The Brain Transcriptome of the Wolf Spider, Schizocosa Ocreata Daniel Stribling1,5† , Peter L

Total Page:16

File Type:pdf, Size:1020Kb

The Brain Transcriptome of the Wolf Spider, Schizocosa Ocreata Daniel Stribling1,5† , Peter L Stribling et al. BMC Res Notes (2021) 14:236 https://doi.org/10.1186/s13104-021-05648-y BMC Research Notes DATA NOTE Open Access The brain transcriptome of the wolf spider, Schizocosa ocreata Daniel Stribling1,5† , Peter L. Chang2† , Justin E. Dalton1, Christopher A. Conow2, Malcolm Rosenthal3 , Eileen Hebets3, Rita M. Graze4 and Michelle N. Arbeitman1* Abstract Objectives: Arachnids have fascinating and unique biology, particularly for questions on sex diferences and behav- ior, creating the potential for development of powerful emerging models in this group. Recent advances in genomic techniques have paved the way for a signifcant increase in the breadth of genomic studies in non-model organisms. One growing area of research is comparative transcriptomics. When phylogenetic relationships to model organisms are known, comparative genomic studies provide context for analysis of homologous genes and pathways. The goal of this study was to lay the groundwork for comparative transcriptomics of sex diferences in the brain of wolf spiders, a non-model organism of the pyhlum Euarthropoda, by generating transcriptomes and analyzing gene expression. Data description: To examine sex-diferential gene expression, short read transcript sequencing and de novo tran- scriptome assembly were performed. Messenger RNA was isolated from brain tissue of male and female subadult and mature wolf spiders (Schizocosa ocreata). The raw data consist of sequences for the two diferent life stages in each sex. Computational analyses on these data include de novo transcriptome assembly and diferential expression analy- ses. Sample-specifc and combined transcriptomes, gene annotations, and diferential expression results are described in this data note and are available from publicly-available databases. Keywords: Schizocosa ocreata, Wolf spiders, Gene expression, Transcriptomes, Sexual dimorphism, Sex-diferential gene expression, Sex biased expression, Brain and central nervous system, De novo transcriptome assembly Objectives a broader set of inferences that goes beyond what has Arachnids, including spiders, have diverse and unique been learned from model organisms. For example, copu- reproductive behavior, including sexual cannibalism and latory wounding, male leg ornamentation, and elaborate female aggression, copulatory wounding, and elaborate courtship are well-studied in Drosophila, and arachnid courtship with sexual dimorphism in morphology and genomic comparative studies can reveal parallel or diver- coloration [1–5]. Te development of genomic resources gent mechanisms [6–15]. in arachnids will allow for key comparisons not only in Several arachnid genomes and transcriptomes, includ- genome biology, but also in evolution and in the biol- ing those of spiders, mites and scorpions, have recently ogy of sex. Comparative studies between arachnids and become available [16–18]. Given that spiders have unique model organisms in other arthropod classes can provide sex-specifc behaviors and that progress is ongoing in developing arachnid genomics, our goal was to generate transcriptomes and gene expression data using mRNA *Correspondence: [email protected] from brains of males and females of the wolf spider, † Daniel Stribling and Peter L. Chang contributed equally to this work Schizocosa ocreata. Studies of wolf spider sexual dimor- 1 Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, FL 32306, USA phism in morphology and behavior have revealed intrigu- Full list of author information is available at the end of the article ing parallels to textbook examples of sex dimorphism © The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Stribling et al. BMC Res Notes (2021) 14:236 Page 2 of 5 Table 1 Overview of data fles/data sets Label Name of data fle/data set File types (fle extension) Data repository and identifer (DOI or accession number) Data set 1 Raw illumina data FASTQ fles (.fq) NCBI SRA: https:// ident ifers. org/ ncbi/ insdc. sra: SRP30 2932 [45] Data fle 1 Trimmed-read FastQC statistics PDF fle (.pdf) NCBI GEO: https:// ident ifers. org/ geo: GSE16 8766 [46] Data set 2 Schizocosa ocreata immature male 1, de novo tran- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZN0 scriptome assembly 00000 00 [47] Data set 3 Schizocosa ocreata immature male 2, de novo tran- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZS0 scriptome