Natural Bioactive Compounds from Marine-Derived Fungi

Total Page:16

File Type:pdf, Size:1020Kb

Natural Bioactive Compounds from Marine-Derived Fungi marine drugs Review Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi Liming Jin, Chunshan Quan *, Xiyan Hou and Shengdi Fan College of Life Science, Dalian Nationalities University, No. 18, LiaoHe West Road, Dalian 116600, China; [email protected] (L.J.); [email protected] (X.H.); [email protected] (S.F.) * Correspondence: [email protected]; Tel.: +86-411-8765-6219; Fax: +86-411-8764-4496 Academic Editor: Vassilios Roussis Received: 27 January 2016; Accepted: 29 March 2016; Published: 22 April 2016 Abstract: In recent years, a considerable number of structurally unique metabolites with biological and pharmacological activities have been isolated from the marine-derived fungi, such as polyketides, alkaloids, peptides, lactones, terpenoids and steroids. Some of these compounds have anticancer, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, antibiotic and cytotoxic properties. This review partially summarizes the new bioactive compounds from marine-derived fungi with classification according to the sources of fungi and their biological activities. Those fungi found from 2014 to the present are discussed. Keywords: marine-derived fungi; fungal metabolites; bioactive compounds; natural products 1. Introduction The oceans, which cover more than 70% of the earth’s surface and more than 95% of the earth’s biosphere, harbor various marine organisms. Because of the special physical and chemical conditions in the marine environment, almost every class of marine organism displays a variety of molecules with structurally unique features. However, unlike the long historical medical uses of terrestrial plants, marine organisms have a shorter history in pharmacological application [1]. In recent years, a significant number of novel metabolites with pharmacological potential have been discovered from marine organisms, such as polyketides, alkaloids, peptides, proteins, lipids, shikimates, glycosides, isoprenoids and hybrids, which exhibit biological activity including anticancer, antitumor, antiproliferative, antimicrotubule, cytotoxic, photo protective, as well as antibiotic and antifouling properties [2]. Among them, marine microorganisms, such as bacteria, actinomycetes, fungi and cyanobacteria have attracted more attention as potential lead compound producers. In comparison to marine invertebrates, they are a renewable and a reproducible source, as they can be cultured and can even be envisaged as amazing microbial factories for natural products [3]. Previously, scientists always focused on actinomycetes for their abilities to produce antibiotics. In fact, many fungal metabolites in the pharmaceutical market indicates the potential of microorganisms as valuable sources of lead drugs, e.g., the antibiotic polyketide griseofulvin (Likuden M®), the antibacterial terpenoid fusidic acid (Fucidine®), semi-synthetic or synthetic penicillins and cephalosporins, macrolides, statins as well as the ergot alkaloids such as ergotamine (Ergo-Kranit®)[4]. In 1949, the first secondary metabolite isolated from a marine-derived fungal strain, famous cephalosporin C, was produced by a culture of a Cephalosporium sp. isolated from the Sardinian coast. However, this was a more or less accidental discovery. Despite the discovery of such important drug from marine fungi, the number of bioactive natural products originated from marine fungi increased extremely slowly. It is only from the late 1980s that researchers have focused on marine-derived fungi. In fact, marine-derived fungi are very important sources for novel bioactive secondary metabolites that could potentially be used as Mar. Drugs 2016, 14, 76; doi:10.3390/md14040076 www.mdpi.com/journal/marinedrugs Mar. Drugs 2016, 14, 76 2 of 25 Mar.important Drugs 2016 sources, 14, 76 for novel bioactive secondary metabolites that could potentially be used as drugs.2 of 25 Blunt et al., mentioned that marine‐derived fungi have a greater proportion of marine natural drugs.compoundsBlunt etwith al., mentionedmore desirable that marine-derived oral‐bioavailability