MITSUBISHI ELECTRIC RESEARCH LABORATORIES https://www.merl.com End-to-End Deep Learning for Phase Noise-Robust Multi-Dimensional Geometric Shaping Talreja, Veeru; Koike-Akino, Toshiaki; Wang, Ye; Millar, David S.; Kojima, Keisuke; Parsons, Kieran TR2020-155 December 11, 2020 Abstract We propose an end-to-end deep learning model for phase noise-robust optical communications. A convolutional embedding layer is integrated with a deep autoencoder for multi-dimensional constellation design to achieve shaping gain. The proposed model offers a significant gain up to 2 dB. European Conference on Optical Communication (ECOC) c 2020 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Mitsubishi Electric Research Laboratories, Inc. 201 Broadway, Cambridge, Massachusetts 02139 End-to-End Deep Learning for Phase Noise-Robust Multi-Dimensional Geometric Shaping Veeru Talreja, Toshiaki Koike-Akino, Ye Wang, David S. Millar, Keisuke Kojima, Kieran Parsons Mitsubishi Electric Research Labs., 201 Broadway, Cambridge, MA 02139, USA.,
[email protected] Abstract We propose an end-to-end deep learning model for phase noise-robust optical communi- cations.