In Schizocosa Ocreata (Araneae: Lycosidae): a Reassessment by Alan B

Total Page:16

File Type:pdf, Size:1020Kb

In Schizocosa Ocreata (Araneae: Lycosidae): a Reassessment by Alan B THE "EDGE EFFECT" IN SCHIZOCOSA OCREATA (ARANEAE: LYCOSIDAE): A REASSESSMENT BY ALAN B. CADY l, WILLIAM J. TIETJEN 2, AND GEORGE W. UETZ INTRODUCTION The relationship between local spider distribution patterns and environmental factors has been studied in a variety of species (Nergaard 1951; Dondale et al. 1969; Hallander 1970; Edgar 1971; Riechert 1974, 1976; Uetz 1976; Dondale 1977). Aspey (1976)stated that Schizocosa ocreata (Walckenaer)(formerly crassipes; Dondale and Redner 1978) was found in aggregations along a woodland-field ecotone, and suggested that unique microclimatic conditions and social interactions among conspecifics occurring within this area resulted in an "edge effect" for this spider's distribution. He termed S. ocreata an "edge" species, implying it was found almost exclu- sively along ecotones. We were skeptical of Aspey's (1976) conclu- sions, since previous literature and prior experience with this species led each of us to the separate conclusion that S. ocreata is a forest- dwelling spider (Kaston 1948; Dondale and Redner 1978; Uetz 1976; Cady (in prep.)). In addition, Aspey's (1976) survey for S. ocreata appeared incomplete, as he did not report sampling within the adjacent woodland or field. Considering Aspey's (1976) elaborate behavioral arguments based on assumptions about the distribution of this species, we felt further study was necessary. METHODS The study site was approximately 3.5 km west from Aspey's (1976) site. Three areas were sampled: A mixed hardwood deciduous woodland (Quercus sp., Liriodendron sp., Fraxinus sp., Fagus sp.), the adjoining ecotone, and an open goldenrod-thistle field (Solidago sp., Cirsium sp.). Spiders were sampled by twelve pitfall traps of the type described by Uetz and Unzicker (1976). Three were set in the 1. Dept. of Zoology, Ohio University, Athens, Ohio 45701 (Present Address: Dept. of Zoology, University of Tennessee, Knoxville, Tenn. 37916) 2. Georgia College, Milledgeville, Georgia 31061 3. Dept. of Biological Sciences, Univ. of Cincinnati, Cincinnati, Ohio 45221 Manuscript received by the editor January 20, 1981 231 232 Psvche [Vol. 87 woodland, four in the ecotone, and five in the field. The trap contents were collected seven times between 13 May and 21 June 1977. RESULTS More male S. ocreata were captured than females (X 109.87, df, P<0.001), probably because this time of year was the breeding season for S. ocreata, and male lycosids are more motile than females (Vlijm and Richter 1966; Hallander 1967). Unequal numbers of males, females, and total (males + females) spiders were found across all three habitats (woods, ecotone, field) due to the relatively low number of spiders found in the field (Table 1). The number of males and total number of spiders did not differ between the woods and ecotone; the greatest number of females were found in the woods (Table 1). Table 1. Numbers of male, female, and total Schizocosa ocreata found in woods, ecotone, and field. Underlined values indicate equality (Chi-square test for Goodness- of-Fit P > 0.05). All Chi-square tests were adjusted for sample size (ni). WOODS ECOTONE FIELD ni=3 ni=4 ni=5 MALES 58 83 29 FEMALES 12 6 6 TOTAL 70 89 35 DISCUSSION Our data indicates that the distribution of S. ocreata was not restricted to the ecotone, as there was no difference between the number of spiders found in the woods and ecotone. Fewer spiders, however, were found in the field as compared to the other areas, probably due to the lack of cover and to temperature/mositure extremes in this habitat. Cady (in prep.) worked with a dense population of S. ocreata that was found deep within a woodland site not far (< 50m) from Aspey's (1976) study site. The spiders in the 1980] Cady, Tietjen, & Uetz Schizocosa 233 woods were found in leaf litter (depth 4-6 cm) and under a herbaceous "microcanopy" immediately adjacent to a spring seepage, while the spiders along Aspey's ecotone were in a depressed area where leaf litter and moisture collected. The greatest number of spiders in the present study were found in areas with similar characteristics. Such microhabitats provide both soil