University of Cincinnati

Total Page:16

File Type:pdf, Size:1020Kb

University of Cincinnati ! "# $ % & % ' % ! "# !' "$% &'()!*+' ,, , , ' "# ' '% $$(' Behavioral research on wolf spiders (Araneae: Lycosidae): Assessing common assumptions and methods A dissertation for submission to the Graduate School Of the University of Cincinnati In partial fulfillment of the requirements for the degree of Doctor of Philosophy In the Department of Biological Sciences Of the McMicken College of Arts and Sciences By Jenai M. Rutledge B.S., Animal Behavior Bucknell University, Lewisburg, PA, May 2003 Committee Chair: Dr. George W. Uetz ABSTRACT. Ecological, behavioral, and evolutionary theory and research is based on a network of assumptions that simplify the otherwise complex physical and natural systems of life. Assumptions are a necessary part of conducting research because they provide a framework from which predictions about these systems can be made and tested through the interpretation of statistical analyses. However, the validity of conclusions drawn from any empirical study is only as good as the assumptions upon which the research design and interpretations were made. The research presented here addresses and tests a number of specific assumptions commonly made in research studies conducted on invertebrate animals, as applied to Schizocosa wolf spiders, an emerging animal model in animal behavior. My research focuses on two species, S. ocreata and S. rovneri well-known in studies of communication and mate choice. In two studies, I examined the traditional assumption that in invertebrates, flexibility of female mate choice behavior is minimal. From the first study it is clear that behavioral plasticity of these invertebrate animals in response to experience is greater than previous recognized. Exposure of female S. rovneri as juveniles to altered male phenotypes resulted in avoidance of familiar and preference for novel phenotypes as adults. However, these studies also show that certain types of experience (chemical vs. visual cues) may affect female mate preferences more than others, and that manipulation of male phenotypes (e.g., with nail polish) can sometimes have unintended consequences. In a second study with both S, ocreata and S. rovneri, the mechanisms that underlie species-level mate recognition (e.g., female mate preference) are more rigidly defined and do not appear to be influenced by social experience. A third study examined how well traditional measurements of body condition of spiders are able to separate out differences in feeding and/or hydration histories. This study provides evidence that S. ocreata may be able to iii modulate their apparent body condition (calculated by traditional body condition measures) when faced with short-term food and/or water deprivation. Specifically, the morphological body condition of spiders deprived of food or water remained remarkably similar for up to eight days. This suggests that current measures of body condition may not provide an accurate estimate of current body condition. Reults of these studies suggest that in designing experiments, the assumptions underlying commonplace experimental methods/techniques often go unrecognized, and if assumptions are inaccurate or wrongly applied, the validity of research can be jeopardized. It is therefore important that assumptions be evaluated in the light of novel data to ensure they are logical and current. iv v ACKNOWLEDGEMENTS I would like to thank my research advisor, George Uetz for his constant encouragement, feedback, and support. Without his dedication to my success and continued confidence in my abilities as a researcher and teacher, I would have ‘thrown-in the towel’ long ago. His down-to- earth personality and sincere interest in helping his students succeed (both in and outside of the lab) has made him great adviser and a valued friend. My committee members Elke Buschbeck, Eric Maurer, Ken Petren, and Ann Rypstra for valuable discussion and feedback, time, patience and support throughout the many many reinventions of my dissertation research. Ken Petren for all of the advice, supplies and lab space during the two years I spent trying to develop microsatellite markers for the cursed, Californian, colonial web-building spider, Metepeira spinipes. My husband Matt, my sister Jessica, and my Mom, Debbe, and Dad, Charlie for hours of field and lab assistance, professional guidance, and much emotional support (here too I thank my son, Brayden who always knows how to make me smile). To Kitty Uetz, for being a person I could turn to for help, guidance, support, encouragement, good artwork, and pretty much anything else I’ve needed. Thanks to many past and present graduate students for helpful feedback, advice, good discussion, and social pursuits; especially Julianna Johns (I would have lost my mind long ago if it weren’t for your terrific sense of humor and friendship), Brian and Christine Moskalik, and Shira Gordon. To the undergraduate researchers who have helped over the years with collection of spiders and maintenance of lab animals (especially Justin Allen and Melita Skelton). Funding for this research was provided by the American Arachnological Society, the University of Cincinnati Research Council, the National Science Foundation (IBN 0239164 to G.Uetz), the Wiemen/Wendel/Benedict Student Research Fund, and the Department of Biological Sciences. vi TABLE OF CONTENTS Behavioral research on wolf spiders (Araneae: Lycosidae): Assessing common assumptions and methods............................................................................................................................................ i ABSTRACT...................................................................................................................................iii ACKNOWLEDGEMENTS........................................................................................................... vi LIST OF TABLES......................................................................................................................... ix LIST OF FIGURES. ...................................................................................................................... xi Chapter 1: Introduction and General Overview.............................................................................. 