assembly 00000 00 [48] Data set 4 Schizocosa ocreata immature male 3, de novo tran- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZT0 scriptome assembly 00000 00 [49] Data set 5 Schizocosa ocreata immature female 2, de novo FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZM0 transcriptome assembly 00000 00 [50] Data set 6 Schizocosa ocreata immature female 3, de novo FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZR0 transcriptome assembly 00000 00 [51] Data set 7 Schizocosa ocreata mature male 2, de novo transcrip- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZP0 tome assembly 00000 00 [52] Data set 8 Schizocosa ocreata mature male 3, de novo transcrip- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZW0 tome assembly 00000 00 [53] Data set 9 Schizocosa ocreata mature female 1, de novo tran- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZO0 scriptome assembly 00000 00 [54] Data set 10 Schizocosa ocreata mature female 2, de novo tran- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZU0 scriptome assembly 00000 00 [55] Data set 11 Schizocosa ocreata mature female 3, de novo tran- FASTA fles (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZV0 scriptome assembly 00000 00 [56] Data set 12 Schizocosa ocreata consensus coding sequences FASTA fle (.fa) NCBI TSA: https:// ident ifers. org/ ncbi/ insdc: GIZQ0 00000 00 [57] Data fle 2 Transcriptome assembly statistics PDF fle (.pdf) NCBI GEO https:// ident ifers. org/ geo: GSE16 8766 [46] Data fle 3 Gene annotations Tabular text fle (.txt) NCBI GEO https:// ident ifers. org/ geo: GSE16 8766 [46] Data fle 4 Gene expression values Tabular text fle (.txt) NCBI GEO https:// ident ifers. org/ geo: GSE16 8766 [46] Data fle 5 Diferential expression values MS excel fle (.xlsx) NCBI GEO https:// ident ifers. org/ geo: GSE16 8766 [46] Data fle 6 Transcriptome fow (TFLOW): de novo transcriptome Zip archive (.zip) Zenodo https:// doi. org/ 10. 5281/ zenodo. 38174 74 [58] analysis pipeline Data fle 7 Gene clustering analysis script Python script (.py) Zenodo https:// doi. org/ 10. 5281/ zenodo. 43307 38 [59] Data fle 8 Diferential expression analysis script R script (.R) Zenodo https:// doi. org/ 10. 5281/ zenodo. 43307 38 [59] in well-studied model organisms [19–25]. Te data pre- sequences; quality assessments are provided (Data fle 1; sented here are valuable in laying necessary groundwork Table 1; GEO GSE168766). for broad comparative functional genomics of sex difer- Transcriptome assembly was performed for each sam- ences in brain and behavior across arthropods. ple using Trinity followed by CAP3 [26, 27]. A consensus transcriptome was assembled combining all individual Data description assemblies using CAP3. Transcriptome quality was eval- mRNA was isolated from brain samples of immature uated on individual sample and consensus transcriptome (Imm; subadult) and mature (Mat; adult) male and assemblies based on the number of conserved protein female Schizocosa ocreata, collected in Lancaster County, coding genes identifed from the Core Eukaryotic Genes Nebraska (see detailed methods: NCBI Gene Expression Mapping Approach (CEGMA) and Benchmarking sets of Omnibus [GEO] Series accession number GSE168766). Universal Single-Copy Orthologs (BUSCO) Arthropod Illumina paired-end sequencing was performed with databases (Data fle 2; GEO GSE168766) [28–30]. Both libraries generated from mRNA derived from indi- CEGMA and BUSCO alignments used the Basic Local vidual brain samples, with three replicates for each sex/ Alignment Search (BLAST) utility with default threshold stage (Data set 1; NCBI SRA: SRP302932). Sequence E-value of 1e−20 [31]. In the consensus assembly, 99% reads were processed to remove index and low-quality of CEGMA and 95% of BUSCO genes were identifed, Stribling et al. BMC Res Notes (2021) 14:236 Page 3 of 5 demonstrating a high assembly quality. To facilitate this the completion of this study, the CEGMA annotation workfow, the Transcriptome-Flow (TFLOW) pipeline database has been discontinued. Te TFLOW software was developed (Python 2.7; Zenodo; Data fle 6). Each package was developed in the Python2.7 programming individual assembly was fltered to remove contaminant language which is no longer actively supported. Archival sequences and uploaded to the NCBI Transcriptome versions of Python2.7 may be utilized to execute TFLOW, Shotgun Assembly (TSA) database (Data sets 2–11; or conversion of this software to a currently-supported Table 1). version of Python can be performed using a python ver- Putative protein coding sequences from the consensus sion-update package.