moisture and protective cover (i.e., herbaceous growth and leaf litter). In addition, deep litter may also provide the high prey density needed for egg production by females (Uetz 1975, 1979). Tietjen (1979) suggested that airborne pheromones may be involved in attracting S. ocreata to particular areas for courtship and copulation. Such pheromones might be expected to collect under the leaves occupied by the relatively sendentary females. This may explain the denser concentrations of this spider and the social attractions Aspey (1976) proposed. We therefore agree with Aspey's premises that microclimate and possible social attractions are determining factors for S. ocreata's pattern of local distribution; however these microclimates or areas of congregation are not unique to ecotones, and S. ocreata should not be termed an "edge" species. LITERATURE ASPEY, W. P. 1976. Behavioral biology of the "edge effect" in Schizocosa crassipes (Araneae: Lycosidae). Psyche 83: 42-50. CADY, A. B. Microhabitat selection and locomotor activity of Schizocosa ocreata (Araneae:Lycosidae) (in preparation). DONDALE,C. D. 1977. Life histories and distribution patterns of hunting spiders (Araneae) in an Ontario meadow. J. Arachnol. 4: 73-93. DONDALE, C. D. AND J. H. REDNER 1978. Revision of the Nearctic wolf spider genus Schizocosa (Araneida:Lycosidae). Can. Ent. 110: 143-181. DONDALE, C. D., J. H. REDNER, E. FARRELL, R. B. SEMPLE, AND A. L. TURNBULL 1969. Wandering of hunting spiders in a meadow. Bull. Mus. Nat. Hist. Naturelle 41: 61-64. EDGAR, W. 1971. The life cycle, abundance, and seasonal movement of the wolf spider, Lycosa (Pardosa) lugubris, in central Scotland. J. Anim. Ecol. 40: 303-322. HALLANDER, n. n. 1967. Range and movements of the wolf spider Pardosa chelata (O.F. Muller) and P. pullata (Clerck). Oikos 18: 360-364. 234 Psyche [Vol. 87 1970. Environments of the wolf spiders Pardosa chelata (O.F. Muller) and Pardosa pullata (Clerck). Ekol. Polska. 18: 1-17. KASTON, B. J. 1948. The spiders of Connecticut. State Geological and Nat. Hist. Surv., Bull. No. 70. 874 pp. NORGAARD, E. 1951. On the ecology of two lycosid spiders (Pirata piraticus and Lycosa pullata) from a Danish Sphagnum bog. Oikos 3: 1-21. RIECHERT, S. E. 1974. The spatial pattern of local web distribution in a desert spider: Mechanisms and seasonal variation. J. Anim. Ecol. 43:733-746. 1976 Website selection in the desert spider Agelenopsis aperta. Oikos 27: 311-315. TIETJEN, W. J. 1979. Tests for olfactory communication in four species of wolf spiders (Araneae,Lycosidae). J. Arachnol. 6: 197-206. UETZ, G. W. 1975. Temporal and spatial variation in species diversity of wandering spiders (Araneae) in deciduous forest litter. Environ. Entomol. 4: 719-724. 1976. Gradient analysis of spider communities in a streamside forest. Oecologia 22: 373-385. 1979. The influence of variation in litter habitats on spider communities. Oecologia 40: 29-42. UETZ, G. W. AND J. UNZICKER 1976. Pitfall trapping ecological studies of wandering spiders. J. Arachnol. 3: 101-111. UETZ, G. W. AND G. DENTERLEIN 1979. Courtship behavior, habitat, and reproductive isolation in Schizocosa rovneri Uetz and Dondale (Araneae:Lycosidae). J. Arachnol. 7: 121-128. VLIJM, B. AND C. J. J. RICHTER 1966. Activity fluctuations of Paradosa lugubris (Walckenaer), Araneae:Lycosi- dae, during the breeding season. Ent. Beri. 26: 222-230. International Journal of Peptides Advances in BioMed Stem Cells International Journal of Research International International Genomics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 Virolog y http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 Journal of Nucleic Acids Zoology International Journal of Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 Submit your manuscripts at http://www.hindawi.com Journal of The Scientific Signal Transduction World Journal Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 Genetics Anatomy International Journal of Biochemistry Advances in Research International Research International Microbiology Research International Bioinformatics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 Enzyme International Journal of Molecular Biology Journal of Archaea Research Evolutionary Biology International Marine Biology Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014.
