The Subfamily Donaciinae in Utah (Insecta: Coleptera: Chrysomelidae)

Total Page:16

File Type:pdf, Size:1020Kb

The Subfamily Donaciinae in Utah (Insecta: Coleptera: Chrysomelidae) Monographs of the Western North American Naturalist Volume 4 Article 1 10-3-2008 The subfamily Donaciinae in Utah (Insecta: Coleptera: Chrysomelidae) Shawn M. Clark Brigham Young University, [email protected] Andrew B. Olsen Brigham Young University Mark H. Goodman Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/mwnan Recommended Citation Clark, Shawn M.; Olsen, Andrew B.; and Goodman, Mark H. (2008) "The subfamily Donaciinae in Utah (Insecta: Coleptera: Chrysomelidae)," Monographs of the Western North American Naturalist: Vol. 4 , Article 1. Available at: https://scholarsarchive.byu.edu/mwnan/vol4/iss1/1 This Monograph is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Monographs of the Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Monographs of the Western North American Naturalist 4, © 2008, pp. 1–37 THE SUBFAMILY DONACIINAE IN UTAH (INSECTA: COLEOPTERA: CHRYSOMELIDAE) Shawn M. Clark1,3, Andrew B. Olsen2, and Mark H. Goodman1,2 ABSTRACT.—Information is presented dealing with the western North American species of the subfamily Donaciinae, with emphasis on data from the state of Utah. Dichotomous keys and short diagnoses are provided to enable identification of genera and species. Previously published records from Utah are summarized. For each species, the overall North American distribution is summarized, and detailed records are given for Utah. Reported host plants for each species are also listed. Key words: Chrysomelidae, Donaciinae, Donacia, Plateumaris, Utah. Beyond the original validation of taxonomic cially resemble some of the true long-horned names and subsequent systematic revisions, beetles that belong to the family Cerambycidae. very little has been published about most Other more important subfamily characters invertebrate species. From a conservation or are included in the subfamily diagnosis below. biodiversity point of view, this is extremely Larval donaciines are truly aquatic, being unfortunate. Overwhelmingly, most animal completely submerged. They occur in both lotic species are indeed invertebrates. More identi- and lentic habitats. The apex of the abdomen fication guides, investigations of biology, and is equipped with elongate, tubular extensions regional faunal treatments are sorely needed. to the terminal spiracles, and these are inserted Aquatic species, especially insects belonging into hollow, air-filled stems of various aquatic to the orders Ephemeroptera, Plecoptera, and plants. The larvae thereby obtain oxygen in Trichoptera, have been somewhat better studied snorkel-like fashion. They feed on these same due to their extensive use in monitoring stream plants. On the other hand, adult donaciines quality. However, even they are in need of are often categorized as terrestrial insects since much additional investigation. The present they are most frequently encountered out of study provides information on a group of insects the water. They are good fliers, and a few that is somewhat intermediate between aquatic species are sometimes collected at light some and terrestrial habits. Although currently in - distance from their normal aquatic habitats. adequately studied, such insects may eventu- Even so, adults are most frequently found very ally prove to be valuable tools in monitoring near water, often on the emergent parts of the water quality. Also, they deserve consideration larval host plants. Despite being found most when mitigation wetlands are planned. If often out of water, even adults are well adapted essential factors such as proper host plants are to an aquatic life. This is evidenced by the not present in mitigated habitats, many inver- well-developed plastron, formed of dense, tebrate species would be unable to colonize short setae, that covers the venter of some and could conceivably be extirpated from large species. In fact, adults of a few species of regions. Donaciinae, such as those in the genus Neo- Donaciinae is a subfamily of Chrysomelidae, haemonia, actually spend almost their entire the entire family commonly referred to as leaf life, apart from the overwintering period, under beetles. Donaciines are sometimes called long- water. horned leaf beetles because their antennae are In spite of recent taxonomic advances, such longer and they have comparatively more as those of Askevold (1987, 1991), species elongate bodies than those of most other identification of donaciine beetles can be chal- chrysomelids. In these respects they superfi- lenging for workers not familiar with the group. 1Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602. 2Department of Biology, Brigham Young University, Provo, UT 84602. 3E-mail: [email protected] 1 2 MONOGRAPHS OF THE WESTERN NORTH AMERICAN NATURALIST [Volume 4 Series of specimens, including both males and Host plant information is also included and females, should be examined where possible. In comes from the work of Clark et al. (2004). conducting new fieldwork, efforts should be Acronyms used in the “material examined” made to collect and properly prepare such sections refer to the following collections where series. specimens are deposited: Brigham Young Uni- versity, Provo, Utah (BYUC); Colorado State METHODS University, Fort Collins (CSUC); Dixie State College, St. George, Utah (DSCC); United Because some species not yet discovered in States National Museum of Natural History, Utah may eventually be found in the state, the Washington, DC (USNM); Utah State Univer- diagnostic keys include all taxa recorded from sity, Logan (USUC); University of Utah, Salt western North America. For the purposes of Lake City (UUC). this study, “western” is defined as those areas west of the Great Plains. However, in the case TAXONOMIC ACCOUNTS AND KEYS of border areas, such as Colorado, all species reported from the state or province are in - Subfamily Donaciinae cluded in the keys, even though they may occur SUBFAMILY DIAGNOSIS.—Head prominent, only in the plains, rather than in mountain- prognathous, slightly narrowed behind eyes; ous areas. The inclusion of all western species eyes entire, convex, prominent, moderate in in the keys should facilitate their recognition if size; antennae closely inserted on frons, fili- they are ever found in Utah. We have greatly form, extending to middle of elytra. Prothorax modified the keys from Askevold (1990a, 1991) subquadrate, narrower than elytra, about as and from Downie and Arnett (1996). We have wide as head, without lateral marginal bead; altered wording, removed couplets dealing procoxal cavities closed behind. Each elytron with taxa not occurring in western North with 10 rows of punctures. Abdomen with 1st America, and added additional characters. ventrite as long as the remaining 4 together. Detailed descriptions are not included, and, if Legs long, femora capable of extending well specimens of questionable identification are beyond lateral margins of body; procoxae coni - encountered, the above-mentioned publications cal, narrowly separated; metafemora often should be consulted. The work of Marx (1957) enlarged and often toothed ventrally; protibiae will also be very helpful. and mesotibiae each with apical articulated spur; Following the diagnostic keys, individual tarsi pseudotetramerous, with 5 tarsomeres, treatments are provided for species that have but with 4th tarsomere small and inconspicu- actually been recorded from Utah. The arrange- ous; bifid setae present on 3rd tarsomere. ment of genera and species is alphabetical. These treatments include short species diag- Key to Genera of Western noses. Additionally, we present detailed dis- North American Donaciinae tributional information within the state, with a discussion of previously published records Modified from Askevold (1990a) and with a listing of complete label data from all specimens we have examined. This infor- (Genera followed by an asterisk are mation is also summarized in distribution maps: not known to occur in Utah) closed circles indicate localities of material 1. Prothorax of most specimens with broad, finely examined, and open circles indicate localities pubescent area above procoxa (Fig. 2c); pronotal from which there are literature records but not disk of some specimens conspicuously pubes- specimens that we have examined. In addition cent also; sutural beads of elytra straight for to detailed distributional data for Utah, the entire length (Fig. 14f), not dehiscent near apex; eyes of most specimens set off from vertex overall distribution beyond Utah is summa- by distinct sulcus; vertex of many specimens rized for each species. This overall informa- with 2 distinct calli; median lobe of aedeagus tion is taken from Riley et al. (2003). The state, subbasally with distinct angulation; tegmen thin, provincial, and territorial abbreviations corre- slender, of uniform width . 