1 References....................................................................................................................................... 9 Chapter 2: Exposure to multiple sensory cues as a juvenile affects adult female mate preferences in wolf spiders............................................................................................................................... 11 Abstract......................................................................................................................................... 12 Introduction................................................................................................................................... 13 Methods......................................................................................................................................... 15 Study Species............................................................................................................................ 15 Collection and Housing............................................................................................................. 17 Experimental Methods.............................................................................................................. 17 Results........................................................................................................................................... 23 Discussion..................................................................................................................................... 26 Acknowledgements....................................................................................................................... 31 References..................................................................................................................................... 32 Chapter 3: Effects of Juvenile Experience on Adult Female Mating Preferences in Two Closely Related Sympatric Wolf Spider Species....................................................................................... 48 Abstract......................................................................................................................................... 49 Introduction................................................................................................................................... 50 Methods......................................................................................................................................... 52 Study Species............................................................................................................................ 52 General Methods....................................................................................................................... 53 Juvenile Exposure ..................................................................................................................... 54 Adult Mate Recognition Trials ................................................................................................. 55 Statistical Analyses ................................................................................................................... 56 Results..........................................................................................................................................
Recommended publications
  • Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
    Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate
    [Show full text]
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Sexual Selection Research on Spiders: Progress and Biases
    Biol. Rev. (2005), 80, pp. 363–385. f Cambridge Philosophical Society 363 doi:10.1017/S1464793104006700 Printed in the United Kingdom Sexual selection research on spiders: progress and biases Bernhard A. Huber* Zoological Research Institute and Museum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany (Received 7 June 2004; revised 25 November 2004; accepted 29 November 2004) ABSTRACT The renaissance of interest in sexual selection during the last decades has fuelled an extraordinary increase of scientific papers on the subject in spiders. Research has focused both on the process of sexual selection itself, for example on the signals and various modalities involved, and on the patterns, that is the outcome of mate choice and competition depending on certain parameters. Sexual selection has most clearly been demonstrated in cases involving visual and acoustical signals but most spiders are myopic and mute, relying rather on vibrations, chemical and tactile stimuli. This review argues that research has been biased towards modalities that are relatively easily accessible to the human observer. Circumstantial and comparative evidence indicates that sexual selection working via substrate-borne vibrations and tactile as well as chemical stimuli may be common and widespread in spiders. Pattern-oriented research has focused on several phenomena for which spiders offer excellent model objects, like sexual size dimorphism, nuptial feeding, sexual cannibalism, and sperm competition. The accumulating evidence argues for a highly complex set of explanations for seemingly uniform patterns like size dimorphism and sexual cannibalism. Sexual selection appears involved as well as natural selection and mechanisms that are adaptive in other contexts only. Sperm competition has resulted in a plethora of morpho- logical and behavioural adaptations, and simplistic models like those linking reproductive morphology with behaviour and sperm priority patterns in a straightforward way are being replaced by complex models involving an array of parameters.
