Modeling the Impact of Phase Noise on the Performance of Crystal-Free Radios Osama Khan, Brad Wheeler, Filip Maksimovic, David Burnett, Ali M

Total Page:16

File Type:pdf, Size:1020Kb

Modeling the Impact of Phase Noise on the Performance of Crystal-Free Radios Osama Khan, Brad Wheeler, Filip Maksimovic, David Burnett, Ali M IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 64, NO. 7, JULY 2017 777 Modeling the Impact of Phase Noise on the Performance of Crystal-Free Radios Osama Khan, Brad Wheeler, Filip Maksimovic, David Burnett, Ali M. Niknejad, and Kris Pister Abstract—We propose a crystal-free radio receiver exploiting a free-running oscillator as a local oscillator (LO) while simulta- neously satisfying the 1% packet error rate (PER) specification of the IEEE 802.15.4 standard. This results in significant power savings for wireless communication in millimeter-scale microsys- tems targeting Internet of Things applications. A discrete time simulation method is presented that accurately captures the phase noise (PN) of a free-running oscillator used as an LO in a crystal- free radio receiver. This model is then used to quantify the impact of LO PN on the communication system performance of the IEEE 802.15.4 standard compliant receiver. It is found that the equiv- alent signal-to-noise ratio is limited to ∼8 dB for a 75-µW ring oscillator PN profile and to ∼10 dB for a 240-µW LC oscillator PN profile in an AWGN channel satisfying the standard’s 1% PER specification. Index Terms—Crystal-free radio, discrete time phase noise Fig. 1. Typical PN plot of an RF oscillator locked to a stable crystal frequency modeling, free-running oscillators, IEEE 802.15.4, incoherent reference. matched filter, Internet of Things (IoT), low-power radio, min- imum shift keying (MSK) modulation, O-QPSK modulation, power law noise, quartz crystal (XTAL), wireless communication. puts a size limitation on miniaturization and adds to the bill of material cost of a sensor node. Alternatively, MEMS technology is showing promising I. INTRODUCTION results for replacing the XTAL in commercial products in CONOMIES of scale require the millimeter-scale space-constrained applications [1], [2]. However, it is still an E wireless sensing systems that form the foundation of off-chip frequency reference and the packaging adds to the the Internet of Things (IoT) to be low-cost and energy cost of a sensor node. Attempts have been made to gener- autonomous. This vision is driving complete system integra- ate a precise on-chip frequency reference using calibration tion on a single piece of silicon to improve the system energy techniques [3], [4]. But the achieved accuracy is still insuf- efficiency for continuous operation on harvested energy and ficient to satisfy stringent wireless standards specification for to reduce cost. low-power radios, e.g., BLE/IEEE 802.15.4. In contrast, we Almost all commercial microsystems today rely on off-chip have presented a network level solution that allows a crystal- quartz technology for precise timing and frequency reference. free sensor node to derive an accurate time and frequency The quartz crystal (XTAL) is a bulky off-chip component that reference in the absence of an off-chip frequency refer- ence (XTAL) [5]. In this brief, we specifically address the impact of phase noise (PN) on the communication system Manuscript received August 26, 2016; accepted September 11, 2016. Date of publication September 20, 2016; date of current version June 23, 2017. performance of a crystal-free radio. This work was supported in part by the DARPA Vanishing Programmable In a traditional radio architecture the RF oscillator (LC/ring) Resources (VAPR) Program, in part by the Berkeley Wireless Research Center, is locked in a phase locked loop (PLL) to a stable crystal in part by the National Science Foundation Graduate Research Fellowship under Grant 1106400, and in part by the Morphing Autonomous Gigascale frequency reference (XO) to improve the close-to-carrier PN Integrated Circuits (MAGIC) under Grant DARPA-BAA-13-23. This brief was which determines the long-term frequency drift of an oscillator recommended by Associate Editor F. C. M. Lau. (excluding environmental and aging effects) as shown concep- O. Khan, B. Wheeler, F. Maksimovic, D. Burnett, and K. Pister are with Berkeley Sensor and Actuator Center, University of California at tually in Fig. 1. In the absence of a stable XO, the free-running Berkeley, Berkeley, CA 94720 USA (e-mail: [email protected]; RF oscillator is tuned to operate at the desired RF channel [email protected]; fi[email protected]; [email protected]; ksjp@ frequency using a network calibrated on-chip frequency ref- berkeley.edu). A. M. Niknejad is with the Berkeley