Recommended publications
  • Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
    Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate
    [Show full text]
  • SEXUAL CONFLICT in ARACHNIDS Ph.D
    MASARYK UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF BOTANY AND ZOOLOGY SEXUAL CONFLICT IN ARACHNIDS Ph.D. Dissertation Lenka Sentenská Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Brno 2017 Bibliographic Entry Author Mgr. Lenka Sentenská Faculty of Science, Masaryk University Department of Botany and Zoology Title of Thesis: Sexual conflict in arachnids Degree programme: Biology Field of Study: Ecology Supervisor: prof. Mgr. Stanislav Pekár, Ph.D. Academic Year: 2016/2017 Number of Pages: 199 Keywords: Sexual selection; Spiders; Scorpions; Sexual cannibalism; Mating plugs; Genital morphology; Courtship Bibliografický záznam Autor: Mgr. Lenka Sentenská Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Konflikt mezi pohlavími u pavoukovců Studijní program: Biologie Studijní obor: Ekologie Vedoucí práce: prof. Mgr. Stanislav Pekár, Ph.D. Akademický rok: 2016/2017 Počet stran: 199 Klíčová slova: Pohlavní výběr; Pavouci; Štíři; Sexuální kanibalismus; Pohlavní zátky; Morfologie genitálií; Námluvy ABSTRACT Sexual conflict is pervasive in all sexually reproducing taxa and is especially intense in carnivorous species, because the interaction between males and females encompasses the danger of getting killed instead of mated. Carnivorous arachnids, such as spiders and scorpions, are notoriously known for their cannibalistic tendencies. Studies of the conflict between arachnid males and females focus mainly on spiders because of the frequent occurrence of sexual cannibalism and unique genital morphology of both sexes. The morphology, in combination with common polyandry, further promotes the sexual conflict in form of an intense sperm competition and male tactics to reduce or avoid it. Scorpion females usually mate only once per litter, but the conflict between sexes is also intense, as females can be very aggressive, and so males engage in complicated mating dances including various components considered to reduce female aggression and elicit her cooperation.
    [Show full text]
  • In Schizocosa Ocreata (Araneae: Lycosidae): a Reassessment by Alan B
    THE "EDGE EFFECT" IN SCHIZOCOSA OCREATA (ARANEAE: LYCOSIDAE): A REASSESSMENT BY ALAN B. CADY l, WILLIAM J. TIETJEN 2, AND GEORGE W. UETZ INTRODUCTION The relationship between local spider distribution patterns and environmental factors has been studied in a variety of species (Nergaard 1951; Dondale et al. 1969; Hallander 1970; Edgar 1971; Riechert 1974, 1976; Uetz 1976; Dondale 1977). Aspey (1976)stated that Schizocosa ocreata (Walckenaer)(formerly crassipes; Dondale and Redner 1978) was found in aggregations along a woodland-field ecotone, and suggested that unique microclimatic conditions and social interactions among conspecifics occurring within this area resulted in an "edge effect" for this spider's distribution. He termed S. ocreata an "edge" species, implying it was found almost exclu- sively along ecotones. We were skeptical of Aspey's (1976) conclu- sions, since previous literature and prior experience with this species led each of us to the separate conclusion that S. ocreata is a forest- dwelling spider (Kaston 1948; Dondale and Redner 1978; Uetz 1976; Cady (in prep.)). In addition, Aspey's (1976) survey for S. ocreata appeared incomplete, as he did not report sampling within the adjacent woodland or field. Considering Aspey's (1976) elaborate behavioral arguments based on assumptions about the distribution of this species, we felt further study was necessary. METHODS The study site was approximately 3.5 km west from Aspey's (1976) site. Three areas were sampled: A mixed hardwood deciduous woodland (Quercus sp., Liriodendron sp., Fraxinus sp., Fagus sp.), the adjoining ecotone, and an open goldenrod-thistle field (Solidago sp., Cirsium sp.). Spiders were sampled by twelve pitfall traps of the type described by Uetz and Unzicker (1976).