    [Show full text]
  • Field Biology Booklet 2011
    Field Biology Booklet 2011 Field Biology 2011 Leroy Percy State Park Tishomingo State Park The students and faculty of Field Biology, Summer Trimester 2011, Dr. Thomas Rauch Frank Beilmann Haley Bryant Courtney Daley Jennifer Farmer Jillian Ferrell Amy Ford Jessie Martin Rendon Martin Kayla Ross Whit Sanguinetti Katy Scott Laila Younes Nafiyah Younes would like to thank the manager of Leroy Percy State Park, Betty Bennett, for her hospitality, kindness, and generosity and the manager of Tishomingo State Park, Bill Brekeen, for his help and overwhelming support of our Field Biology class. The 2011 Field Biology class would also like to thank Ms. Heather Sullivan and Ms. Margaret Howell for helping us identify numerous species, and Mr. Bob Gresham for allowing us to explore on his property. In addition, the students would like to extend a HUGE thank you to our beloved professor, Dr. Thomas Rauch (Rauchfiki). This booklet was made by the students of the 2011 Field Biology class and is not sponsored by William Carey University (i.e. it is not used for the purpose of keying organisms). All collections were done in and around Leroy Percy State Park in the Mississippi Delta, in and around Tishomingo State Park in Mississippi, and right over the Alabama border. Various means were used to identify animals including bird calls and tracks, as well as many species identification books. We, the 2011 Field biology students, fully enjoyed our field biology experience. We hope that this booklet will give you a glimpse into all that we were able to learn, as well as all the fun times we shared.
    [Show full text]
  • In Schizocosa Ocreata (Araneae: Lycosidae): a Reassessment by Alan B
    THE "EDGE EFFECT" IN SCHIZOCOSA OCREATA (ARANEAE: LYCOSIDAE): A REASSESSMENT BY ALAN B. CADY l, WILLIAM J. TIETJEN 2, AND GEORGE W. UETZ INTRODUCTION The relationship between local spider distribution patterns and environmental factors has been studied in a variety of species (Nergaard 1951; Dondale et al. 1969; Hallander 1970; Edgar 1971; Riechert 1974, 1976; Uetz 1976; Dondale 1977). Aspey (1976)stated that Schizocosa ocreata (Walckenaer)(formerly crassipes; Dondale and Redner 1978) was found in aggregations along a woodland-field ecotone, and suggested that unique microclimatic conditions and social interactions among conspecifics occurring within this area resulted in an "edge effect" for this spider's distribution. He termed S. ocreata an "edge" species, implying it was found almost exclu- sively along ecotones. We were skeptical of Aspey's (1976) conclu- sions, since previous literature and prior experience with this species led each of us to the separate conclusion that S. ocreata is a forest- dwelling spider (Kaston 1948; Dondale and Redner 1978; Uetz 1976; Cady (in prep.)). In addition, Aspey's (1976) survey for S. ocreata appeared incomplete, as he did not report sampling within the adjacent woodland or field. Considering Aspey's (1976) elaborate behavioral arguments based on assumptions about the distribution of this species, we felt further study was necessary. METHODS The study site was approximately 3.5 km west from Aspey's (1976) site. Three areas were sampled: A mixed hardwood deciduous woodland (Quercus sp., Liriodendron sp., Fraxinus sp., Fagus sp.), the adjoining ecotone, and an open goldenrod-thistle field (Solidago sp., Cirsium sp.). Spiders were sampled by twelve pitfall traps of the type described by Uetz and Unzicker (1976).
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Brushlegged Wolf Spider Schizocosa Ocreata ILLINOIS RANGE
    brushlegged wolf spider Schizocosa ocreata Kingdom: Animalia FEATURES Phylum: Arthropoda Like all wolf spiders, the brushlegged wolf spider has Class: Chelicerata four, large eyes in a trapezoid shape on the top of the Order: Araneae carapace. The two median eyes in this group of four are the largest and face forward. The two smaller eyes in Family: Lycosidae this group of four are set behind the two central eyes, ILLINOIS STATUS facing to the side or backwards. In front of these four eyes is a row of four, smaller eyes. Females are about common, native 0.29 to 0.41 inch in total body length. Males are smaller 0.24 to 0.39 inch in total body length. The general body color is brown with a lighter-colored band longitudinally in the center of the cephalothorax and abdomen. The dark areas on the sides of the cephalothorax and abdomen may appear to be black. The male’s front legs are black with clusters of setae. BEHAVIORS This species is found in leaf litter in upland deciduous forests, forest edges and open fields near woodlands. It hunts during the day and at night. Adults are active from April through October. Subadults are the overwintering stage. They mature in spring. Wolf spiders have good vision. They perform courtship rituals like waving the legs or palps with making sounds created by vibrating body parts against each other or a surface or object they are near. Wolf spiders generally do not build a web but use a dragline of silk for communication. The female ILLINOIS RANGE builds an egg sac and attaches it to her spinnerets.