2 spond to standard postal codes. Provincial and — Prothorax without conspicuous, broad pubes- territorial records in Canada are given first, cent area above procoxa (but see Plateumaris followed by state records in the United States. aurifera); sutural beads of elytra dehiscent in 2008] DONACIINAE IN UTAH 3 apical declivital area, separated from each Key to Adults of Western North other by a narrow, usually shiny and impunctate American Donacia strip of
Recommended publications
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Curculionidae and Chrysomelidae Found in Aquatic Habitats in Wisconsin
    The Great Lakes Entomologist Volume 8 Number 4 - Winter 1975 Number 4 - Winter Article 6 1975 December 1975 Curculionidae and Chrysomelidae Found in Aquatic Habitats in Wisconsin Lutz J. Bayer H. Jane Brockmann University of Wisconsin Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Bayer, Lutz J. and Brockmann, H. Jane 1975. "Curculionidae and Chrysomelidae Found in Aquatic Habitats in Wisconsin," The Great Lakes Entomologist, vol 8 (4) Available at: https://scholar.valpo.edu/tgle/vol8/iss4/6 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Bayer and Brockmann: Curculionidae and Chrysomelidae Found in Aquatic Habitats in Wisc THE GREAT LAKES ENTOMOLOGIST CURCULIONIDAE AND CHRYSOMELIDAE FOUND IN AQUATIC HABITATS IN WISCONSIN' Lutz J. Bayer2 and H. Jane Brockmann3 We became interested in aquatic weevils (Curculionidae) and leaf beetles (Chryso- melidae) during the Aquatic Entomology Course at the University of Wisconsin, in the spring of 1971. Many collections, taken from a variety of aquatic habitats in Wisconsin, contained weevils and leaf beetles. Most of the species were not fully treated in the keys found in aquatic entomology texts. We thought it would be useful to compile keys from the literature and present what is known of the distribution of these insects in Wisconsin. Nine species of weevils have been found in aquatic habitats in Wisconsin, representing seven genera, all belonging to the subtribe Hydronomi, and twenty-five species of leaf beetles, representing five genera in three subfamilies.
    [Show full text]
  • Faune De Belgique / Fauna Van België
    Faune de Belgique / Fauna van Belgi Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie, 153 (2017): 15–20 Donacia crassipes Fabricius, 1775 a rare or a neglected species in Belgium? (Coleoptera: Chrysomelidae: Donaciinae) Kevin S CHEERS 1,2 , Edward V ERCRUYSSE 2, Vincent SMEEKENS 2 & Steven DE SAEGER 2 1 Corresponding author: [email protected] 2 Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels, Belgium Abstract Donacia crassipes Fabricius, 1775 is an easily recognizable species of reed beetles (Donaciinae). The species is associated with Nymphaeaceae (both Nymphaea and Nuphar species). The species was not uncommon in Belgium until 1950, afterwards a notable decline was seen in the number of known records and from 1950 onwards only five records are known. A survey was carried out to assess the present status and distribution of the species in Belgium. 47 sites in the north of Belgium with stable populations of Nymphaeaceae were checked for the presence of D. crassipes . Of these sampled sites D. crassipes was present at 35 (74,5%) and thus the species seems currently not as rare as recent records indicated. This species was encountered for the first time in the province Limburg. Furthermore we present the first records of D. crassipes on non-indigenous water-lilies ( Nymphaea cultivars). Keywords : Donacia crassipes , Donaciinae , water beetle, reed beetle, Belgium, neglected species, Nymphaeaceae, water lilies Samenvatting Donacia crassipes Fabricius, 1775 is een relatief makkelijk herkenbaar riethaantje (Donaciinae). De soort is gebonden aan vegetaties van Nymphaeaceae (zowel Nymphaea en Nuphar soorten).