    [Show full text]
  • Status and Protection of Globally Threatened Species in the Caucasus
    STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N.
    [Show full text]
  • Araneae: Dysderidae)
    Biodiversity Data Journal 3: e4419 doi: 10.3897/BDJ.3.e4419 Taxonomic Paper A new species of Harpactea Bristowe, 1939 from Turkey (Araneae: Dysderidae) Recep Sulhi Özkütük‡, Mert Elverici §,|, Yuri M. Marusik¶, Kadir Boğaç Kunt‡ ‡ Anadolu University, Science Faculty, Biology Department, Eskişehir, Turkey § Middle East Technical University, Biology Department, Ankara, Turkey | Erzincan University, Science and Arts Faculty, Biology Department, Erzincan, Turkey ¶ IBPN RAS, Magadan, Russia Corresponding author: Recep Sulhi Özkütük ([email protected]), Kadir Boğaç Kunt ([email protected]) Academic editor: Jason Bond Received: 27 Dec 2014 | Accepted: 06 Sep 2015 | Published: 07 Sep 2015 Citation: Özkütük R, Elverici M, Marusik Y, Kunt K (2015) A new species of Harpactea Bristowe, 1939 from Turkey (Araneae: Dysderidae). Biodiversity Data Journal 3: e4419. doi: 10.3897/BDJ.3.e4419 ZooBank: urn:lsid:zoobank.org:pub:DE2CC6E0-FA8F-4C26-8D03-55ED686D5E96 Abstract A new species of Harpactea Bristowe, 1939, H. alanyana sp. n. is described from southern Turkey. The new species appears closely related to H. osellai Brignoli, 1978. Detailed description and illustrations of the new and related species are provided. The relationships of the two species are discussed. Keywords Alanya, Antalya, Mediterranean, spider, woodlouse hunters Introduction Harpactea Bristowe, 1939 is large genus of dysderid spiders that includes 172 species distributed in the Mediterranean region from the Iberian Peninsula to Turkmenistan (World Spider Catalog 2014). In spite of this wide distribution range and high species richness, © Özkütük R et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • Brushlegged Wolf Spider Schizocosa Ocreata ILLINOIS RANGE
    brushlegged wolf spider Schizocosa ocreata Kingdom: Animalia FEATURES Phylum: Arthropoda Like all wolf spiders, the brushlegged wolf spider has Class: Chelicerata four, large eyes in a trapezoid shape on the top of the Order: Araneae carapace. The two median eyes in this group of four are the largest and face forward. The two smaller eyes in Family: Lycosidae this group of four are set behind the two central eyes, ILLINOIS STATUS facing to the side or backwards. In front of these four eyes is a row of four, smaller eyes. Females are about common, native 0.29 to 0.41 inch in total body length. Males are smaller 0.24 to 0.39 inch in total body length. The general body color is brown with a lighter-colored band longitudinally in the center of the cephalothorax and abdomen. The dark areas on the sides of the cephalothorax and abdomen may appear to be black. The male’s front legs are black with clusters of setae. BEHAVIORS This species is found in leaf litter in upland deciduous forests, forest edges and open fields near woodlands. It hunts during the day and at night. Adults are active from April through October. Subadults are the overwintering stage. They mature in spring. Wolf spiders have good vision. They perform courtship rituals like waving the legs or palps with making sounds created by vibrating body parts against each other or a surface or object they are near. Wolf spiders generally do not build a web but use a dragline of silk for communication. The female ILLINOIS RANGE builds an egg sac and attaches it to her spinnerets.