    [Show full text]
  • Response of Pollinators to the Tradeoff Between Resource Acquisition And
    Oikos 000: 001–010, 2011 doi: 10.1111/j.1600-0706.2011.19910.x © 2011 The Authors. Oikos © 2011 Nordic Society Oikos Subject Editor: Koos Biesmierer. Accepted 25 July 2011 0 Response of pollinators to the tradeoff between resource 53 acquisition and predator avoidance 55 5 Ana L. Llandres, Eva De Mas and Miguel A. Rodríguez-Gironés 60 A. L. Llandres ([email protected]), E. De Mas and M. A. Rodríguez-Gironés, Dept of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (CSIC), Carretera de Sacramento, s/n, ES-04120, La Cañada de San Urbano, Almería, Spain. 10 65 Although the behaviour of animals facing the conflicting demands of increasing foraging success and decreasing predation risk has been studied in many taxa, the response of pollinators to variations in both factors has only been studied in isola- tion. We compared visit rates of two pollinator species, hoverflies and honeybees, to 40 Chrysanthemum segetum patches 15 in which we manipulated predation risk (patches with and without crab spiders) and nectar availability (rich and poor patches) using a full factorial design. Pollinators responded differently to the tradeoff between maximising intake rate and minimising predation risk: honeybees preferred rich safe patches and avoided poor risky patches while the number of hov- 70 erflies was highest at poor risky patches. Because honeybees were more susceptible to predation than hoverflies, our results suggest that, in the presence of competition for resources, less susceptible pollinators concentrate their foraging effort on 20 riskier resources, where competition is less severe. Crab spiders had a negative effect on the rate at which inflorescences were visited by honeybees.
    [Show full text]
  • Predation on Reproducing Wolf Spiders: Access to Information Has Differential Effects on Male and Female Survival
    Animal Behaviour 128 (2017) 165e173 Contents lists available at ScienceDirect Animal Behaviour journal homepage: www.elsevier.com/locate/anbehav Predation on reproducing wolf spiders: access to information has differential effects on male and female survival * Ann L. Rypstra a, , Chad D. Hoefler b, 1, Matthew H. Persons c, 2 a Department of Biology, Miami University, Hamilton, OH, U.S.A. b Department of Biology, Arcadia University, Glenside, PA, U.S.A. c Department of Biology, Susquehanna University, Selinsgrove, PA, U.S.A. article info Predation has widespread influences on animal behaviour, and reproductive activities can be particularly Article history: dangerous. Males and females differ in their reactions to sensory stimuli from predators and potential Received 13 September 2016 mates, which affects the risk experienced by each sex. Thus, the information available can cause dif- Initial acceptance 8 November 2016 ferential survival and have profound implications for mating opportunities and population structure. The Final acceptance 24 March 2017 wolf spider, Pardosa milvina, detects and responds in a risk-sensitive manner to chemotactile information from a larger predator, the wolf spider Tigrosa helluo. Male P. milvina use similar chemotactile cues to find MS. number: A16-00806R2 females whereas female P. milvina focus on the visual, and perhaps vibratory, aspects of the male display. Our aim was to document the risk posed by T. helluo predators on P. milvina during reproduction and to Keywords: determine whether augmenting chemotactile information would affect that outcome. In the laboratory, chemical cue we explored the effects of adding predator and/or female cues on the predatory success of T.
    [Show full text]
  • Selection for Imperfection: a Review of Asymmetric Genitalia 2 in Araneomorph Spiders (Araneae: Araneomorphae)
    bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Selection for imperfection: A review of asymmetric genitalia 2 in araneomorph spiders (Araneae: Araneomorphae). 3 4 5 6 F. ANDRES RIVERA-QUIROZ*1, 3, MENNO SCHILTHUIZEN2, 3, BOOPA 7 PETCHARAD4 and JEREMY A. MILLER1 8 1 Department Biodiversity Discovery group, Naturalis Biodiversity Center, 9 Darwinweg 2, 2333CR Leiden, The Netherlands 10 2 Endless Forms Group, Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, 11 The Netherlands 12 3 Institute for Biology Leiden (IBL), Leiden University, Sylviusweg 72, 2333BE 13 Leiden, The Netherlands. 14 4 Faculty of Science and Technology, Thammasat University, Rangsit, Pathum Thani, 15 12121 Thailand. 16 17 18 19 Running Title: Asymmetric genitalia in spiders 20 21 *Corresponding author 22 E-mail: [email protected] (AR) 23 bioRxiv preprint doi: https://doi.org/10.1101/704692; this version posted July 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 24 Abstract 25 26 Bilateral asymmetry in the genitalia is a rare but widely dispersed phenomenon in the 27 animal tree of life. In arthropods, occurrences vary greatly from one group to another 28 and there seems to be no common explanation for all the independent origins.