    [Show full text]
  • From Krasnoyarskii Krai (Russia) E.V
    Бiологiчний вiсник МДПУ імені Богдана Хмельницького 6 (3), стор. 248¢249, 2016 Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (3), pp. 248¢249, 2016 SHORT COMMUNICATION UDC 595.768 NEW RECORDS OF DONACIA FABRICIUS, 1775 (COLEOPTERA: CHRYSOMELIDAE: DONACIINAE) FROM KRASNOYARSKII KRAI (RUSSIA) E.V. Guskova1, E.N. Akulov2 1Altai State University, Lenina 61, Barnaul, RU–656049, Russia E-mail: [email protected] 2All-Russian Center of Plant Quarantine, Krasnoyarsk branch, Maerchaka 31a, Krasnoyarsk, Russia E-mail: [email protected] Two species of leaf beetles: Donacia cinerea Herbst, 1784 and D. marginata Hoppe, 1795 are newly recored for Eastern Siberia. Donacia dentata Hoppe, 1795 new data on the distribution from Krasnoyarskii Krai (Russia). Key words: Donacia, Chrysomelidae, Coleoptera, Krasnoyarskii Krai. Citation: Guskova, E.V., Akulov, E.N. (2016). The Cryptocephalinae (Coleoptera: Chrysomelidae) of the Mongolian Altai. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (3), 248–72. Поступило в редакцию / Submitted: 18.09.2016 Принято к публикации / Accepted: 19.10.2016 http://dx.doi.org/10.15421/201692 © Guskova, Akulov, 2016 Users are permitted to copy, use, distribute, transmit, and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship. This work is licensed under a Creative Commons Attribution 3.0. License INTRODUCTION Beetles of the genus Donacia Fabricius, 1775 are among the most common inhabitants of freshwater bodies: rivers, lakes, ponds, ditches, and are also found in swamps and wet meadows. In the Palaearctic fauna the genus Donacia is represented by 65 species (Bienkowski, 2015).
    [Show full text]
  • (Coleoptera Chrysomelidae Donaciinae) in the Malay Archipelago
    Bulletin S.RB.E.IKB. V.E., 136 (2000) : 44-52 Observations on Donacia (Cyphogasier) javana WIEDEMAN, 1821 (Coleoptera Chrysomelidae Donaciinae) in the Malay Archipelago by Pascal LAYS Rue F. Desoer 34, B-4031 Liege, Belgium. Summary Some faunistical and biological observations were made in Singapore and the Philippines (Minda­ nao) (Philippines fauna nov.) on Donacia (Cyphogaster) javana WIEDEMAN, 1821 (Coleoptera Chry­ somelidae Donaciinae). Nymphaea pubescens WILLDENOW (Nymphaeaceae) appears to be Donacia javana's food plant. Keywords : Chrysomelidae, Donaciinae, Faunistics, Singapore, Philippines, Mindanao, Nymphaea. Resume Quelques observations faunistiques et biologiques ont ete realisees a Singapour et aux Philippines (Mindanao) (Philippines fauna nov.) sur Donaciajavana WIEDEMAN, 1821 (Coleoptera Chrysome­ lidae Donaciinae). Nymphaea pubescens WILLDENOW (Nymphaeaceae) apparait etre la plante nourri­ ciere de Donacia javana. Introduction out : D. javana or D. lenzi SCHONFELD, 1888, two species morphologically close to each other. "' The subgenus Cyphogaster GOECKE, 1934, to I identified the specimens collected in Singapore which D. javana belongs, is easily identifiable as belonging to D. javana, but the specimens from the two other sub genera Donacia F ABRI­ from the Philippines were identified as belonging crus, 1775 and Donaciomima MEDVEDEV, 1973, to D. lenzi. However, having a doubt concerning composing the genus Donacia F ABRICIUS, 177 5, the identification of the latter specimens, a cou­ by the presence of a pair of median tubercles on ple from Mindanao (South Philippines) was sub­ the first ventrite of males (GOECKE, 1934 : 217). mitted to my American colleague, specialist of This subgenus, that mainly occurs in the Indo­ Donaciinae, Dr. I. ASKEVOLD. malayan and Australian Regions, comprises pre­ Based on a comparative study (including the sently seven species (ASKEVOLD, 1990 : 646; endophallus) of the submitted Mindanao speci­ REm, 1993), and this number could be even mens with material from Java, Singapore, South fewer (see below).