Recommended publications
  • Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
    Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate
    [Show full text]
  • Brushlegged Wolf Spider Schizocosa Ocreata ILLINOIS RANGE
    brushlegged wolf spider Schizocosa ocreata Kingdom: Animalia FEATURES Phylum: Arthropoda Like all wolf spiders, the brushlegged wolf spider has Class: Chelicerata four, large eyes in a trapezoid shape on the top of the Order: Araneae carapace. The two median eyes in this group of four are the largest and face forward. The two smaller eyes in Family: Lycosidae this group of four are set behind the two central eyes, ILLINOIS STATUS facing to the side or backwards. In front of these four eyes is a row of four, smaller eyes. Females are about common, native 0.29 to 0.41 inch in total body length. Males are smaller 0.24 to 0.39 inch in total body length. The general body color is brown with a lighter-colored band longitudinally in the center of the cephalothorax and abdomen. The dark areas on the sides of the cephalothorax and abdomen may appear to be black. The male’s front legs are black with clusters of setae. BEHAVIORS This species is found in leaf litter in upland deciduous forests, forest edges and open fields near woodlands. It hunts during the day and at night. Adults are active from April through October. Subadults are the overwintering stage. They mature in spring. Wolf spiders have good vision. They perform courtship rituals like waving the legs or palps with making sounds created by vibrating body parts against each other or a surface or object they are near. Wolf spiders generally do not build a web but use a dragline of silk for communication. The female ILLINOIS RANGE builds an egg sac and attaches it to her spinnerets.
    [Show full text]
  • Schizocosa Ocreata): a Comparison of Survivorship, Critical Body Water Content, and Water Loss Rates Between Sexes
    Canadian Journal of Zoology Dehydration resistance and tolerance in the brush -legged wolf spider (Schizocosa ocreata): A comparison of survivorship, critical body water content, and water loss rates between sexes. Journal: Canadian Journal of Zoology Manuscript ID cjz-2016-0133.R1 Manuscript Type: Article Date Submitted by the Author: 21-Nov-2016 Complete List of Authors: Herrmann,Draft Samantha; The Ohio State University, Evolution, Ecology, and Orgnaismal Biology Roberts, J. ; The Ohio State University at Newark, Evolution, Ecology, and Organismal Biology ECOLOGY < Discipline, PHYSIOLOGY < Discipline, ARANEAE < Taxon, Keyword: STRESS < Organ System, TEMPERATE < Habitat https://mc06.manuscriptcentral.com/cjz-pubs Page 1 of 30 Canadian Journal of Zoology Dehydration resistance and tolerance in the brush-legged wolf spider (Schizocosa ocreata ): A comparison of survivorship, critical body water content, and water loss rates between sexes. Samantha K. Herrmann, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA. ( [email protected] ) J. Andrew Roberts, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University at Newark, Newark, Ohio, USA. ( [email protected] ) Corresponding Author: Samantha Herrmann,Draft 240B Jennings Hall, 1735 Neil Avenue, Columbus, Ohio, 43210, USA; Ph. 630.485.0636; Fx. 614 292-4390; [email protected] 1 https://mc06.manuscriptcentral.com/cjz-pubs Canadian Journal of Zoology Page 2 of 30 Dehydration resistance and tolerance in the wolf spider Schizocosa ocreata : A comparison of survivorship, critical body water content, and water loss rates between sexes. Samantha K. Herrmann and J. Andrew Roberts Small-bodied terrestrial animals like spiders face challenges maintaining water reserves essential for homeostasis.
    [Show full text]
  • Book of Abstracts
    August 20th-25th, 2017 University of Nottingham – UK with thanks to: Organising Committee Sara Goodacre, University of Nottingham, UK Dmitri Logunov, Manchester Museum, UK Geoff Oxford, University of York, UK Tony Russell-Smith, British Arachnological Society, UK Yuri Marusik, Russian Academy of Science, Russia Helpers Leah Ashley, Tom Coekin, Ella Deutsch, Rowan Earlam, Alastair Gibbons, David Harvey, Antje Hundertmark, LiaQue Latif, Michelle Strickland, Emma Vincent, Sarah Goertz. Congress logo designed by Michelle Strickland. We thank all sponsors and collaborators for their support British Arachnological Society, European Society of Arachnology, Fisher Scientific, The Genetics Society, Macmillan Publishing, PeerJ, Visit Nottinghamshire Events Team Content General Information 1 Programme Schedule 4 Poster Presentations 13 Abstracts 17 List of Participants 140 Notes 154 Foreword We are delighted to welcome you to the University of Nottingham for the 30th European Congress of Arachnology. We hope that whilst you are here, you will enjoy exploring some of the parks and gardens in the University’s landscaped settings, which feature long-established woodland as well as contemporary areas such as the ‘Millennium Garden’. There will be a guided tour in the evening of Tuesday 22nd August to show you different parts of the campus that you might enjoy exploring during the time that you are here. Registration Registration will be from 8.15am in room A13 in the Pope Building (see map below). We will have information here about the congress itself as well as the city of Nottingham in general. Someone should be at this registration point throughout the week to answer your Questions. Please do come and find us if you have any Queries.
