From Skin of Red Snapper, Lutjanus Campechanus (Perciformes: Lutjanidae), on the Texas–Louisiana Shelf, Northern Gulf of Mexico

Total Page:16

File Type:pdf, Size:1020Kb

From Skin of Red Snapper, Lutjanus Campechanus (Perciformes: Lutjanidae), on the Texas–Louisiana Shelf, Northern Gulf of Mexico J. Parasitol., 99(2), 2013, pp. 318–326 Ó American Society of Parasitologists 2013 A NEW SPECIES OF TRICHOSOMOIDIDAE (NEMATODA) FROM SKIN OF RED SNAPPER, LUTJANUS CAMPECHANUS (PERCIFORMES: LUTJANIDAE), ON THE TEXAS–LOUISIANA SHELF, NORTHERN GULF OF MEXICO Carlos F. Ruiz, Candis L. Ray, Melissa Cook*, Mark A. Grace*, and Stephen A. Bullard Aquatic Parasitology Laboratory, Department of Fisheries and Allied Aquacultures, College of Agriculture, Auburn University, 203 Swingle Hall, Auburn, Alabama 36849. Correspondence should be sent to: [email protected] ABSTRACT: Eggs and larvae of Huffmanela oleumimica n. sp. infect red snapper, Lutjanus campechanus (Poey, 1860), were collected from the Texas–Louisiana Shelf (28816036.5800 N, 93803051.0800 W) and are herein described using light and scanning electron microscopy. Eggs in skin comprised fields (1–5 3 1–12 mm; 250 eggs/mm2) of variously oriented eggs deposited in dense patches or in scribble-like tracks. Eggs had clear (larvae indistinct, principally vitelline material), amber (developing larvae present) or brown (fully developed larvae present; little, or no, vitelline material) shells and measured 46–54 lm(x¼50; SD 6 1.6; n¼213) long, 23–33 (27 6 1.4; 213) wide, 2–3 (3 6 0.5; 213) in eggshell thickness, 18–25 (21 6 1.1; 213) in vitelline mass width, and 36–42 (39 6 1.1; 213) in vitelline mass length with protruding polar plugs 5–9 (7 6 0.6; 213) long and 5–8 (6 6 0.5; 213) wide. Fully developed larvae were 160–201 (176 6 7.9) long and 7–8 (7 6 0.5) wide, had transverse cuticular ridges, and were emerging from some eggs within and beneath epidermis. The new species differs from its congeners by having eggs ,65 lm in total length and that have a brown eggshell when fully developed, an envelope throughout development, and irregularly-dispersed eggshell spines plus a larva .110 lm long with transverse cuticular ridges. The eggs lack a spindle-shaped envelope, polar filaments, and eggshell ridges. This is the first report of a species of Huffmanela from a snapper (Lutjanidae) or from the Gulf of Mexico. A table of egg and larval characteristics, hosts, and localities for Huffmanela spp. is provided. Species of Huffmanela Moravec, 1987 comprise intracellular Louisiana Shelf (28816036.5800 N, 93803051.0800 W, approximately 200 km (Moravec et al., 1998) and intercellular (Moravec, 1987) nematodes off Galveston Bay, Texas), northern Gulf of Mexico, aboard the F/V Simple Man. Upon sighting the infected areas of skin, its head, i.e., that customarily are defined by the morphology of their eggs and syncranium without gill arches (Fig. 1), was frozen and later (4 November larvae (Table I), with only 5 of 17 (29%) accepted species having 2011) delivered to Auburn University where it was subsequently (23 descriptions that include details of the adult male or female January 2012) thawed in 10% neutral buffered formalin for several days (Huffman and Moravec, 1988; Moravec et al., 2005; Carballo and before parasitological examination. The thawed, formalin-fixed head was Navone, 2007; Justine, 2007). Adults and eggs infect extra-intestinal then carefully bisected along the supraoccipital plane, i.e., cleaved in half sites such as gill and skin epithelia, skeletal muscle, serosa and using a reciprocating saw, allowing for a clearer view of the luminal surfaces of the buccal cavity. The preopercle, metapterygoid, symplectic, mesentery, swim bladder, and bone (Moravec, 1987, 2001; Moravec and quadrate then were excised as a single unit with associated soft tissues and Campbell, 1991; Moravec and Garibaldi, 2000; Moravec and using a scalpel, allowing for a clearer view of the skin surface covering the