    [Show full text]
  • Newsletter Dedicated to Information About the Chrysomelidae Report No
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 55 March 2017 ICE LEAF BEETLE SYMPOSIUM, 2016 Fig. 1. Chrysomelid colleagues at meeting, from left: Vivian Flinte, Adelita Linzmeier, Caroline Chaboo, Margarete Macedo and Vivian Sandoval (Story, page 15). LIFE WITH PACHYBRACHIS Inside This Issue 2- Editor’s page, submissions 3- 2nd European Leaf Beetle Meeting 4- Intromittant organ &spermathecal duct in Cassidinae 6- In Memoriam: Krishna K. Verma 7- Horst Kippenberg 14- Central European Leaf Beetle Meeting 11- Life with Pachybrachis 13- Ophraella communa in Italy 16- 2014 European leaf beetle symposium 17- 2016 ICE Leaf beetle symposium 18- In Memoriam: Manfred Doberl 19- In Memoriam: Walter Steinhausen 22- 2015 European leaf beetle symposium 23- E-mail list Fig. 1. Edward Riley (left), Robert Barney (center) and Shawn Clark 25- Questionnaire (right) in Dunbar Barrens, Wisconsin, USA. Story, page 11 International Date Book The Editor’s Page Chrysomela is back! 2017 Entomological Society of America Dear Chrysomelid Colleagues: November annual meeting, Denver, Colorado The absence pf Chrysomela was the usual combina- tion of too few submissions, then a flood of articles in fall 2018 European Congress of Entomology, 2016, but my mix of personal and professional changes at July, Naples, Italy the moment distracted my attention. As usual, please consider writing about your research, updates, and other 2020 International Congress of Entomology topics in leaf beetles. I encourage new members to July, Helsinki, Finland participate in the newsletter. A major development in our community was the initiation of a Facebook group, Chrysomelidae Forum, by Michael Geiser. It is popular and connections grow daily.
    [Show full text]
  • Geographic Variation in Body and Ovipositor Sizes in the Leaf Beetle Plateumaris Constricticollis (Coleoptera: Chrysomelidae) and Its Association with Climatic Conditions and Host Plants
    Eur. J. Entomol. 104: 165–172, 2007 http://www.eje.cz/scripts/viewabstract.php?abstract=1214 ISSN 1210-5759 Geographic variation in body and ovipositor sizes in the leaf beetle Plateumaris constricticollis (Coleoptera: Chrysomelidae) and its association with climatic conditions and host plants TEIJI SOTA1, MASAKAZU HAYASHI2 and TSUYOSHI YAGI3 1Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan; e-mail: [email protected] 2Hoshizaki Green Foundation, Izumo, Shimane, 691-0076, Japan 3The Museum of Nature and Human Activities, Hyogo, Sanda, Hyogo, 669-1546, Japan Keywords. Chrysomelidae, life history, molecular phylogeny, wetland, 28S rRNA gene Abstract. Plateumaris constricticollis is a donaciine leaf beetle endemic to Japan, which lives in wetlands and uses Cyperaceae and Poaceae as larval hosts. We analyzed geographic variation in body size and ovipositor dimensions in three subspecies (constricticol- lis, babai, and toyamensis) in different climatic conditions and on different host plants. In addition, the genetic differentiation among subspecies was assessed using nuclear 28S rRNA gene sequences. The body size of subspecies toyamensis is smaller than that of the other subspecies; mean body size tended to increase towards the northeast. Ovipositor length and width are smaller in subspecies toyamensis than in the other subspecies. Although these dimensions depend on body size, ovipositor length still differed significantly between toyamensis and constricticollis-babai after the effect of body size was removed. Multiple regression analyses revealed that body size and ovipositor size are significantly correlated with the depth of snow, but not temperature or rainfall; sizes were larger in places where the snowfall was greatest.