Wireless Research Center, erence (see Fig. 2). Then the error in the desired RF channel University of California at Berkeley, Berkeley, CA 94720 USA (e-mail: frequency will be determined by the accuracy of the on-chip [email protected]). frequency reference [5]. The noisy local oscillator (LO) in the Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org. architecture proposed in Fig. 2 is operating open-loop as a fre- Digital Object Identifier 10.1109/TCSII.2016.2611643 quency calibrated free-running RF oscillator and therefore the 1549- c 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 778 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 64, NO. 7, JULY 2017 Fig. 2. Free-running RF oscillator used as an LO. impact of its PN on the communication system performance needs to be carefully evaluated. To accurately model a free-running oscillator, one has to Fig. 3. Phase spectral density plot for power law noise [7]. model the power law noise that is nonstationary and difficult to analyze analytically [6]. In this brief, we resort to numerical a unique slope as shown in Fig. 3 [7]. The y-axis unit on a log simulation and present a discrete-time simulation model for the scale is decibel relative to 1 rad2/Hz [6]. power law noise that accurately captures the close-in PN of The fractional frequency deviation y(t) of an oscillator is a free-running oscillator. This model is then used to quantify defined as [8] its impact on the communication system performance of an 1 ∂∅ (t) IEEE 802.15.4 standard compliant radio receiver. An effort y(t) = . (3) is made to provide a summary of the relevant equations and 2πfo ∂t a discrete-time simulation model is presented that is cross- The spectral density Sy( f ) of fractional frequency deviation validated with foundry computer-aided design models of an y(t) is related to the phase spectral density Sphi( f ) as RF oscillator. f 2 Sy( f ) = Sphi( f ). (4) II. POWER LAW NOISE fo Consider a sinusoidal oscillator signal v(t) with a nominal The Sphi( f ) or Sy( f ) characterizes the power law noise in the oscillation frequency fo Hz frequency domain. In the time-domain, due to the nonstation- ary nature of the power law noise, several statistical measures v(t) = [A + a(t)] cos 2πf t + φ(t) (1) o have been defined to estimate the frequency stability of an where A is the mean amplitude, a(t) is the zero-mean ampli- oscillator. One widely used measure to estimate frequency tude modulation (AM) noise and φ(t) contains all phase and stability is the Allan variance defined as [7], [9] frequency errors from the nominal oscillation frequency fo and M−1 πf t φ(t) 2 1 2 phase 2 o . Phase disturbance includes random zero- σ (τ) = (y¯k+ −¯yk) (5) y 2(M − 1) 1 mean phase modulation noise, initial phase and integrated k=1 effects of frequency offset and drift [6]. Oscillators contain where y¯ are the M average fractional frequency measurements an amplitude control mechanism that suppresses AM noise k with zero dead-time and τ is the frequency measurement time and it is therefore usually neglected. interval [7]. PN φ(t) is characterized in the frequency domain. The ran- The measurement interval τ over which the frequency is dom PN φ(t) spreads the spectrum of an ideal sinusoid in the averaged acts as a low-pass transfer function while the differ- frequency domain which otherwise is a Dirac-delta function. encing operation between two successive fractional frequency It is important to distinguish between a pass-band spectrum measurements acts as a high-pass transfer function in the P ( f ) of an oscillator which is a Fourier transform of RF frequency domain [10]. Therefore the transfer function that v(t) from the baseband noise spectrum which is a Fourier φ( ) relates the time-domain Allan variance with frequency-domain transform of the autocorrelation of t and is known as ( ) 2 PN spectral density measurement Sphi f has a band-pass phase spectral density Sphi( f ) with units rad /Hz. The phase ( ) characteristic and is given by [8] spectral density Sphi f is a frequency domain measure of 2 4 PN. Empirical measurements have shown that the Sphi( f ) can fh f sin (πf τ) σ 2(τ) = 2 ∫ S ( f ) df . (6) be well approximated by [6] y phi 2 fl fo (πf τ) h4 h3 h2 h1 S ( f ) ≈ + + + + h The lower limit of integration fl is approximated by the recip- phi 4 3 2 1 0 (2) f f f f rocal of the total measurement time of interest while the upper where the hx are coefficients that are oscillator specific and limit of integration fh is determined by the bandwidth of the the power x models a particular noise process. There are five oscillator circuit or the PN measurement instrument, which distinct noise processes, which are called the power-law noise ever is smaller [6], [10].
