This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vcf Pnw 2019
VCF PNW 2019 http://vcfed.org/vcf-pnw/ Schedule Saturday 10:00 AM Museum opens and VCF PNW 2019 starts 11:00 AM Erik Klein, opening comments from VCFed.org Stephen M. Jones, opening comments from Living Computers:Museum+Labs 1:00 PM Joe Decuir, IEEE Fellow, Three generations of animation machines: Atari and Amiga 2:30 PM Geoff Pool, From Minix to GNU/Linux - A Retrospective 4:00 PM Chris Rutkowski, The birth of the Business PC - How volatile markets evolve 5:00 PM Museum closes - come back tomorrow! Sunday 10:00 AM Day two of VCF PNW 2019 begins 11:00 AM John Durno, The Lost Art of Telidon 1:00 PM Lars Brinkhoff, ITS: Incompatible Timesharing System 2:30 PM Steve Jamieson, A Brief History of British Computing 4:00 PM Presentation of show awards and wrap-up Exhibitors One of the defining attributes of a Vintage Computer Festival is that exhibits are interactive; VCF exhibitors put in an amazing amount of effort to not only bring their favorite pieces of computing history, but to make them come alive. Be sure to visit all of them, ask questions, play, learn, take pictures, etc. And consider coming back one day as an exhibitor yourself! Rick Bensene, Wang Laboratories’ Electronic Calculators, An exhibit of Wang Labs electronic calculators from their first mass-market calculator, the Wang LOCI-2, through the last of their calculators, the C-Series. The exhibit includes examples of nearly every series of electronic calculator that Wang Laboratories sold, unusual and rare peripheral devices, documentation, and ephemera relating to Wang Labs calculator business. -
Modern Programming Languages CS508 Virtual University of Pakistan
Modern Programming Languages (CS508) VU Modern Programming Languages CS508 Virtual University of Pakistan Leaders in Education Technology 1 © Copyright Virtual University of Pakistan Modern Programming Languages (CS508) VU TABLE of CONTENTS Course Objectives...........................................................................................................................4 Introduction and Historical Background (Lecture 1-8)..............................................................5 Language Evaluation Criterion.....................................................................................................6 Language Evaluation Criterion...................................................................................................15 An Introduction to SNOBOL (Lecture 9-12).............................................................................32 Ada Programming Language: An Introduction (Lecture 13-17).............................................45 LISP Programming Language: An Introduction (Lecture 18-21)...........................................63 PROLOG - Programming in Logic (Lecture 22-26) .................................................................77 Java Programming Language (Lecture 27-30)..........................................................................92 C# Programming Language (Lecture 31-34) ...........................................................................111 PHP – Personal Home Page PHP: Hypertext Preprocessor (Lecture 35-37)........................129 Modern Programming Languages-JavaScript -
Language-Parametric Methods for Developing
Gabriël Ditmar Primo Konat was born in The Language-Parametric Methods for Developing Interactive Programming Systems Language-Parametric Methods for Developing Interactive Programming Hague, the Netherlands. In 2009, he received his BSc in Computer Science from the Institute of Ap- Invitation plied Sciences in Rijswijk. In 2012, he received his MSc in Computer Science from Delft University of Technology (TUDelft). From 2012 to 2018, he was Language-Parametric a Ph.D. student with the Programming Languages Methods for Developing group at TUDelft, under supervision of Eelco Viss- Interactive Programming er and Sebastian Erdweg. His work focuses on lan- Systems guage workbenches and incremental build systems. Gabriël Konat [email protected] You are cordially invited to the public defense of my dissertation on Monday, November 18th, 2019 at 3pm. At 2:30pm, I will give a brief presentation summarizing my dissertation. The defense will take place in the Senaatszaal of the Delft University of Technology Auditorium, Mekelweg 5, 2628 CC Delft, the Netherlands Afterwards, there will be a Gabriël Konat Language-Parametric Methods for reception. Developing Interactive Programming Systems Gabriël Konat Propositions accompanying the dissertation Language-Parametric Methods for Developing Interactive Programming Systems by Gabriël Ditmar Primo Konat 1. Language-parametric methods for developing interactive programming sys- tems are feasible and useful. (This dissertation) 2. Compilers of general-purpose languages must be bootstrapped with fixpoint bootstrapping. (This dissertation) 3. Manually implementing an incremental system must be avoided. (This dissertation) 4. Like chemists need lab assistants, computer scientists need software engineers to support them in research, teaching, and application in industry. 5. -
Microprocessors in the 1970'S