Justine, 2010). Adults are seldom collected and difficult to extract urohyal and branchiostegals. These tissue surfaces were examined with a from host tissue due to their small size and delicate nature, but also stereomicroscope for the presence of eggs, larval nematodes, and adult perhaps because the females die and deteriorate soon after nematodes. Foci of infected and non-infected skin were excised using depositing eggs (Moravec et al., 1998; Zˇd’a´rska´et al., 2001). It scissors, scalpel, and hemostats and then photographed with the aid of a stereomicroscope or were wet-mounted on coverslipped glass slides has been stated that few characters exist to discriminate eggs; (without coverslip pressure) and photographed using a compound light however, numerous diagnostic features have been developed and microscope (LM) equipped with differential interference contrast (DIC) employed to differentiate these species based on egg morphology optical components (Bullard et al., 2012). All nematode eggs and larvae (Table I). Developmental stages of these eggs also contain were measured with an ocular micrometer while viewed using a 3100 oil important taxonomic information and expand our knowledge of immersion objective and DIC. Composite illustrations of those eggs and their life cycles and general biology (Moravec, 1987; Huffman and larvae were aided with a drawing tube and supplemented by digital photomicrographs. Skin patches containing eggs and eggs rinsed by gentle Moravec, 1988; Moravec et al., 1998; Moravec and Fajer-Avila, pipetting for scanning electron microscopy (SEM) were routinely 2000; Moravec and Garibaldi, 2000, 2003; Justine, 2004, 2005, processed by dehydration through a graded ethanol series, desiccated in 2007, 2011; Carballo and Navone, 2007; Bullard et al., 2012). hexamethyldisilazane for 1–3 hr followed by evaporation, and mounted on In October 2011, a red snapper, Lutjanus campechanus (Poey, metal stubs using 2-sided sticky tape. Morphometrics are reported in 1860), (Perciformes: Lutjanidae), with noticeable skin markings micrometers (lm) as a range followed by the mean 6 standard deviation (SD) and sample size (n) in parentheses. was observed and collected from the Gulf of Mexico off Texas. Anatomical terms for the fish skull follow Gregory (1933). Fish Herein we describe the markings, identify the etiological agent, nomenclature follows Eschmeyer (2012). The Gulf of Mexico is defined as describe a new species of Huffmanela Moravec, 1987, and thereby per Felder et al. (2009): its boundaries span westward from Cabo Catoche, also provide the first record of a species of Huffmanela from a Quintana Roo, Mexico (21833000.0000 N, 87800000.0000 W) following a line snapper (Lutjanidae) or from the Gulf of Mexico. extending northeast from Cabo Catoche to Cabo de San Antonio, Cuba (21851000.0000 N, 84857000.0000 W), further extending along the northern coast of Cuba to Punta Hicacos, Cuba (23812000.0000 N, 81808000.0000 W) MATERIALS AND METHODS and west of a line extending from Punta Hicacos to Key Largo, Florida (25806000.0000 N, 80826000.0000 W). The infected red snapper (male, 604 mm total length, 3.1 kg) was captured by a bottom long-line set on 15 October 2011 on the Texas– DESCRIPTION Received 24 June 2012; revised 6 September 2012; accepted 14 Huffmanela oleumimica n. sp. Ruiz and Bullard September 2012. (Figs. 2–31) * Southeast Fisheries Science Center, National Oceanic and Atmo- Diagnosis (based on light microscopy of 213 eggs plus sputter-coated, spheric Administration, 3209 Frederic Street, Pascagoula, Mississippi infected skin, eggs, and larvae): Fields of eggs 1–5 3 1–12 mm, with 39567. irregularly-shaped margins, comprising approximately 250 eggs per mm2, DOI: 10.1645/GE-3249.1 amber or brown in color (eggs with clear shells not visible grossly, see 318 TABLE I. Eggs, larvae, hosts, sites, and localities for Huffmanela spp. (ordered by egg size). Egg Polar Plug Shell Shell Shell Envelope Larva Species