fungi have and a greaterphysico proportion‐chemical ofproperties marine natural with compoundsmolecular weight with more (MW) desirable < 400 and oral-bioavailability clogP (calculated and octanol physico-chemical‐water logP) properties< 4 [5]. Compounds with molecular that weightmeet these(MW) criteria < 400 andcan clog suggestP (calculated the optimum octanol-water combinations logP) < for 4 [5 ].potential Compounds pharmaceuticals that meet these [5]. criteriaCurrently, can thousands suggest the of optimum structurally combinations unique and for biologically potential pharmaceuticals active compounds [5]. Currently, have been thousands reported offrom structurally marine fungi. unique and biologically active compounds have been reported from marine fungi. According to a classical definition,definition, marine fungi are divided intointo obligateobligate marinemarine fungi and facultative marine fungi [6]. [6]. In fact, marine fungi often live as symbionts in algae, mangrove, coral, sea anemone,anemone, starfish,starfish, seasea urchin,urchin, seagrass,seagrass, and,and, especially,especially, sponges.sponges. Collection of marine fungifungi usually requires the collection of the host or supportingsupporting material (e.g., algae, marine invertebrates, sediment or water, andand eveneven driftwood).driftwood). Herein, a neutral term “marine-derived“marine‐derived fungi” was used, whichwhich includesincludes any any fungal fungal strain strain obtained obtained from from marine marine environment environment using using cultivation cultivation techniques techniques with “marine”with “marine” media, whichmedia, do which not differentiate do not betweendifferentiate facultative between marine facultative strains and marine contaminants strains fromand terrestrialcontaminants habitats. from terrestrial habitats. The aim of thisthis reviewreview isis toto givegive anan overviewoverview onon secondarysecondary metabolitesmetabolites fromfrom marine-derivedmarine‐derived fungi and theirtheir biologicalbiological activities,activities, focusing on thethe periodperiod fromfrom 20142014 toto thethe present.present. In similarsimilar published reviews, assignments of a given metabolite to a certain category were generally based on structural considerations. It It is is obvious that classifications classifications of the enormous structural diversity of marine fungal-derivedfungal‐derived metabolites metabolites are are different different in in various various literature literature reports, reports, which which only only represents represents the authors’the authors’ personal personal judgments. judgments. In this In article, this article, these metabolitesthese metabolites were classified were classified according according to the sources to the ofsources marine of fungi. marine fungi. 2. Metabolites Metabolites from from Marine Marine-Derived‐Derived Fungi Fungi 2.1. Marine Animals 2.1.1. Sponge Two newnew 4-hydroxy-2-pyridone4‐hydroxy‐2‐pyridone alkaloids, arthpyrones (1–2), were isolated from thethe fungusfungus Arthrinium arundinis ZSDS1ZSDS1-F3,‐F3, which which obtained obtained from from sponge sponge (Xisha (Xisha Islands, Islands, China). China). Compounds Compounds 1 1andand 2 2hadhad signi significantficant inin vitro vitro cytotoxicitiescytotoxicities against against the the K562, K562, A549, A549, Huh Huh-7,‐7, H1975, MCF MCF-7,‐7, U937, BGC823, HL60,HL60, Hela Hela and and MOLT-4 MOLT cell‐4 lines,cell withlines, IC with50 values IC50 rangingvalues fromranging 0.24 tofrom 45 µ0.24M. Furthermore, to 45 μM. compoundFurthermore,2 displayed compound significant 2 displayed AchE significant inhibitory AchE activity inhibitory (IC50 =activity 0.81 µ M),(IC50 whereas = 0.81 μ compoundM), whereas1 showedcompound modest 1 showed activity modest (IC50 activity= 47 µM) (IC (Figure50 = 471 μ)[M)7]. (Figure 1) [7]. Figure 1. Structures of compounds 1–2. Figure 1. Structures of compounds 1–2. Chemical examination of the solid culture of the endophytic fungus Stachybotrys chartarum Stachybotrys chartarum isolatedChemical from the examination sponge Niphates of the recondita solid culture (Weizhou of the Island endophytic in Beibuwan fungus Bay, Guangxi Province of isolatedChina) resulted from the in sponge the isolationNiphates of reconditaseven new(Weizhou phenylspirodrimanes, Island in Beibuwan named Bay, chartarlactams Guangxi Province (3–9). ofCompounds China) resulted 3–9 exhibited in the isolation potent lipid of seven‐lowering new phenylspirodrimanes,effects in HepG2 cells in named a dose chartarlactams of 10 μM (Figure (3– 92)). µ Compounds[8]. 