Recommended publications
  • Laser Linewidth, Frequency Noise and Measurement
    Laser Linewidth, Frequency Noise and Measurement WHITEPAPER | MARCH 2021 OPTICAL SENSING Yihong Chen, Hank Blauvelt EMCORE Corporation, Alhambra, CA, USA LASER LINEWIDTH AND FREQUENCY NOISE Frequency Noise Power Spectrum Density SPECTRUM DENSITY Frequency noise power spectrum density reveals detailed information about phase noise of a laser, which is the root Single Frequency Laser and Frequency (phase) cause of laser spectral broadening. In principle, laser line Noise shape can be constructed from frequency noise power Ideally, a single frequency laser operates at single spectrum density although in most cases it can only be frequency with zero linewidth. In a real world, however, a done numerically. Laser linewidth can be extracted. laser has a finite linewidth because of phase fluctuation, Correlation between laser line shape and which causes instantaneous frequency shifted away from frequency noise power spectrum density (ref the central frequency: δν(t) = (1/2π) dφ/dt. [1]) Linewidth Laser linewidth is an important parameter for characterizing the purity of wavelength (frequency) and coherence of a Graphic (Heading 4-Subhead Black) light source. Typically, laser linewidth is defined as Full Width at Half-Maximum (FWHM), or 3 dB bandwidth (SEE FIGURE 1) Direct optical spectrum measurements using a grating Equation (1) is difficult to calculate, but a based optical spectrum analyzer can only measure the simpler expression gives a good approximation laser line shape with resolution down to ~pm range, which (ref [2]) corresponds to GHz level. Indirect linewidth measurement An effective integrated linewidth ∆_ can be found by can be done through self-heterodyne/homodyne technique solving the equation: or measuring frequency noise using frequency discriminator.
    [Show full text]
  • An Integrated Low Phase Noise Radiation-Pressure-Driven Optomechanical Oscillator Chipset
    OPEN An integrated low phase noise SUBJECT AREAS: radiation-pressure-driven OPTICS AND PHOTONICS NANOSCIENCE AND optomechanical oscillator chipset TECHNOLOGY Xingsheng Luan1, Yongjun Huang1,2, Ying Li1, James F. McMillan1, Jiangjun Zheng1, Shu-Wei Huang1, Pin-Chun Hsieh1, Tingyi Gu1, Di Wang1, Archita Hati3, David A. Howe3, Guangjun Wen2, Mingbin Yu4, Received Guoqiang Lo4, Dim-Lee Kwong4 & Chee Wei Wong1 26 June 2014 Accepted 1Optical Nanostructures Laboratory, Columbia University, New York, NY 10027, USA, 2Key Laboratory of Broadband Optical 13 October 2014 Fiber Transmission & Communication Networks, School of Communication and Information Engineering, University of Electronic 3 Published Science and Technology of China, Chengdu, 611731, China, National Institute of Standards and Technology, Boulder, CO 4 30 October 2014 80303, USA, The Institute of Microelectronics, 11 Science Park Road, Singapore 117685, Singapore. High-quality frequency references are the cornerstones in position, navigation and timing applications of Correspondence and both scientific and commercial domains. Optomechanical oscillators, with direct coupling to requests for materials continuous-wave light and non-material-limited f 3 Q product, are long regarded as a potential platform for should be addressed to frequency reference in radio-frequency-photonic architectures. However, one major challenge is the compatibility with standard CMOS fabrication processes while maintaining optomechanical high quality X.L. (xl2354@ performance. Here we demonstrate the monolithic integration of photonic crystal optomechanical columbia.edu); Y.H. oscillators and on-chip high speed Ge detectors based on the silicon CMOS platform. With the generation of (yh2663@columbia. both high harmonics (up to 59th order) and subharmonics (down to 1/4), our chipset provides multiple edu) or C.W.W.