L 3 W* plug W surface layers thick type L 3 W Host family Site Locality References† Huffmanela branchialis 45–52 3 23–30 p — smooth — 2–3 smooth 150 3 7 Nemipteridae gill SW Pacific Justine (2004) Huffmanela oleumimica 46–54 3 23–33 p 5–8 spinous ol, id 2–3 smooth 160–201 3 7–8 Lutjanidae skin GoM present study Huffmanela paronai 48–51 3 21–24 p 6–7 smooth od, il 3 smooth — Xiphiidae skin Med Moravec and Garibaldi (2000) Huffmanela filamentosa 48–53 3 25–30 p — smooth — 3 absent 150 3 7 Lethrinidae gill SW Pacific Justine (2004) Huffmanela canadensis 48–63 3 24–27 p 6 ridged od, il 2–3 absent — Scorpaenidae skin NE Pacific Moravec et al. (2005) Huffmanela moraveci 50–57 3 23–31 p 8–10 spinous od, il 3–5 smooth 108 3 — Atherinopsidae skin, gill SW Atlantic Carballo and Navone (2007) Huffmanela japonica 58–69 3 26–30 p 6–9 protuberances od, il 4–5 smooth — 3 9 Mulidae me NW Pacific Moravec et al. (1998) Huffmanela longa 58–72 3 23–32 pf — smooth — 2–4 absent 140–168 3 4–5 Lethrinidae sb, me SW Pacific Justine (2007) Huffmanela huffmani 54–60 3 30–33 p 6–7 smooth od, il 5–6 spinous — 3 6 Centrarchidae sb Texas, USA Moravec (1987); Huffman and Moravec (1988) Huffmanela mexicana 63–69 3 30–33 p 6 smooth od, il 4–5 smooth, exposed — 3 6 Tetraodontidae sb NE Pacific Moravec and Fajer-Avila plugs (2000) Huffmanela balista 63–78 3 32–41 p — ridged — 5–6 smooth 245–295 3 6–8 Balistidae sb SW Pacific Justine (2007) RUIZ ET AL.— Huffmanela plectropomi 64–82 3 29–50 p 6 — — 3–4 absent — Serranidae m SW Pacific Justine (2011) Huffmanela schouteni 69–75 3 27–33 p 6–9 smooth od, il 3–5 protuberances 210 3 4–6 Exocoetidae sb, me Med, W Moravec and Garibaldi Atlantic (2003); Moravec and Campbell (1991); HUFFMANELA OLEUMIMICA Schouten et al. (1968) Huffmanela ossicola 73–88 3 35–40 p — smooth — 8–10 smooth 250 3 — Labridae gill, bone SW Pacific Justine (2004) Huffmanela carcharhini 75–110 3 42–63 np 8–13 smooth ol, id 5–10 absent 188–273 3 7–13 Carcharhinidae skin NW Atlantic MacCallum (1925; 1926); NC Pacific Moravec (1987); Bullard et al.
Recommended publications
  • F. Moravec: Trichinelloid Nematodes Parasitic in Cold-Blooded Vertebrates
    FOLIA PARASITOLOGICA 49: 24, 2002 F. Moravec: Trichinelloid Nematodes Parasitic in Cold-blooded Vertebrates. Academia, Praha, 2001. ISBN 80-200-0805-5, hardback, 430 pp., 138 figs. Price CZK (Czech crowns) 395.00. The author of this monograph, Dr. František Moravec, their synonymy, description with illustrations, data on hosts, DrSc., of the Institute of Parasitology, Academy of Sciences locations, distribution and biology. The original comments on of the Czech Republic, České Budějovice (South Bohemia) is the nomenclature history, synonymy, morphological variabil- one of the world’s foremost authorities on parasitic nema- ity, differentiation and other aspects are indeed very valuable. todes, whose numerous classic papers and monographs on the In this way, the author assesses in detail 78 nematode species systematics and biology of this important parasite group are from fish, l5 from amphibians and 22 from reptiles. both well-known and internationally recognised. Consequently, the above conception, based on Moravec’s The content being assessed is devoted to morphology, (1982) originally modified classification system of capil- systematics, taxonomy and to other aspects of the parasite-host lariids, is used in the present book. The text of the book is relations within the large group of trichinelloid (mainly supplemented with a parasite-host list containing 347 fish, 47 capillariid) nematodes that parasitise cold-blooded animals on amphibian and 55 reptile species. The bibliography included a world-wide scale. The monograph contains detailed contains 669 citations of the literature sources. information on the methods of studying these parasites, their The monograph as a whole is of a high standard, much morphology, systematic value of individual features and on enhanced by good graphics and layout.