Part II 1970's -- The Altair/Apple Era. 3/1 3/2 Part II 1970’s -- The Altair/Apple era Figure 3.1: A graphical history of personal computers in the 1970’s, the MITS Altair and Apple Computer era. Microprocessors in the 1970’s 3/3 Figure 3.2: Andrew S. Grove, Robert N. Noyce and Gordon E. Moore. Figure 3.3: Marcian E. “Ted” Hoff. Photographs are courtesy of Intel Corporation. 3/4 Part II 1970’s -- The Altair/Apple era Figure 3.4: The Intel MCS-4 (Micro Computer System 4) basic system. Figure 3.5: A photomicrograph of the Intel 4004 microprocessor. Photographs are courtesy of Intel Corporation. Chapter 3 Microprocessors in the 1970's The creation of the transistor in 1947 and the development of the integrated circuit in 1958/59, is the technology that formed the basis for the microprocessor. Initially the technology only enabled a restricted number of components on a single chip. However this changed significantly in the following years. The technology evolved from Small Scale Integration (SSI) in the early 1960's to Medium Scale Integration (MSI) with a few hundred components in the mid 1960's. By the late 1960's LSI (Large Scale Integration) chips with thousands of components had occurred. This rapid increase in the number of components in an integrated circuit led to what became known as Moore’s Law. The concept of this law was described by Gordon Moore in an article entitled “Cramming More Components Onto Integrated Circuits” in the April 1965 issue of Electronics magazine [338]. -
Stan-(X-249-71 December 1971
S U326 P23-17 AN ANNOTATED BIBLIOGRAPHY ON THE CONSTRUCTION OF COMPILERS . BY BARY W. POLLACK STAN-(X-249-71 DECEMBER 1971 - COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERS II-Y An Annotated Bibliography on the Construction of Compilers* 1971 Bary W. Pollack Computer Science Department Stanford University This bibliography is divided into 9 sections: 1. General Information on Compiling Techniques 2. Syntax- and Base-Directed Parsing c 30 Brsing in General 4. Resource Allocation 59 Errors - Detection and Correction 6. Compiler Implementation in General - 79 Details of Compiler Construction 8. Additional Topics 9* Miscellaneous Related References Within each section the entries are alphabetical by author. Keywords describing the entry will be found for each entry set off by pound signs (*#). Some amount of cross-referencing has been done; e.g., entries which fall into Section 3 as well as Section 7 will generally be found in both sections. However, entries will be found listed only under the principle or first author's name. Computing Review citations are given following the annotation when available. "this research was supported by the Atomic Energy Commission, Project ~~-326~23. Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151. 0 l/03/72 16:44:58 COMPILER CONSTRUCTION TECHNIQUES PACFl 1, 1 ANNOTATED RTBLIOGRAPHY GENERAL INFORMATION ON COMP?LING TECHNIQOES Abrahams, P, W. Symbol manipulation languages. Advances in Computers, Vol 9 (196R), Sl-111, Academic Press, N. Y. ? languages Ic Anonymous. Philosophies for efficient processor construction. ICC Dull, I, 2 (July W62), 85-89. t processors t CR 4536. -
2650 CPU Manual
SIGRET101 2650 MICROPROCESSOR CONTENTS I INTRODUCTION INTRODUCING THE 2650 FAMILY 3 FEATURES OF THE 2650 FAMILY 4 Family Approach 4 Microprocessor Features 4 Compatible Products 5 PROCESSOR HARDWARE DESCRIPTION. 6 Architecture 6 Interfacing 8 Instruction Set 12 SUPPORT 15 Documentation 15 Software Support 15 Prototyping Hardware 16 System Compatible Families 16 II 2650 HARDWARE INTRODUCTION 19 General Features 18 Applications 20 INTERNAL ORGANIZATION 21 Internal Registers 21 Program Status Word 22 Memory Organization 27 INTERFACE 29 Signals 29 Signal Timing 34 Electrical Characteristics 37 Interface Signals 39 Pin Configuration 39 FEATURES 41 Input/Output Facilities 41 Interrupt Mechanism 43 Subroutine Linkage 45 Condition Code Usage 45 Start-up Procedure 46 INSTRUCTIONS 47 Addressing Modes 47 Instruction Formats 51 Detailed Processor Instructions 52 III 2650 ASSEMBLER LANGUAGE INTRODUCTION 93 LANGUAGE ELEMENTS 97 Characters 97 Symbols 97 Constants 97 Multiple Constant Specifications 99 Expressions 99 Special Operators 100 SYNTAX 101 Fields 101 Symbols 102 Symbolic References 102 Symbolic Addressing 102 PROCESSOR INSTRUCTIONS 105 DIRECTIVES TO THE 2650 ASSEMBLER 106 THE ASSEMBLY PROCESS 115 Assembly Listing 118 IV 2650 SIMULATOR INTRODUCTION 123 SIMULATOR OPERATION 124 General 124 Simulated Processor State 124 Simulated Memory 125 Simulated Input/Output Instructions 125 USER COMMANDS 126 General 126 Command Formats 127 Command Descriptions 130 SIMULATOR DISPLAY (LISTING) 139 V APPENDIXES APPENDIX A MEMORY INTERFACE EXAMPLE 147 APPENDIX B I/O INTERFACE EXAMPLE 148 APPENDIX C INSTRUCTIONS, ADDITIONAL INFORMATION 149 APPENDIX D INSTRUCTION SUMMARY 151 APPENDIX E SUMMARY OF 2650 INSTRUCTION MNEMONICS . 160 APPENDIX F NOTES ABOUT THE 2650 PROCESSOR 162 APPENDIX G ASCII AND EBCDIC CODES 163 APPENDIX H COMPLETE ASCII CHARACTER SET 164 APPENDIX I POWERS OF TWO TABLE 165 APPENDIX J HEXADECIMAL-DECIMAL CONVERSION TABLES . -
!Ii!Ldolic!I a Subsidiary of U.S