    [Show full text]
  • List of Ohio Spiders
    List of Ohio Spiders 20 March 2018 Richard A. Bradley Department of EEO Biology Ohio State University Museum of Biodiversity 1315 Kinnear Road Columbus, OH 43212 This list is based on published specimen records of spider species from Ohio. Additional species that have been recorded during the Ohio Spider Survey (beginning 1994) are also included. I would very much appreciate any corrections; please mail them to the above address or email ([email protected]). 656 [+5] Species Mygalomorphae Antrodiaetidae (foldingdoor spiders) (2) Antrodiaetus robustus (Simon, 1890) Antrodiaetus unicolor (Hentz, 1842) Atypidae (purseweb spiders) (3) Sphodros coylei Gertsch & Platnick, 1980 Sphodros niger (Hentz, 1842) Sphodros rufipes (Latreille, 1829) Ctenizidae (trapdoor spiders) (1) Ummidia audouini (Lucas, 1835) Araneomorphae Agelenidae (funnel weavers) (14) Agelenopsis emertoni Chamberlin & Ivie, 1935 | Agelenopsis kastoni Chamberlin & Ivie, 1941 | Agelenopsis naevia (Walckenaer, 1805) grass spiders Agelenopsis pennsylvanica (C.L. Koch, 1843) | Agelnopsis potteri (Blackwell, 1846) | Agelenopsis utahana (Chamberlin & Ivie, 1933) | Coras aerialis Muma, 1946 Coras juvenilis (Keyserling, 1881) Coras lamellosus (Keyserling, 1887) Coras medicinalis (Hentz, 1821) Coras montanus (Emerton, 1889) Tegenaria domestica (Clerck, 1757) barn funnel weaver In Wadotes calcaratus (Keyserling, 1887) Wadotes hybridus (Emerton, 1889) Amaurobiidae (hackledmesh weavers) (2) Amaurobius ferox (Walckenaer, 1830) In Callobius bennetti (Blackwall, 1848) Anyphaenidae (ghost spiders)
    [Show full text]
  • A Mismatch Between Signal Transmission Efficacy and Mating Success Calls Into Question the Function of Complex Signals
    UC Berkeley UC Berkeley Previously Published Works Title A mismatch between signal transmission efficacy and mating success calls into question the function of complex signals Permalink https://escholarship.org/uc/item/6pd112z2 Authors Choi, N Bern, M Elias, DO et al. Publication Date 2019-12-01 DOI 10.1016/j.anbehav.2019.09.017 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Animal Behaviour 158 (2019) 77e88 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav A mismatch between signal transmission efficacy and mating success calls into question the function of complex signals Noori Choi a, Mitch Bern b, Damian O. Elias c, Rowan H. McGinley a, * Malcolm F. Rosenthal c, Eileen A. Hebets a, a School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, U.S.A. b North Star High School, Lincoln, NE, U.S.A. c Environmental Science, Policy, and Management, University of California, Berkeley, CA, U.S.A. article info Variation in transmission characteristics of signalling environments is hypothesized to influence the Article history: evolution of signalling behaviour, signal form and sensory systems of animals. However, many animals Received 31 October 2018 communicate across multiple signalling environments, raising the possibility that some displays have Initial acceptance 2 January 2019 evolved explicitly to enable communication across heterogeneous signalling environments. In the pre- Final acceptance 30 July 2019 sent paper, we explored multiple potential impacts of the signalling environment on courtship displays in the wolf spider Schizocosa retrorsa. Males of this species court females on a range of substrate types MS.