    [Show full text]
  • This Is an Open Access Document Downloaded from ORCA, Cardiff University's Institutional Repository
    This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository: http://orca.cf.ac.uk/117055/ This is the author’s version of a work that was submitted to / accepted for publication. Citation for final published version: Jorge, F., White, R.S.A. and Paterson, Rachel A. 2018. Hiding in the swamp: new capillariid nematode parasitizing New Zealand brown mudfish. Journal of Helminthology 92 (3) , pp. 379-386. 10.1017/S0022149X17000530 file Publishers page: http://dx.doi.org/10.1017/S0022149X17000530 <http://dx.doi.org/10.1017/S0022149X17000530> Please note: Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper. This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders. Title: Hiding in the swamp: new capillariid nematode parasitizing New Zealand brown mudfish Authors: Fátima Jorge1, Richard S. A. White2 and Rachel A. Paterson1,3 Addresses: 1Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; 2School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; 3School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom Running headline: Capillariid nematode parasitizing New Zealand mudfish Corresponding author: Fátima Jorge Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand e-mail: [email protected] 1 Abstract The extent of New Zealand’s freshwater fish-parasite diversity has yet to be fully revealed, with host-parasite relationships still to be described from nearly half the known fish community.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • A Study of the Nematode Capillaria Boehm!
    A STUDY OF THE NEMATODE CAPILLARIA BOEHM! (SUPPERER, 1953): A PARASITE IN THE NASAL PASSAGES OF THE DOG By CAROLEE. MUCHMORE Bachelor of Science Oklahoma State University Stillwater, Oklahoma 1982 Master of Science Oklahoma State University Stillwater, Oklahoma 1986 Submitted to the Faculty of the Graduate College of the Oklahoma State University, in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY May, 1998 1ht>I~ l qq ~ 1) t-11 q lf). $ COPYRIGHT By Carole E. Muchmore May, 1998 A STUDY OF THE NEMATODE CAPILLARIA BOEHM!. (SUPPERER, 1953): APARASITE IN THE NASAL PASSAGES OF THE DOG Thesis Appro~ed: - cl ~v .L-. ii ACKNOWLEDGMENTS My first and most grateful thanks go to Dr. Helen Jordan, my major adviser, without whose encouragement and vision this study would never have been completed. Dr. Jordan is an exceptional individual, a dedicated parasitologist, indefatigable and with limitless integrity. Additional committee members to whom I owe many thanks are Dr. Carl Fox, Dr. John Homer, Dr. Ulrich Melcher, Dr. Charlie Russell. - Dr. Fox for assistance in photographing specimens. - Dr. Homer for his realistic outlook and down-to-earth common sense approach. - Dr. Melcher for his willingness to help in the intricate world of DNA technology. - Dr. Charlie Russell, recruited from plant nematology, for fresh perspectives. Thanks go to Dr. Robert Fulton, department head, for his gracious support; Dr. Sidney Ewing who was always able to provide the final word on scientific correctness; Dr. Alan Kocan for his help in locating and obtaining specimens. Special appreciation is in order for Dr. Roger Panciera for his help with pathology examinations, slide preparation and camera operation and to Sandi Mullins for egg counts and helping collect capillarids from the greyhounds following necropsy.
    [Show full text]
  • Huffmanela Huffmani: Life Cycle, Natural History, And
    HUFFMANELA HUFFMANI: LIFE CYCLE, NATURAL HISTORY, AND BIOGEOGRAPHY by McLean Worsham, B.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Biology May 2015 Committee Members: David Huffman, Chair Chris Nice Randy Gibson COPYRIGHT by McLean Worsham 2015 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, McLean Worsham, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. ACKNOWLEDGEMENTS I would like to acknowledge Harlan Nicols, Stephen Harding, Eric Julius, Helen Wukasch, and Sungyoung Kim for invaluable help in the field and/or the lab. I would like to acknowledge Dr. David Huffman for incredible and dedicated mentorship. I would like to thank Randy Gibson for his invaluable help in trying to understand the taxonomy and ecology of aquatic invertebrates. I would like to acknowledge Drs. Chris Nice, Weston Nowlin, and Ben Schwartz for invaluable insight and mentorship throughout my research and the graduate student process. I would like to thank my good friend Alex Zalmat for always offering everything he has when a friend is in a time of need.