    [Show full text]
  • Analysis and Design of Wideband LC Vcos
    Analysis and Design of Wideband LC VCOs Axel Dominique Berny Robert G. Meyer Ali Niknejad Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2006-50 http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-50.html May 12, 2006 Copyright © 2006, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Analysis and Design of Wideband LC VCOs by Axel Dominique Berny B.S. (University of Michigan, Ann Arbor) 2000 M.S. (University of California, Berkeley) 2002 A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Robert G. Meyer, Co-chair Professor Ali M. Niknejad, Co-chair Professor Philip B. Stark Spring 2006 Analysis and Design of Wideband LC VCOs Copyright 2006 by Axel Dominique Berny 1 Abstract Analysis and Design of Wideband LC VCOs by Axel Dominique Berny Doctor of Philosophy in Electrical Engineering and Computer Sciences University of California, Berkeley Professor Robert G. Meyer, Co-chair Professor Ali M. Niknejad, Co-chair The growing demand for higher data transfer rates and lower power consumption has had a major impact on the design of RF communication systems.
    [Show full text]
  • Understanding Phase Error and Jitter: Definitions, Implications
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS 1 Understanding Phase Error and Jitter: Definitions, Implications, Simulations, and Measurement Ian Galton , Fellow, IEEE, and Colin Weltin-Wu, Member, IEEE (Invited Paper) Abstract— Precision oscillators are ubiquitous in modern elec- multiplication by a sinusoidal oscillator signal whereas most tronic systems, and their accuracy often limits the performance practical mixer circuits perform multiplication by squared-up of such systems. Hence, a deep understanding of how oscillator oscillator signals. Fundamental questions typically are left performance is quantified, simulated, and measured, and how unanswered such as: How does the squaring-up process change it affects the system performance is essential for designers. the oscillator error? How does multiplying by a squared-up Unfortunately, the necessary information is spread thinly across oscillator signal instead of a sinusoidal signal change a mixer’s the published literature and textbooks with widely varying notations and some critical disconnects. This paper addresses this behavior and response to oscillator error? problem by presenting a comprehensive one-stop explanation of Another obstacle to learning the material is that there are how oscillator error is quantified, simulated, and measured in three distinct oscillator error metrics in common use: phase practice, and the effects of oscillator error in typical oscillator error, jitter, and frequency stability. Each metric offers advan- applications. tages in certain applications, so it is important to understand Index Terms— Oscillator phase error, phase noise, jitter, how they relate to each other, yet with the exception of [1], frequency stability, Allan variance, frequency synthesizer, crystal, the authors are not aware of prior publications that provide phase-locked loop (PLL).
    [Show full text]
  • AN279: Estimating Period Jitter from Phase Noise
    AN279 ESTIMATING PERIOD JITTER FROM PHASE NOISE 1. Introduction This application note reviews how RMS period jitter may be estimated from phase noise data. This approach is useful for estimating period jitter when sufficiently accurate time domain instruments, such as jitter measuring oscilloscopes or Time Interval Analyzers (TIAs), are unavailable. 2. Terminology In this application note, the following definitions apply: Cycle-to-cycle jitter—The short-term variation in clock period between adjacent clock cycles. This jitter measure, abbreviated here as JCC, may be specified as either an RMS or peak-to-peak quantity. Jitter—Short-term variations of the significant instants of a digital signal from their ideal positions in time (Ref: Telcordia GR-499-CORE). In this application note, the digital signal is a clock source or oscillator. Short- term here means phase noise contributions are restricted to frequencies greater than or equal to 10 Hz (Ref: Telcordia GR-1244-CORE). Period jitter—The short-term variation in clock period over all measured clock cycles, compared to the average clock period. This jitter measure, abbreviated here as JPER, may be specified as either an RMS or peak-to-peak quantity. This application note will concentrate on estimating the RMS value of this jitter parameter. The illustration in Figure 1 suggests how one might measure the RMS period jitter in the time domain. The first edge is the reference edge or trigger edge as if we were using an oscilloscope. Clock Period Distribution J PER(RMS) = T = 0 T = TPER Figure 1. RMS Period Jitter Example Phase jitter—The integrated jitter (area under the curve) of a phase noise plot over a particular jitter bandwidth.