    [Show full text]
  • Three Interesting Spiders of the Families Filistatidae, Clubionidae and Salticidae (Araneae) from Palau
    Bull. Natl. Mus. Nat. Sci., Ser. A, 37(4), pp. 185–194, December 22, 2011 Three Interesting Spiders of the Families Filistatidae, Clubionidae and Salticidae (Araneae) from Palau Hirotsugu Ono Department of Zoology, National Museum of Nature and Science, 4–1–1, Amakubo, Tsukuba-shi, Ibaraki, 305–0005 Japan E-mail: [email protected] (Received 29 August 2011; accepted 28 September 2011) Abstract Three interesting spiders from the Republic of Palau are reported. Filistata fuscata Nakatsudi, 1943 (Filistatidae), is taxonomically revised and redescribed with topotypical speci- mens newly obtained. Nakatsudi is regarded as the only author of the name, contrary to the hither- to treatments in the catalogues as Kishida, 1943 or Kishida in Nakatsudi, 1943. Filistata fuscata Kishida, 1947, validated on the basis of Kishida (1947) as its original description is regarded as a junior homonym and synonym of Filistata fuscata Nakatsudi, 1943. After a careful assessment of characteristics, the species is transferred from the original genus into Tricalamus Wang, 1987, and a new combination Tricalamus fuscatus is proposed. Two new species of the genera Clubiona La- treille, 1804 (Clubionidae) and Athamas O. Pickard-Cambridge, 1877 (Salticidae), are described from Koror Island of Palau under the names, Clubiona jaegeri sp. nov. and Athamas proszynskii sp. nov., respectively. Key words : Taxonomy, Araneae, Filistatidae, Clubionidae, Salticidae, Palau. In the course of research project on the biodi- The abbreviations used are as follows: ALE, versity inventory in western Pacific regions made anterior lateral eye; AME, anterior median eye; by the National Museum of Nature and Science, ap, in the apical part; PLE, posterior lateral eye; Tokyo, the author visited the Republic of Palau PME, posterior median eye.
    [Show full text]
  • Arthropod Community Dynamics in Undisturbed and Intensively Managed Mountain Brush Habitats
    Great Basin Naturalist Volume 49 Number 4 Article 14 10-31-1989 Arthropod community dynamics in undisturbed and intensively managed mountain brush habitats Tim A. Christiansen University of Wyoming, Laramie Jeffrey A. Lockwood University of Wyoming, Laramie Jeff Powell University of Wyoming, Laramie Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Christiansen, Tim A.; Lockwood, Jeffrey A.; and Powell, Jeff (1989) "Arthropod community dynamics in undisturbed and intensively managed mountain brush habitats," Great Basin Naturalist: Vol. 49 : No. 4 , Article 14. Available at: https://scholarsarchive.byu.edu/gbn/vol49/iss4/14 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. ARTHROPOD COMMUNITY DYNAMICS IN UNDISTURBED AND INTENSIVELY MANAGED MOUNTAIN BRUSH HABITATS 1 1 2 Christiansen A. Lockwood , and Jeff Powell Tim A. , Jeffrey Abstract. —The population dynamics of litter and foliage arthropods in undisturbed and intensively managed sagebrush (Artemisia tridentata ) and bitterbrush (Purshia tridentata ) habitats in southeastern Wyoming were assessed bv the measurement of density and the determination of indices of diversity, richness, and evenness. Brush manage- ment consisted of either mowing to a 20-cm stubble or applying the herbicide 2,4-D butyl ester. A total of 63 arthropod species were found in foliage and 150 species in litter. Mowing and herbicide applications resulted in significant changes in the density of 16 of the 46 major arthropod foliage species and 56 of the 70 major litter species.
    [Show full text]