    [Show full text]
  • New Capillariid Nematode Parasitizing New Zealand Brown Mudfish Authors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff Title: Hiding in the swamp: new capillariid nematode parasitizing New Zealand brown mudfish Authors: Fátima Jorge1, Richard S. A. White2 and Rachel A. Paterson1,3 Addresses: 1Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand; 2School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; 3School of Biosciences, University of Cardiff, Cardiff, CF10 3AX, United Kingdom Running headline: Capillariid nematode parasitizing New Zealand mudfish Corresponding author: Fátima Jorge Department of Zoology, University of Otago, 340 Great King Street, PO Box 56, Dunedin 9054, New Zealand e-mail: [email protected] 1 Abstract The extent of New Zealand’s freshwater fish-parasite diversity has yet to be fully revealed, with host-parasite relationships still to be described from nearly half the known fish community. Whilst advancements in the number of fish species examined and parasite taxa described are being made; some parasite groups, such as nematodes, remain poorly understood. In the present study we combined morphological and molecular analyses to characterize a capillariid nematode found infecting the swim bladder of the brown mudfish Neochanna apoda, an endemic New Zealand fish from peat-swamp-forests. Morphologically, the studied nematodes are distinct from other Capillariinae taxa by the features of the male posterior end, namely the shape of the bursa lobes, and shape of spicule distal end. Male specimens were classified in three different types according to differences in shape of the bursa lobes at the posterior end, but only one was successfully molecularly characterized.
    [Show full text]
  • Parasite Findings in Archeological Remains: a Paleogeographic View 20
    Part III - Parasite Findings in Archeological Remains: a paleogeographic view 20. The Findings in South America Luiz Fernando Ferreira Léa Camillo-Coura Martín H. Fugassa Marcelo Luiz Carvalho Gonçalves Luciana Sianto Adauto Araújo SciELO Books / SciELO Livros / SciELO Libros FERREIRA, L.F., et al. The Findings in South America. In: FERREIRA, L.F., REINHARD, K.J., and ARAÚJO, A., ed. Foundations of Paleoparasitology [online]. Rio de Janeiro: Editora FIOCRUZ, 2014, pp. 307-339. ISBN: 978-85-7541-598-6. Available from: doi: 10.7476/9788575415986.0022. Also available in ePUB from: http://books.scielo.org/id/zngnn/epub/ferreira-9788575415986.epub. All the contents of this work, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 International license. Todo o conteúdo deste trabalho, exceto quando houver ressalva, é publicado sob a licença Creative Commons Atribição 4.0. Todo el contenido de esta obra, excepto donde se indique lo contrario, está bajo licencia de la licencia Creative Commons Reconocimento 4.0. The Findings in South America 305 The Findings in South America 20 The Findings in South America Luiz Fernando Ferreira • Léa Camillo-Coura • Martín H. Fugassa Marcelo Luiz Carvalho Gonçalves • Luciana Sianto • Adauto Araújo n South America, paleoparasitology first developed with studies in Brazil, consolidating this new science that Ireconstructs past events in the parasite-host relationship. Many studies on parasites in South American archaeological material were conducted on human mummies from the Andes (Ferreira, Araújo & Confalonieri, 1988). However, interest also emerged in parasites of animals, with studies of coprolites found in archaeological layers as a key source of ancient climatic data (Araújo, Ferreira & Confalonieri, 1982).