    [Show full text]
  • End-To-End Deep Learning for Phase Noise-Robust Multi-Dimensional Geometric Shaping
    MITSUBISHI ELECTRIC RESEARCH LABORATORIES https://www.merl.com End-to-End Deep Learning for Phase Noise-Robust Multi-Dimensional Geometric Shaping Talreja, Veeru; Koike-Akino, Toshiaki; Wang, Ye; Millar, David S.; Kojima, Keisuke; Parsons, Kieran TR2020-155 December 11, 2020 Abstract We propose an end-to-end deep learning model for phase noise-robust optical communications. A convolutional embedding layer is integrated with a deep autoencoder for multi-dimensional constellation design to achieve shaping gain. The proposed model offers a significant gain up to 2 dB. European Conference on Optical Communication (ECOC) c 2020 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Mitsubishi Electric Research Laboratories, Inc. 201 Broadway, Cambridge, Massachusetts 02139 End-to-End Deep Learning for Phase Noise-Robust Multi-Dimensional Geometric Shaping Veeru Talreja, Toshiaki Koike-Akino, Ye Wang, David S. Millar, Keisuke Kojima, Kieran Parsons Mitsubishi Electric Research Labs., 201 Broadway, Cambridge, MA 02139, USA., [email protected] Abstract We propose an end-to-end deep learning model for phase noise-robust optical communi- cations.
    [Show full text]
  • AN10062 Phase Noise Measurement Guide for Oscillators
    Phase Noise Measurement Guide for Oscillators Contents 1 Introduction ............................................................................................................................................. 1 2 What is phase noise ................................................................................................................................. 2 3 Methods of phase noise measurement ................................................................................................... 3 4 Connecting the signal to a phase noise analyzer ..................................................................................... 4 4.1 Signal level and thermal noise ......................................................................................................... 4 4.2 Active amplifiers and probes ........................................................................................................... 4 4.3 Oscillator output signal types .......................................................................................................... 5 4.3.1 Single ended LVCMOS ........................................................................................................... 5 4.3.2 Single ended Clipped Sine ..................................................................................................... 5 4.3.3 Differential outputs ............................................................................................................... 6 5 Setting up a phase noise analyzer ...........................................................................................................
    [Show full text]
  • MDOT Noise Analysis and Public Meeting Flow Chart
    Return to Handbook Main Menu Return to Traffic Noise Home Page SPECIAL NOTES – Special Situations or Definitions INTRODUCTION 1. Applicable Early Preliminary Engineering and Design Steps 2. Mandatory Use of the FHWA Traffic Noise Model (TMN) 1.0 STEP 1 – INITIAL PROJECT LEVEL SCOPING AND DETERMINING THE APPROPRIATE LEVEL OF NOISE ANALYSIS 3. Substantial Horizontal or Vertical Alteration 4. Noise Analysis and Abatement Process Summary Tables 5. Controversy related to non-noise issues--- 2.0 STEP 2 – NOISE ANALYSIS INITIAL PROCEDURES 6. Developed and Developing Lands: Permitted Developments 7. Calibration of Noise Meters 8. Multi-family Dwelling Units 9. Exterior Areas of Frequent Human Use 10. MDOT’s Definition of a Noise Impact 3.0 STEP 3 – DETERMINING HIGHWAY TRAFFIC NOISE IMPACTS AND ESTABLISHING ABATEMENT REQUIREMENTS 11. Receptor Unit Soundproofing or Property Acquisition 12. Three-Phased Approach of Noise Abatement Determination 13. Non-Barrier Abatement Measures 14. Not Having a Highway Traffic Noise Impact 15. Category C and D Analyses 16. Greater than 5 dB(A) Highway Traffic Noise Reduction 17. Allowable Cost Per Benefited Receptor Unit (CPBU) 18. Benefiting Receptor Unit Eligibility 19. Analyzing Apartment, Condominium, and Single/Multi-Family Units 20. Abatement for Non-First/Ground Floors 21. Construction and Technology Barrier Construction Tracking 22. Public Parks 23. Land Use Category D 24. Documentation in the Noise Abatement Details Form Return to Handbook Main Menu Return to Traffic Noise Home Page Return to Handbook Main Menu Return to Traffic Noise Home Page 3.0 STEP 3 – DETERMINING HIGHWAY TRAFFIC NOISE IMPACTS AND ESTABLISHING ABATEMENT REQUIREMENTS (Continued) 25. Barrier Optimization 26.