    [Show full text]
  • Patterns of Animal Dispersal, Vicariance and Diversification in the Holarctic
    Biological Journal of the Linnean Society (2001), 73: 345-390. With 15 figures doi:10.1006/bij1.2001.0542, available online at http;//www.idealibrary.comon IDE bl 0 c Patterns of animal dispersal, vicariance and diversification in the Holarctic ISABEL SANMARTIN1*, HENRIK ENGHOFF' and FREDRIK RONQUISTl 'Department of Systematic Zoology, Evolutionary Biology Centre, Uppsala University, Norbyvugen 180, SE-752 36 Uppsala, Sweden 2Zoologisk Museum, Uniuersitetsparken 15, DK-2100 Copenhagen, Denmark Received 23 October 2000; accepted for publication 25 March 2001 We analysed patterns of animal dispersal, vicariance and diversification in the Holarctic based on complete phylogenies of 57 extant non-marine taxa, together comprising 770 species, documenting biogeographic events from the Late Mesozoic to the present. Four major areas, each corresponding to a historically persistent landmass, were used in the analyses: eastern Nearctic (EN), western Nearctic (WN), eastern Palaeoarctic (EP) and western Palaeoarctic (WP). Parsimony-based tree fitting showed that there is no significantly supported general area cladogram for the dataset. Yet, distributions are strongly phylogenetically conserved, as revealed by dispersal- vicariance analysis (DIVA). DIVA-based permutation tests were used to pinpoint phylogenetically determined biogeographic patterns. Consistent with expectations, continental dispersals (WP-EP and WN-EN) are sig- nificantly more common than palaeocontinental dispersals (WN-EP and EN-WP), which in turn are more common than disjunct dispersals (EN-EP and WN-WP). There is significant dispersal asymmetry both within the Nearctic (WN+EN more common than EN+WN) and the Palaeoarctic (EP+WP more common than WP-tEP). Cross- Beringian faunal connections have traditionally been emphasized but are not more important than cross-Atlantic connections in our data set.
    [Show full text]
  • ES Teacher Packet.Indd
    PROCESS OF EXTINCTION When we envision the natural environment of the Currently, the world is facing another mass extinction. past, one thing that may come to mind are vast herds However, as opposed to the previous five events, and flocks of a great diversity of animals. In our this extinction is not caused by natural, catastrophic modern world, many of these herds and flocks have changes in environmental conditions. This current been greatly diminished. Hundreds of species of both loss of biodiversity across the globe is due to one plants and animals have become extinct. Why? species — humans. Wildlife, including plants, must now compete with the expanding human population Extinction is a natural process. A species that cannot for basic needs (air, water, food, shelter and space). adapt to changing environmental conditions and/or Human activity has had far-reaching effects on the competition will not survive to reproduce. Eventually world’s ecosystems and the species that depend on the entire species dies out. These extinctions may them, including our own species. happen to only a few species or on a very large scale. Large scale extinctions, in which at least 65 percent of existing species become extinct over a geologically • The population of the planet is now growing by short period of time, are called “mass extinctions” 2.3 people per second (U.S. Census Bureau). (Leakey, 1995). Mass extinctions have occurred five • In mid-2006, world population was estimated to times over the history of life on earth; the first one be 6,555,000,000, with a rate of natural increase occurred approximately 440 million years ago and the of 1.2%.
    [Show full text]
  • Burkholderia As Bacterial Symbionts of Lagriinae Beetles
    Burkholderia as bacterial symbionts of Lagriinae beetles Symbiont transmission, prevalence and ecological significance in Lagria villosa and Lagria hirta (Coleoptera: Tenebrionidae) Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by B.Sc. Laura Victoria Flórez born on 19.08.1986 in Bogotá, Colombia Gutachter: 1) Prof. Dr. Martin Kaltenpoth – Johannes-Gutenberg-Universität, Mainz 2) Prof. Dr. Martha S. Hunter – University of Arizona, U.S.A. 3) Prof. Dr. Christian Hertweck – Friedrich-Schiller-Universität, Jena Das Promotionskolloquium wurde abgelegt am: 11.11.2016 “It's life that matters, nothing but life—the process of discovering, the everlasting and perpetual process, not the discovery itself, at all.” Fyodor Dostoyevsky, The Idiot CONTENT List of publications ................................................................................................................ 1 CHAPTER 1: General Introduction ....................................................................................... 2 1.1. The significance of microorganisms in eukaryote biology ....................................................... 2 1.2. The versatile lifestyles of Burkholderia bacteria .................................................................... 4 1.3. Lagriinae beetles and their unexplored symbiosis with bacteria ................................................ 6 1.4. Thesis outline ..........................................................................................................