    [Show full text]
  • Huffmanela Paronai Sp. N. (Nematoda: Trichosomoididae), a New Parasite from the Skin of Swordfish Xiphias Gladius in the Ligurian Sea (Western Mediterranean)
    FOLIA PARASITOLOGICA 47: 309-313, 2000 Huffmanela paronai sp. n. (Nematoda: Trichosomoididae), a new parasite from the skin of swordfish Xiphias gladius in the Ligurian Sea (Western Mediterranean) František Moravec1 and Fulvio Garibaldi2 1Institute of Parasitology, Academy of Sciences of the Czech Republic, Branišovská 31, 370 05 České Budějovice, Czech Republic; 2Dipartimento per lo Studio del Territorio e delle sue Risorse (DIP.TE.RIS.), Laboratori di Biologia Marina ed Ecologia Animale, Università di Genova, Via Balbi 5, 16126 Genova, Italy Key words: parasitic nematode, Huffmanela, epidermis, fish, Xiphias, Ligurian Sea, Italy Abstract. A new species of trichosomoidid nematode, Huffmanela paronai sp. n., is established on the basis of its egg morphology and biological characters. The dark-shelled, embryonated eggs of this histozoic parasite occur in masses in the epidermis of the swordfish Xiphias gladius L. (Xiphiidae, Perciformes) from the Ligurian Sea in northern Italy. The eggs are concentrated in groups appearing as black spots in the skin of the fish host, being distributed mainly on the lower part of its body (lower jaw, gill covers, pectoral, anal and caudal fins, lower half of body). The parasite’s eggs are characterised mainly by their shape and markedly small size (48-51 × 21-24 µm), an aspinose surface, relatively small polar plugs, and thick egg wall (3 µm). This is the first Huffmanela species reported from fish in Europe. During studies on the fishery and biology of the routine paraffin technique, sectioned at 5 µm, and stained with swordfish, Xiphias gladius L., carried out by the junior Harris’ haematoxylin and eosin. All measurements are in µm, author (F.
    [Show full text]
  • PROCEEDINGS of the OKLAHOMA ACADEMY of SCIENCE Volume 98 2018
    PROCEEDINGS of the OKLAHOMA ACADEMY OF SCIENCE Volume 98 2018 EDITOR: Mostafa Elshahed Production Editor: Tammy Austin Business Manager: T. David Bass The Official Organ of the OKLAHOMA ACADEMY OF SCIENCE Which was established in 1909 for the purpose of stimulating scientific research; to promote fraternal relationships among those engaged in scientific work in Oklahoma; to diffuse among the citizens of the State a knowledge of the various departments of science; and to investigate and make known the material, educational, and other resources of the State. Affiliated with the American Association for the Advancement of Science. Publication Date: January 2019 ii POLICIES OF THE PROCEEDINGS The Proceedings of the Oklahoma Academy of Science contains papers on topics of interest to scientists. The goal is to publish clear communications of scientific findings and of matters of general concern for scientists in Oklahoma, and to serve as a creative outlet for other scientific contributions by scientists. ©2018 Oklahoma Academy of Science The Proceedings of the Oklahoma Academy Base and/or other appropriate repository. of Science contains reports that describe the Information necessary for retrieval of the results of original scientific investigation data from the repository will be specified in (including social science). Papers are received a reference in the paper. with the understanding that they have not been published previously or submitted for 4. Manuscripts that report research involving publication elsewhere. The papers should be human subjects or the use of materials of significant scientific quality, intelligible to a from human organs must be supported by broad scientific audience, and should represent a copy of the document authorizing the research conducted in accordance with accepted research and signed by the appropriate procedures and scientific ethics (proper subject official(s) of the institution where the work treatment and honesty).
    [Show full text]
  • The Life Cycle of Huffmanela Huffmani Moravec, 1987 (Nematoda: Trichosomoididae), an Endemic Marine-Relict Parasite of Centrarchidae from a Central Texas Spring
    © Institute of Parasitology, Biology Centre CAS Folia Parasitologica 2016, 63: 020 doi: 10.14411/fp.2016.020 http://folia.paru.cas.cz Research Article The life cycle of Huffmanela huffmani Moravec, 1987 (Nematoda: Trichosomoididae), an endemic marine-relict parasite of Centrarchidae from a Central Texas spring McLean L. D. Worsham1, David G. Huffman1, František Moravec2 and J. Randy Gibson3 1 Freeman Aquatic Biology, Texas State University, San Marcos, TX, USA; 2 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; 3 U.S. Fish and Wildlife Service, Aquatic Resources Center, San Marcos, TX, USA Abstract: The life cycle of the swim bladder nematode Huffmanela huffmani Moravec, 1987 (Trichinelloidea: Trichosomoididae), an endemic parasite of centrarchid fishes in the upper spring run of the San Marcos River in Hays County, Texas, USA, was experi- mentally completed. The amphipods Hyalella cf. azteca (Saussure), Hyalella sp. and Gammarus sp. were successfully infected with larvated eggs of Huffmanela huffmani. After ingestion of eggs of H. huffmani by experimental amphipods, the first-stage larvae hatch from their eggshells and penetrate through the digestive tract to the hemocoel of the amphipod. Within about 5 days in the hemocoel of the experimental amphipods at 22 °C, the larvae presumably attained the second larval stage and were infective for the experimen- tal centrarchid definitive hosts, Lepomis spp. The minimum incubation period before adult nematodes began laying eggs in the swim bladders of the definitive hosts was found to be about 7.5 months at 22 °C. This is the first experimentally completed life cycle within the Huffmanelinae.