    [Show full text]
  • The Effects of Native and Non-Native Grasses on Spiders, Their Prey, and Their Interactions
    Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the GRADUATE DIVISION of the University of California, Berkeley Committee in charge: Professor Joe R. McBride, Chair Professor Rosemary G. Gillespie Professor Mary E. Power Spring 2014 © 2014 Abstract Spiders in California’s grassland mosaic: The effects of native and non-native grasses on spiders, their prey, and their interactions by Kirsten Elise Hill Doctor of Philosophy in Environmental Science and Policy Management University of California, Berkeley Professor Joe R. McBride, Chair Found in nearly all terrestrial ecosystems, small in size and able to occupy a variety of hunting niches, spiders’ consumptive effects on other arthropods can have important impacts for ecosystems. This dissertation describes research into spider populations and their interactions with potential arthropod prey in California’s native and non-native grasslands. In meadows found in northern California, native and non-native grassland patches support different functional groups of arthropod predators, sap-feeders, pollinators, and scavengers and arthropod diversity is linked to native plant diversity. Wandering spiders’ ability to forage within the meadow’s interior is linked to the distance from the shaded woodland boundary. Native grasses offer a cooler conduit into the meadow interior than non-native annual grasses during midsummer heat. Juvenile spiders in particular, are more abundant in the more structurally complex native dominated areas of the grassland.
    [Show full text]
  • The Study of Hidden Habitats Sheds Light on Poorly Known Taxa: Spiders of the Mesovoid Shallow Substratum
    A peer-reviewed open-access journal ZooKeys 841: 39–59 (2019)The study of hidden habitats sheds light on poorly known taxa... 39 doi: 10.3897/zookeys.841.33271 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum Enrique Ledesma1, Alberto Jiménez-Valverde1, Alberto de Castro2, Pablo Aguado-Aranda1, Vicente M. Ortuño1 1 Research Team on Soil Biology and Subterranean Ecosystems, Department of Life Science, Faculty of Science, University of Alcalá, Alcalá de Henares, Madrid, Spain 2 Entomology Department, Aranzadi Science Society, Donostia - San Sebastián, Gipuzkoa, Spain Corresponding author: Enrique Ledesma ([email protected]); Alberto Jiménez-Valverde ([email protected]) Academic editor: P. Michalik | Received 22 January 2019 | Accepted 5 March 2019 | Published 23 April 2019 http://zoobank.org/52EA570E-CA40-453D-A921-7785A9BD188B Citation: Ledesma E, Jiménez-Valverde A, de Castro A, Aguado-Aranda P, Ortuño VM (2019) The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. ZooKeys 841: 39–59. https:// doi.org/10.3897/zookeys.841.33271 Abstract The scarce and biased knowledge about the diversity and distribution of Araneae species in the Iberian Peninsula is accentuated in poorly known habitats such as the Mesovoid Shallow Substratum (MSS). The aim of this study was to characterize the spiders inventory of the colluvial MSS of the Sierra de Guadar- rama National Park, and to assess the importance of this habitat for the conservation of the taxon. Thirty-three localities were selected across the high peaks of the Guadarrama mountain range and they were sampled for a year using subterranean traps specially designed to capture arthropods in the MSS.
    [Show full text]
  • Causes and Consequences of External Female Genital Mutilation
    Causes and consequences of external female genital mutilation I n a u g u r a l d i s s e r t a t i o n Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. Nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald Vorgelegt von Pierick Mouginot Greifswald, 14.12.2018 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Gabriele Uhl 2. Gutachter: Prof. Dr. Klaus Reinhardt Datum der Promotion: 13.03.2019 Contents Abstract ................................................................................................................................................. 5 1. Introduction ................................................................................................................................... 6 1.1. Background ............................................................................................................................. 6 1.2. Aims of the presented work ................................................................................................ 14 2. References ................................................................................................................................... 16 3. Publications .................................................................................................................................. 22 3.1. Chapter 1: Securing paternity by mutilating female genitalia in spiders .......................... 23 3.2. Chapter 2: Evolution of external female genital mutilation: why do males harm their mates?..................................................................................................................................