    [Show full text]
  • Sister Species Diverge in Modality-Specific Courtship Signal Form and Function
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 2021 Sister species diverge in modality-specific courtship signal form and function Eileen Hebets University of Nebraska - Lincoln, [email protected] Mitch Bern University of Nebraska-Lincoln Rowan H. McGinley University of Nebraska-Lincoln Andy Roberts The Ohio State University at Newark, [email protected] Arik Kershenbaum University of Cambridge, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub Part of the Biology Commons Hebets, Eileen; Bern, Mitch; McGinley, Rowan H.; Roberts, Andy; Kershenbaum, Arik; Starrett, James; and Bond, Jason E., "Sister species diverge in modality-specific courtship signal form and function" (2021). Faculty Publications in the Biological Sciences. 834. https://digitalcommons.unl.edu/bioscifacpub/834 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Eileen Hebets, Mitch Bern, Rowan H. McGinley, Andy Roberts, Arik Kershenbaum, James Starrett, and Jason E. Bond This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ bioscifacpub/834 Received: 23 June 2020 | Revised: 1 November 2020 | Accepted: 5 November 2020 DOI: 10.1002/ece3.7089 ORIGINAL RESEARCH Sister species diverge in modality-specific courtship signal form and function Eileen A. Hebets1 | Mitch Bern1 | Rowan H. McGinley1 | Andy Roberts2 | Arik Kershenbaum3 | James Starrett4 | Jason E.
    [Show full text]
  • How Spatial Constraints on Efficacy and Dynamic Signaling Alignment Shape a Nimal Communication
    How Spatial Constraints on Efficacy and Dynamic Signaling Alignment Shape A nimal Communication How Spatial Constraints on Efficacy and Dynamic Signaling Alignment Shape Animal Communication by Sebastian Alejandro Echeverri B.S. in Biology and Applied Physics, University of Miami, 2013 Submitted to the Graduate Faculty of the Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2020 Committee Page UNIVERSITY OF PITTSBURGH DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Sebastian Alejandro Echeverri Becerra Osorio It was defended on May 21, 2020 and approved by Dr. Walter Carson, Associate Professor, Department of Biological Sciences, University of Pittsburgh Dr. Mark Rebeiz, Associate Professor, Department of Biological Sciences, University of Pittsburgh Dr. Tia-Lynn Ashman, Distinguished Professor, Department of Biological Sciences, University of Pittsburgh Dr. Nathan Morehouse, Associate Professor, Department of Biological Sciences, University of Cincinnati Dissertation Advisor: Dr. Corinne Richards-Zawacki, Associate Professor, Department of Biological Sciences ii Copyright © by Sebastian Alejandro Echeverri Becerra Osorio 2020 iii Abstract How Spatial Constraints on Efficacy and Dynamic Signaling Alignment Shape Animal Communication Sebastian Alejandro Echeverri, PhD University of Pittsburgh, 2020 Effective communication is important to the survival and reproduction of many organisms. Signal transmission and reception have spatial constraints that interact to determine effectiveness. Signals are often best perceived from specific angles, and sensory systems may be limited in their ability to detect or interpret incoming stimuli from certain directions. Alignment between these directional biases can be critical to effective communication. Misalignment of either signal or sensor may disrupt signal perception.