    [Show full text]
  • PHD Dissertaiton by Zhen Tao.Pdf (3.618Mb)
    Vibrios associated with marine samples from the Northern Gulf of Mexico: implications for human health by Zhen Tao A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 3, 2013 Keywords: recreational fishing, Vibrio vulnificus, public health Copyright 2013 by Zhen Tao Approved by Covadonga R. Arias, Chair, Full Professor of Fisheries and Allied Aquacultures Thomas A. McCaskey, Professor of Animal Science Calvin M. Johnson, Professor of Pathology Stephen A. Bullard, Assistant Professor of Fisheries and Allied Aquacultures Abstract In this dissertation, I investigated the distribution and prevalence of two human- pathogenic Vibrio species (V. vulnificus and V. parahaemolyticus) in non-shellfish samples including fish, bait shrimp, water, sand and crude oil material released by the Deepwater Horizon oil spill along the Northern Gulf of Mexico (GoM) coast. In my study, the Vibrio counts were enumerated in samples by using the most probable number procedure or by direct plate counting. In general, V. vulnificus isolates recovered from different samples were genotyped based on the polymorphism present in 16S rRNA or the vcg (virulence correlated gene) locus. Amplified fragment length polymorphism (AFLP) was used to resolve the genetic diversity within V. vulnificus population isolated from fish. PCR analysis was used to screen for virulence factor genes (trh and tdh) in V. parahaemolyticus isolates yielded from bait shrimp. A series of laboratory microcosm experiments and an allele-specific quantitative PCR (ASqPCR) technique were designed and utilized to reveal the relationship between two V. vulnificus 16S rRNA types and environmental factors (temperature and salinity).
    [Show full text]
  • Eucoleus Garfiai (Gállego Et Mas-Coma, 1975) (Nematoda
    Parasitology International 73 (2019) 101972 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Eucoleus garfiai (Gállego et Mas-Coma, 1975) (Nematoda: Capillariidae) infection in wild boars (Sus scrofa leucomystax) from the Amakusa Islands, T Japan ⁎ Aya Masudaa, , Kaede Kameyamaa, Miho Gotoa, Kouichiro Narasakib, Hirotaka Kondoa, Hisashi Shibuyaa, Jun Matsumotoa a Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan b Narasaki Animal Medical Center, 133-5 Hondomachi-Hirose, Amakusa, Kumamoto 863-0001, Japan ARTICLE INFO ABSTRACT Keywords: We examined lingual tissues of Japanese wild boars (Sus scrofa leucomystax) captured in the Amakusa Islands off Amakusa Islands the coast of Kumamoto Prefecture. One hundred and forty wild boars were caught in 11 different locations in Family Capillariidae Kamishima (n = 36) and Shimoshima (n = 104) in the Amakusa Islands, Japan between January 2016 and April fi Eucoleus gar ai 2018. Lingual tissues were subjected to histological examinations, where helminths and their eggs were observed Sus scrofa leucomystax in the epithelium of 51 samples (36.4%). No significant differences in prevalence were observed according to maturity, sex or capture location. Lingual tissues positive for helminth infection were randomly selected and intact male and female worms were collected for morphological measurements. Based on the host species, site of infection, and morphological details, we identified the parasite as Eucoleus garfiai (Gállego et Mas-Coma, 1975) Moravec, 1982 (syn. Capillaria garfiai). This is the first report from outside Europe of E. garfiai infection in wild boars. Phylogenetic analysis of the parasite using the 18S ribosomal RNA gene sequence confirmed that the parasite grouped with other Eucoleus species, providing additional nucleotide sequence for this genus.
    [Show full text]