    [Show full text]
  • Great Lakes Entomologist
    The GREAT LAKES ENTOMOLOGIST Vol. 8, No. 4 Winter 1975 THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 8 1975 No. 4 TABLE OF CONTENTS A New Genus, Six New Species, and Records of Protura from Michigan Ernest C. Bernard .................................... 157 A New Species of Neelides (Collembola: Neelidae) from the United States Ernest C. Bernard ................................... 183 New Species and Additional Records of Protura from Michigan e Ernest C. Be'inard .................................... 187 Pesticide Effects on Orthopteroid Distribution in Southern Michigan Farmlands Benedict C. Pinkowski ....: ............................ 197 Heptageniidae (Ephemeroptera) of Wisconsin R. Wills Flowers and William L. Hilsenhoff .................... 201 Curculionidae and Chrysomelidae found in Aquatic Habitats in Wisconsin Lutz J. Bayer and H. Jane Brockman ......................... 219 Projected Red Pine Yields from Aldrin-treated and Untreated Stands Damaged by White Grubs and other Agents Richard F. Fowler and Louis F. Wilson ....................... 227 Genetic Variation in Resistance of.Scotch Pine to Zirnmerman Pine Moth Jonathan W. Wright, Louis F. Wilson and John N. Bright ............. 231 Abundance of Insects Inhabiting the Male Strobili of Red Pine William J. Mattson ................................... 237 Habitats and Populations of the Ant Stenamma diecki Emery in Southern Michigan Mary Talbot ....................................... 241 A List of the Ants (Hymenoptera: Formicidae) of the Edwin S. George Reserve, Livingston County, Michigan Mary Talbot ....................................... 245 COVER ILLUSTRATION Anterior portion of a Proturan, Amerentulus americanus (Ewing) (Protura: Acerento- midae), mounted and cleared. Photograph taken with Nomarski interference contrast optics by E. C. Bernard. X950. Vol. 8, No. 3 of The Great Lakes Entomologist was mailed October 24, 1975. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1975-76 OFFICERS President David C.
    [Show full text]
  • Coleoptera: Chrysomelidae
    Travaux du Muséum National d’Histoire Naturelle «Grigore Antipa» Vol. 59 (2) pp. 179–194 DOI: 10.1515/travmu-2016-0025 Research paper The Catalogue of Donaciinae and Criocerinae Species (Coleoptera: Chrysomelidae) from the New Leaf Beetle Collection from “Grigore Antipa” National Museum of Natural History (Bucharest) (Part I) Sanda MAICAN1, *, Rodica SERAFIM2 1Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, P.O. Box 56–53, Romania. 2“Grigore Antipa” National Museum of Natural History, Kiseleff 1, 011341 Bucharest, Romania. *corresponding author, e-mail: [email protected] Received: August 23, 2016; Accepted: November 22, 2016; Available online: December 23, 2016; Printed: December 30, 2016 Abstract. The paper presents data on 33 palaearctic species of the Donaciinae (Donaciini, Haemoniini and Plateumarini tribes) and Criocerinae preserved in the new Chrysomelidae collection of “Grigore Antipa” National Museum of Natural History (Bucharest). Among the valuable species preserved in this collection, Macroplea appendiculata (Panzer) and M. mutica (Fabricius) – two very rare European Donaciinae beetles, should be mentioned. Key words: Chrysomelidae, Donaciinae, Criocerinae, collections, “Grigore Antipa” National Museum of Natural History, Bucharest. INTRODUCTION The entomological collections stored in the patrimony of “Grigore Antipa” National Museum of Natural History of Bucharest have a historical and documentary scientific value, both at national and international level. In “Grigore Antipa” Museum, the Chrysomelidae material is included in the old Collection of Palaearctic Coleopterans (partial data published) and in the Collection of Chrysomelidae, recently formed. The new collection, which we refer in this paper, gathers: – material preserved in the old coleopteran collection from the Palaearctic area, including specimens from Richard Canisius, Deszö Kenderessy, Fridrich Deubel, Arnold Lucien Montandon and Emil Várady collections, acquired between 1883–1923.
    [Show full text]