    [Show full text]
  • Advanced Bridge (Interferometric) Phase and Amplitude Noise Measurements
    Advanced bridge (interferometric) phase and amplitude noise measurements Enrico Rubiola∗ Vincent Giordano† Cite this article as: E. Rubiola, V. Giordano, “Advanced interferometric phase and amplitude noise measurements”, Review of Scientific Instruments vol. 73 no. 6 pp. 2445–2457, June 2002 Abstract The measurement of the close-to-the-carrier noise of two-port radiofre- quency and microwave devices is a relevant issue in time and frequency metrology and in some fields of electronics, physics and optics. While phase noise is the main concern, amplitude noise is often of interest. Presently the highest sensitivity is achieved with the interferometric method, that consists of the amplification and synchronous detection of the noise sidebands after suppressing the carrier by vector subtraction of an equal signal. A substantial progress in understanding the flicker noise mecha- nism of the interferometer results in new schemes that improve by 20–30 dB the sensitivity at low Fourier frequencies. These schemes, based on two or three nested interferometers and vector detection of noise, also feature closed-loop carrier suppression control, simplified calibration, and intrinsically high immunity to mechanical vibrations. The paper provides the complete theory and detailed design criteria, and reports on the implementation of a prototype working at the carrier frequency of 100 MHz. In real-time measurements, a background noise of −175 to −180 dB dBrad2/Hz has been obtained at f = 1 Hz off the carrier; the white noise floor is limited by the thermal energy kB T0 referred to the carrier power P0 and by the noise figure of an amplifier. Exploiting correlation and averaging in similar conditions, the sensitivity exceeds −185 dBrad2/Hz at f = 1 Hz; the white noise floor is limited by thermal uniformity rather than by the absolute temperature.
    [Show full text]
  • Analysis of Oscillator Phase-Noise Effects on Self-Interference Cancellation in Full-Duplex OFDM Radio Transceivers
    Revised manuscript for IEEE Transactions on Wireless Communications 1 Analysis of Oscillator Phase-Noise Effects on Self-Interference Cancellation in Full-Duplex OFDM Radio Transceivers Ville Syrjälä, Member, IEEE, Mikko Valkama, Member, IEEE, Lauri Anttila, Member, IEEE, Taneli Riihonen, Student Member, IEEE and Dani Korpi Abstract—This paper addresses the analysis of oscillator phase- recently [1], [2], [3], [4], [5]. Such full-duplex radio noise effects on the self-interference cancellation capability of full- technology has many benefits over the conventional time- duplex direct-conversion radio transceivers. Closed-form solutions division duplexing (TDD) and frequency-division duplexing are derived for the power of the residual self-interference stemming from phase noise in two alternative cases of having either (FDD) based communications. When transmission and independent oscillators or the same oscillator at the transmitter reception happen at the same time and at the same frequency, and receiver chains of the full-duplex transceiver. The results show spectral efficiency is obviously increasing, and can in theory that phase noise has a severe effect on self-interference cancellation even be doubled compared to TDD and FDD, given that the in both of the considered cases, and that by using the common oscillator in upconversion and downconversion results in clearly SI problem can be solved [1]. Furthermore, from wireless lower residual self-interference levels. The results also show that it network perspective, the frequency planning gets simpler, is in general vital to use high quality oscillators in full-duplex since only a single frequency is needed and is shared between transceivers, or have some means for phase noise estimation and uplink and downlink.