Introduction to The SOTM Desktop Computer !ii!lDOliC!i a subsidiary of U.S. Philips Corporation Introduction to The Desktop Computer by J. E. Doll ·9jg10bG9 a subsidiary of U.S. Philips Corporation Signetics reserves the right to make changes in the products contained in this book in order to improve design or performance and to supply the best possible products. Signetics also assumes no responsibility for the use of any circuits de scribed herein, conveys no license under any patent or other right, and makes no representations that the circuits are free from patent infringement. Applications for any integrated circuits contained in this publication are for illustration pur poses only and Signetics makes no representation or warranty that such applica tions will be suitable for the use specified without further testing or modification. Reproduction of any portion hereof without the prior written consent of Signetics is prohibited. © 1978 Signetics Corporation PREFACE Computers today are a pervasive part of our society. No longer the exclusive domain of large corporations, computers are now available to nearly everyone at a price comparable to good stereo equipment. Specialized computers are already being used in home appliances, video games, and automobiles. This manual is written especially for people just starting to explore the world of computers. It is designed to give you background information, an understanding of how computers work, and insights into their functions. As you read the manual, you will be introduced to a lot of new terminology. You are urged to pay particluar attention to these new terms, called "buzz words," as they are defined. -
Writing Cybersecurity Job Descriptions for the Greatest Impact
Writing Cybersecurity Job Descriptions for the Greatest Impact Keith T. Hall U.S. Department of Homeland Security Welcome Writing Cybersecurity Job Descriptions for the Greatest Impact Disclaimers and Caveats • Content Not Officially Adopted. The content of this briefing is mine personally and does not reflect any position or policy of the United States Government (USG) or of the Department of Homeland Security. • Note on Terminology. Will use USG terminology in this brief (but generally translatable towards Private Sector equivalents) • Job Description Usage. For the purposes of this presentation only, the Job Description for the Position Description (PD) is used synonymously with the Job Opportunity Announcement (JOA). Although there are potential differences, it is not material to the concepts presented today. 3 Key Definitions and Concepts (1 of 2) • What do you want the person to do? • Major Duties and Responsibilities. “A statement of the important, regular, and recurring duties and responsibilities assigned to the position” SOURCE: https://www.opm.gov/policy-data- oversight/classification-qualifications/classifying-general-schedule-positions/classifierhandbook.pdf • Major vs. Minor Duties. “Major duties are those that represent the primary reason for the position's existence, and which govern the qualification requirements. Typically, they occupy most of the employee's time. Minor duties generally occupy a small portion of time, are not the primary purpose for which the position was established, and do not determine qualification requirements” SOURCE: https://www.opm.gov/policy-data- oversight/classification-qualifications/classifying-general-schedule-positions/positionclassificationintro.pdf • Tasks. “Activities an employee performs on a regular basis in order to carry out the functions of the job.” SOURCE: https://www.opm.gov/policy-data-oversight/assessment-and-selection/job-analysis/job_analysis_presentation.pdf 4 Key Definitions and Concepts (2 of 2) • What do you want to see on resumes that qualifies them to do this work? • Competency. -
Comparative Programming Languages CM20253
We have briefly covered many aspects of language design And there are many more factors we could talk about in making choices of language The End There are many languages out there, both general purpose and specialist And there are many more factors we could talk about in making choices of language The End There are many languages out there, both general purpose and specialist We have briefly covered many aspects of language design The End There are many languages out there, both general purpose and specialist We have briefly covered many aspects of language design And there are many more factors we could talk about in making choices of language Often a single project can use several languages, each suited to its part of the project And then the interopability of languages becomes important For example, can you easily join together code written in Java and C? The End Or languages And then the interopability of languages becomes important For example, can you easily join together code written in Java and C? The End Or languages Often a single project can use several languages, each suited to its part of the project For example, can you easily join together code written in Java and C? The End Or languages Often a single project can use several languages, each suited to its part of the project And then the interopability of languages becomes important The End Or languages Often a single project can use several languages, each suited to its part of the project And then the interopability of languages becomes important For example, can you easily -