    [Show full text]
  • A New Spider Species, Harpactea Asparuhi Sp. Nov., from Bulgaria (Araneae: Dysderidae)
    XX…………………………………… ARTÍCULO: A new spider species, Harpactea asparuhi sp. nov., from Bulgaria (Araneae: Dysderidae) Stoyan Lazarov ARTÍCULO: A new spider species, Harpactea asparuhi sp. nov., from Bulgaria (Araneae: Dysderidae) Stoyan Lazarov Institute of Zoology Abstract Bulgarian Academy of Sciences A new species, Harpactea asparuhi sp. nov. (Araneae: Dysderidae), is de- 1, Tsar Osvoboditel Blvd, scribed and illustrated by male specimens collected in Bulgaria (Eastern 1000 Sofia Bulgaria. Rhodopi Mountain). The male palps of this species are similar to H. samuili La- E-mail: [email protected] zarov, 2006, but conductor is lanceolate. Key words: Harpactea, Eastern Rhodopi, Bulgaria, Boynik. Taxonomy: Harpactea asparuhi sp. nov. Revista Ibérica de Aracnología ISSN: 1576 - 9518. Dep. Legal: Z-2656-2000. Una nueva especie de araña de Bulgaria, Harpactea asparuhi sp. Vol. 15, 30-VI-2007 nov., (Araneae: Dysderidae) Sección: Artículos y Notas. Pp: 25 − 27. Resumen Fecha publicación: 30 Abril 2008 Se describe e ilustra una nueva especie de araña a partir de ejemplares machos procedentes de Bulgaria (Montes Rhodopi orientales). El palpo del macho de esta especie es similar a H. samuili Lazarow, 2006. Se diferencia de esta espe- cie por poseer el conductor lanceolado. Edita: Palabras clave: Harpactea, Rhodopi, Bulgaria, Boynik. Grupo Ibérico de Aracnología (GIA) Taxonomía: Harpactea asparuhi sp. nov. Grupo de trabajo en Aracnología de la Sociedad Entomológica Aragonesa (SEA) Avda. Radio Juventud, 37 50012 Zaragoza (ESPAÑA) Tef. 976 324415 Fax. 976 535697 C-elect.: [email protected] Director: Carles Ribera C-elect.: [email protected] Introduction Indice, resúmenes, abstracts vols. publicados: The Dysderidae, a rather species rich spider family from the Mediterranean http://entomologia.rediris.es/sea/ region, shows remarkable diversity in south-eastern Europe, and especially publicaciones/ria/index.htm on the Balkan Peninsula (Platnick 2006, Deltshev 1999).
    [Show full text]
  • Assessing Spider Species Richness and Composition in Mediterranean Cork Oak Forests
    acta oecologica 33 (2008) 114–127 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/actoec Original article Assessing spider species richness and composition in Mediterranean cork oak forests Pedro Cardosoa,b,c,*, Clara Gasparc,d, Luis C. Pereirae, Israel Silvab, Se´rgio S. Henriquese, Ricardo R. da Silvae, Pedro Sousaf aNatural History Museum of Denmark, Zoological Museum and Centre for Macroecology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark bCentre of Environmental Biology, Faculty of Sciences, University of Lisbon, Rua Ernesto de Vasconcelos Ed. C2, Campo Grande, 1749-016 Lisboa, Portugal cAgricultural Sciences Department – CITA-A, University of Azores, Terra-Cha˜, 9701-851 Angra do Heroı´smo, Portugal dBiodiversity and Macroecology Group, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK eDepartment of Biology, University of E´vora, Nu´cleo da Mitra, 7002-554 E´vora, Portugal fCIBIO, Research Centre on Biodiversity and Genetic Resources, University of Oporto, Campus Agra´rio de Vaira˜o, 4485-661 Vaira˜o, Portugal article info abstract Article history: Semi-quantitative sampling protocols have been proposed as the most cost-effective and Received 8 January 2007 comprehensive way of sampling spiders in many regions of the world. In the present study, Accepted 3 October 2007 a balanced sampling design with the same number of samples per day, time of day, collec- Published online 19 November 2007 tor and method, was used to assess the species richness and composition of a Quercus suber woodland in Central Portugal. A total of 475 samples, each corresponding to one hour of Keywords: effective fieldwork, were taken.
    [Show full text]