    [Show full text]
  • A Checklist of Maine Spiders (Arachnida: Araneae)
    A CHECKLIST OF MAINE SPIDERS (ARACHNIDA: ARANEAE) By Daniel T. Jennings Charlene P. Donahue Forest Health and Monitoring Maine Forest Service Technical Report No. 47 MAINE DEPARTMENT OF AGRICULTURE, CONSERVATION AND FORESTRY September 2020 Augusta, Maine Online version of this report available from: https://www.maine.gov/dacf/mfs/publications/fhm_pubs.htm Requests for copies should be made to: Maine Forest Service Division of Forest Health & Monitoring 168 State House Station Augusta, Maine 04333-0168 Phone: (207) 287-2431 Printed under appropriation number: 013-01A-2FHM-52 Issued 09/2020 Initial printing of 25 This product was made possible in part by funding from the U.S. Department of Agriculture. Forest health programs in the Maine Forest Service, Department of Agriculture Conservation and Forestry are supported and conducted in partnership with the USDA, the University of Maine, cooperating landowners, resource managers, and citizen volunteers. This institution is prohibited from discrimination based on race, color, national origin, sex, age, or disability. 2 A CHECKLIST OF MAINE SPIDERS (ARACHNIDA: ARANEAE) 1 2 DANIEL T. JENNINGS and CHARLENE P. DONAHUE ____________________________________ 1 Daniel T. Jennings, retired, USDA, Forest Service, Northern Forest Experiment Station. Passed away September 14, 2020 2 Charlene P. Donahue, retired, Department of Agriculture, Conservation and Forestry – Maine Forest Service. Corresponding Author [email protected] 4 Table of Contents Abstract 1 Introduction 1 Figure 1. Map of State of Maine
    [Show full text]
  • The Brain Transcriptome of the Wolf Spider, Schizocosa Ocreata Daniel Stribling1,5† , Peter L
    Stribling et al. BMC Res Notes (2021) 14:236 https://doi.org/10.1186/s13104-021-05648-y BMC Research Notes DATA NOTE Open Access The brain transcriptome of the wolf spider, Schizocosa ocreata Daniel Stribling1,5† , Peter L. Chang2† , Justin E. Dalton1, Christopher A. Conow2, Malcolm Rosenthal3 , Eileen Hebets3, Rita M. Graze4 and Michelle N. Arbeitman1* Abstract Objectives: Arachnids have fascinating and unique biology, particularly for questions on sex diferences and behav- ior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a signifcant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex diferences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description: To examine sex-diferential gene expression, short read transcript sequencing and de novo tran- scriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The raw data consist of sequences for the two diferent life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and diferential expression analy- ses. Sample-specifc and combined transcriptomes, gene annotations, and diferential expression results are described in this data note and are available from publicly-available databases.
    [Show full text]
  • Additions to the List of Schizocosa (Family Lycosidae) for Arkansas Risa Parker Henderson State University
    Journal of the Arkansas Academy of Science Volume 49 Article 28 1995 Additions to the List of Schizocosa (Family Lycosidae) for Arkansas Risa Parker Henderson State University Peggy Rae Dorris Henderson State University Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Entomology Commons Recommended Citation Parker, Risa and Dorris, Peggy Rae (1995) "Additions to the List of Schizocosa (Family Lycosidae) for Arkansas," Journal of the Arkansas Academy of Science: Vol. 49 , Article 28. Available at: http://scholarworks.uark.edu/jaas/vol49/iss1/28 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 49 [1995], Art. 28 Additions to the List of Schizocosa (Family Lycosidae) for Arkansas Risa Parker and Peggy Rae Dorris Department of Biology Henderson State University > Arkadelphia, AR 71999-0001 Abstract Schizocosa rovneri and Schizocosa stridulans, collected by the pitfall trap method in Drew and Ashley Counties, are reported as new species for the Arkansas state list.Palp variation and leg morphology are the main distinguishing charac- teristics between these species.
    [Show full text]
  • A Preliminary Checklist to the Spiders (Arachnida: Araneae) of Minnesota (U.S.A.) with Annotations
    A Preliminary Checklist to the Spiders (Arachnida: Araneae) of Minnesota (U.S.A.) with Annotations Chad J. Heins: Biology Department, Bethany Lutheran College, Mankato, Minnesota Assistant Professor of Biology Bethany Lutheran College 700 Luther Drive Mankato, MN 56001 Abstract This is a list of spider species for Minnesota (U.S.A.). It includes species that have been recorded in Minnesota as well as those which have ranges that suggest they are likely to be found in the state in the future. The checklist is a compilation of records from the literature, museums, and personal collection efforts by the author. Each species is annotated with a select reference or references and a comment if necessary. This list represents several new state records and expansions of several species’ known ranges. Key Terms: Minnesota, Araneae INTRODUCTION Spiders are an abundant component of terrestrial arthropod assemblages. Over 3,800 species of spiders have been documented in North America north of Mexico (Bradley 2013). They present interesting subjects for the study of behavior, taxonomy, and ecology and it has been suggested that they may serve as important ecological indicators (Clausen 1986; Churchill 1997). Their abundance, ease of capture, and limited expense to study make them ideal subjects for study at the undergraduate level and an interest in such applications sent the author in search of a list of Minnesota spiders. The only faunal list for Minnesota that could be located was limited to the family-level (Cutler 1976). Several states and provinces in North America have developed such spider faunal lists. In the Upper Midwest, such lists have been created for Michigan (Snider 1991), Illinois/Indiana (Beatty 2002), Wisconsin (Levi & Field 1954), and Manitoba (Benell-Aitchison & Dondale 1990).
    [Show full text]