Kaula. Theory of Satellite Geodesy, Blaisdell Publ., Waltham, Mass., 1966 4. J.-J. Levallois. G´eod´esie g´en´erale, Vols. 1, 2, 3, Eyrolles, Paris, 1969, 1970 5. J.-J. Levallois & J. Kovalevsky. G´eod´esie g´en´erale,Vol.4:G´eod´esie spatiale, Eyrolles, Paris, 1970 6. G. Bomford. Geodesy, 4th edn., Clarendon Press, Oxford, 1980 7. J.-C. Husson, A. Cazenave, J.-F. Minster (Eds.). Internal Geophysics and Space, CNES/Cepadues-Editions, Toulouse, 1985 8. V.I. Arnold. Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (60), Springer-Verlag, Berlin, 1989 9. W. Torge. Geodesy, Walter de Gruyter, Berlin, 1991 10. G. Seeber. Satellite Geodesy, Walter de Gruyter, Berlin, 1993 11. E.W. Grafarend, F.W. Krumm, V.S. Schwarze (Eds.). Geodesy: The Challenge of the 3rd Millennium, Springer, Berlin, 2003 12. H. Stephani. Relativity: An Introduction to Special and General Relativity,Cam- bridge University Press, Cambridge, 2004 13. G. Schubert (Ed.). Treatise on Geodephysics,Vol.3:Geodesy, Elsevier, Oxford, 2007 14. D.D. McCarthy, P.K.
    [Show full text]
  • Temperature Variations in the Dayside Magnetosheath and Their
    Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Temperature variations in the dayside magnetosheath 10.1002/2016JA023729 and their dependence on ion-scale magnetic structures: Key Points: THEMIS statistics and measurements by MMS • A positive correlation exists between the amplitude of magnetic fluctuations and temperature A. P. Dimmock1 , A. Osmane1 , T. I. Pulkkinen1 , K. Nykyri2 , and E. Kilpua3 variation • Temperature fluctuations are strongly 1 associated with larger local in Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, Finland, 2 ion-scale magnetic structures than Centre for Space and Atmospheric Research, Embry-Riddle Aeronautical University, Daytona Beach, Florida, USA, the fluid input at the shock 3Department of Physics, University of Helsinki, Helsinki, Finland • The amplitude of ion gyroscale fluctuations and in situ temperature variations are favored by the Abstract The magnetosheath contains an array of waves, instabilities, and nonlinear magnetic dawn flank structures which modify global plasma properties by means of various wave-particle interactions. The present work demonstrates that ion-scale magnetic field structures (∼0.2–0.5 Hz) observed in the dayside Correspondence to: A. P. Dimmock, magnetosheath are statistically correlated to ion temperature changes on orders 10–20% of the andrew.dimmock@aalto.fi background value. In addition, our statistical analysis implies that larger temperature changes are in equipartition to larger amplitude magnetic structures. This effect was more pronounced behind the Citation: quasi-parallel bow shock and during faster solar wind speeds. The study of two separate intervals suggests Dimmock, A. P., A. Osmane, that this effect can result from both local and external drivers.
    [Show full text]
  • United States Space Program Firsts
    KSC Historical Report 18 KHR-18 Rev. December 2003 UNITED STATES SPACE PROGRAM FIRSTS Robotic & Human Mission Firsts Kennedy Space Center Library Archives Kennedy Space Center, Florida Foreword This summary of the United States space program firsts was compiled from various reference publications available in the Kennedy Space Center Library Archives. The list is divided into four sections. Robotic mission firsts, Human mission firsts, Space Shuttle mission firsts and Space Station mission firsts. Researched and prepared by: Barbara E. Green Kennedy Space Center Library Archives Kennedy Space Center, Florida 32899 phone: [321] 867-2407 i Contents Robotic Mission Firsts ……………………..........................……………...........……………1-4 Satellites, missiles and rockets 1950 - 1986 Early Human Spaceflight Firsts …………………………............................……........…..……5-8 Projects Mercury, Gemini, Apollo, Skylab and Apollo Soyuz Test Project 1961 - 1975 Space Shuttle Firsts …………………………….........................…………........……………..9-12 Space Transportation System 1977 - 2003 Space Station Firsts …………………………….........................…………........………………..13 International Space Station 1998-2___ Bibliography …………………………………..............................…………........…………….....…14 ii KHR-18 Rev. December 2003 DATE ROBOTIC EVENTS MISSION 07/24/1950 First missile launched at Cape Canaveral. Bumper V-2 08/20/1953 First Redstone missile was fired. Redstone 1 12/17/1957 First long range weapon launched. Atlas ICBM 01/31/1958 First satellite launched by U.S. Explorer 1 10/11/1958 First observations of Earth’s and interplanetary magnetic field. Pioneer 1 12/13/1958 First capsule containing living cargo, squirrel monkey, Gordo. Although not Bioflight 1 a NASA mission, data was utilized in Project Mercury planning. 12/18/1958 First communications satellite placed in space. Once in place, Brigadier Project Score General Goodpaster passed a message to President Eisenhower 02/17/1959 First fully instrumented Vanguard payload.
    [Show full text]