3–9 exhibited potent lipid-lowering effects in HepG2 cells in a dose of 10 M (Figure2)[ 8]. Mar. Drugs 2016,, 14,, 76 76 3 of 25 Mar. Drugs 2016, 14, 76 3 of 25 O O HO HO O HO NH NH HO ONH NH HO HO HO HO NH NH NH NH O O O O O HO O O O HO O O O HO AcO HO H H H H O HO AcO HO H H H H 3 45 6 3 45 6 HO HO O O H O OH O HO O H OH N-CH CH OH OH O O HO 2 2 HO O O OH N-CH2CH2OH NH HO HO OHO NH NH O OH HO NH O O O OH O O O HN OH O HN O HO HO HO O HO H HO H HO H H H H 7 8 9 7 8 9 Figure 2. Structures of compounds 3–9. FigureFigure 2.2. Structures of of compounds compounds 33––99. TheThe extract extract of of a astrain strain of of Aspergillus Aspergillus versicolor MF359MF359 (from(from the the sponge sponge of of Hymeniacidon Hymeniacidon perleve perleve, , BohaiBohaiThe Sea, Sea, extract China) China) of yielded ayielded strain one one of Aspergillusnew new secondarysecondary
Recommended publications
  • Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides
    H OH metabolites OH Review Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides Yaojie Guo , Jens C. Frisvad and Thomas O. Larsen * Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby, Denmark; [email protected] (Y.G.); [email protected] (J.C.F.) * Correspondence: [email protected]; Tel.: +45-4525-2632 Received: 12 May 2020; Accepted: 8 June 2020; Published: 15 June 2020 Abstract: Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed. Keywords: oxepine; nonribosomal peptides; bioactivity; biosynthesis; fungi; Aspergillus 1. Introduction Nonribosomal peptides (NRPs), mostly found in bacteria and fungi, are a class of peptidyl secondary metabolites biosynthesized by large modularly organized multienzyme complexes named nonribosomal peptide synthetases (NRPSs) [1]. These products are amongst the most structurally diverse secondary metabolites in nature; they exhibit a broad range of activities, which have been exploited in treatments such as the immunosuppressant cyclosporine A and the antibiotic daptomycin [2,3].
    [Show full text]
  • Aspergillus Penicillioides Speg. Implicated in Keratomycosis
    Polish Journal of Microbiology ORIGINAL PAPER 2018, Vol. 67, No 4, 407–416 https://doi.org/10.21307/pjm-2018-049 Aspergillus penicillioides Speg. Implicated in Keratomycosis EULALIA MACHOWICZ-MATEJKO1, AGNIESZKA FURMAŃCZYK2 and EWA DOROTA ZALEWSKA2* 1 Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Lublin, Poland 2 Department of Plant Pathology and Mycology, University of Life Sciences in Lublin, Lublin, Poland Submitted 9 November 2017, revised 6 March 2018, accepted 28 June 2018 Abstract The aim of the study was mycological examination of ulcerated corneal tissues from an ophthalmic patient. Tissue fragments were analyzed on potato-glucose agar (PDA) and maltose (MA) (Difco) media using standard laboratory techniques. Cultures were identified using classi- cal and molecular methods. Macro- and microscopic colony morphology was characteristic of fungi from the genus Aspergillus (restricted growth series), most probably Aspergillus penicillioides Speg. Molecular analysis of the following rDNA regions: ITS1, ITS2, 5.8S, 28S rDNA, LSU and β-tubulin were carried out for the isolates studied. A high level of similarity was found between sequences from certain rDNA regions, i.e. ITS1-5.8S-ITS2 and LSU, what confirmed the classification of the isolates to the species A. penicillioides. The classification of our isolates to A. penicillioides species was confirmed also by the phylogenetic analysis. K e y w o r d s: Aspergillus penicillioides, morphology, genetic characteristic, cornea Introduction fibrosis has already been reported (Bossche et al. 1988; Sandhu et al. 1995; Hamilos 2010; Gupta et al. 2015; Fungi from the genus Aspergillus are anamorphic Walicka-Szyszko and Sands 2015).