    [Show full text]
  • Scheme of Instruction 2021 - 2022
    Scheme of Instruction Academic Year 2021-22 Part-A (August Semester) 1 Index Department Course Prefix Page No Preface : SCC Chair 4 Division of Biological Sciences Preface 6 Biological Science DB 8 Biochemistry BC 9 Ecological Sciences EC 11 Neuroscience NS 13 Microbiology and Cell Biology MC 15 Molecular Biophysics Unit MB 18 Molecular Reproduction Development and Genetics RD 20 Division of Chemical Sciences Preface 21 Chemical Science CD 23 Inorganic and Physical Chemistry IP 26 Materials Research Centre MR 28 Organic Chemistry OC 29 Solid State and Structural Chemistry SS 31 Division of Physical and Mathematical Sciences Preface 33 High Energy Physics HE 34 Instrumentation and Applied Physics IN 38 Mathematics MA 40 Physics PH 49 Division of Electrical, Electronics and Computer Sciences (EECS) Preface 59 Computer Science and Automation E0, E1 60 Electrical Communication Engineering CN,E1,E2,E3,E8,E9,MV 68 Electrical Engineering E0,E1,E4,E5,E6,E8,E9 78 Electronic Systems Engineering E0,E2,E3,E9 86 Division of Mechanical Sciences Preface 95 Aerospace Engineering AE 96 Atmospheric and Oceanic Sciences AS 101 Civil Engineering CE 104 Chemical Engineering CH 112 Mechanical Engineering ME 116 Materials Engineering MT 122 Product Design and Manufacturing MN, PD 127 Sustainable Technologies ST 133 Earth Sciences ES 136 Division of Interdisciplinary Research Preface 139 Biosystems Science and Engineering BE 140 Scheme of Instruction 2021 - 2022 2 Energy Research ER 144 Computational and Data Sciences DS 145 Nanoscience and Engineering NE 150 Management Studies MG 155 Cyber Physical Systems CP 160 Scheme of Instruction 2020 - 2021 3 Preface The Scheme of Instruction (SoI) and Student Information Handbook (Handbook) contain the courses and rules and regulations related to student life in the Indian Institute of Science.
    [Show full text]
  • AN-839 RMS Phase Jitter
    RMS Phase Jitter AN-839 APPLICATION NOTE Introduction In order to discuss RMS Phase Jitter, some basics phase noise theory must be understood. Phase noise is often considered an important measurement of spectral purity which is the inherent stability of a timing signal. Phase noise is the frequency domain representation of random fluctuations in the phase of a waveform caused by time domain instabilities called jitter. An ideal sinusoidal oscillator, with perfect spectral purity, has a single line in the frequency spectrum. Such perfect spectral purity is not achievable in a practical oscillator where there are phase and frequency fluctuations. Phase noise is a way of describing the phase and frequency fluctuation or jitter of a timing signal in the frequency domain as compared to a perfect reference signal. Generating Phase Noise and Frequency Spectrum Plots Phase noise data is typically generated from a frequency spectrum plot which can represent a time domain signal in the frequency domain. A frequency spectrum plot is generated via a Fourier transform of the signal, and the resulting values are plotted with power versus frequency. This is normally done using a spectrum analyzer. A frequency spectrum plot is used to define the spectral purity of a signal. The noise power in a band at a specific offset (FO) from the carrier frequency (FC) compared to the power of the carrier frequency is called the dBc Phase Noise. Power Level of a 1Hz band at an offset (F ) dBc Phase Noise = O Power Level of the carrier Frequency (FC) A Phase Noise plot is generated using data from the frequency spectrum plot.
    [Show full text]