    [Show full text]
  • The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 1-1-2015 The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk Erika D. Womack Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Womack, Erika D., "The Evaluation of Adsorbents for the Removal of Aflatoxin M1 from Contaminated Milk" (2015). Theses and Dissertations. 4456. https://scholarsjunction.msstate.edu/td/4456 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Automated Template B: Created by James Nail 2011V2.1 The evaluation of adsorbents for the removal of aflatoxin M1 from contaminated milk By Erika D. Womack A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Molecular Biology in the Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology Mississippi State, Mississippi December 2015 Copyright by Erika D. Womack 2015 The evaluation of adsorbents for the removal of aflatoxin M1 from contaminated milk By Erika D. Womack Approved: ____________________________________ Darrell L. Sparks, Jr. (Major Professor) ____________________________________ Ashli Brown-Johnson (Minor Professor)
    [Show full text]
  • Characterization of Terrelysin, a Potential Biomarker for Aspergillus Terreus
    Graduate Theses, Dissertations, and Problem Reports 2012 Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak West Virginia University Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Nayak, Ajay Padmaj, "Characterization of terrelysin, a potential biomarker for Aspergillus terreus" (2012). Graduate Theses, Dissertations, and Problem Reports. 3598. https://researchrepository.wvu.edu/etd/3598 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Characterization of terrelysin, a potential biomarker for Aspergillus terreus Ajay Padmaj Nayak Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Immunology and Microbial Pathogenesis Donald H. Beezhold,
    [Show full text]
  • Antibacterial Activity of Aspergillus Isolated from Different Algerian Ecosystems
    Vol. 16(32), pp. 1699-1704, 9 August, 2017 DOI: 10.5897/AJB2017.16086 Article Number: 28412E265692 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Antibacterial activity of Aspergillus isolated from different Algerian ecosystems Bramki Amina1*, Ghorri Sana1, Jaouani Atef2, Dehimat Laid1 and Kacem Chaouche Noreddine1 1Laboratory of Mycology, Biotechnology and Microbial Activity, University of Mentouri Brothers- Constantine, P.O. Box, 325 Ain El Bey Way, Constantine, Algeria. 2Laboratory of Microorganisms and Active Biomolecules, University of Tunis El Manar, Campus Farhat Hached, B.P. no. 94 - Rommana, Tunis 1068, Tunisia. Received 26 May, 2017; Accepted 4 August, 2017 Thirty two strains of Aspergillus genus were isolated from soil samples obtained from particular ecosystems: Laghouat endowed with a desert climate and Teleghma with a warm and temperate climate. Based on the morphological aspect, this collection was subdivided into ten phenotypic groups. This identification was confirmed by molecular analyzes using a molecular marker of the genu ribosomal 18s. This marker will allow us to associate our sequences with those of known organisms. In order to discover new antibiotic molecules, the antibacterial activity was performed against two Gram positive bacteria: Staphylococcus aureus and Bacillus subtilis and also two Gram-negative bacteria: Escherichia coli and Pseudomonas aeroginosa, using two different techniques: Agar cylinders and disks technique. The results show that the fungal species have an activity against at least one test bacterium. The Gram positive bacteria were the most affected, where the averages of the inhibition zones reach 34.33 mm.
    [Show full text]
  • Mycoviruses – the Potential Use in Biological Plant Protection
    ProgreSS IN PLANT PROTeCTION DOI: 10.14199/ppp-2019-023 59 (3): 171-182, 2019 Published online: 16.09.2019 ISSN 1427-4337 Received: 10.06.2019 / Accepted: 02.09.2019 Mycoviruses – the potential use in biological plant protection Mykowirusy – perspektywy wykorzystania w biologicznej ochronie roślin Marcin Łaskarzewski1*, Jolanta Kiełpińska2, Kinga Mazurkiewicz-Zapałowicz3 Summary Biological plant protection is an alternative mean to the chemical pesticides used on a large scale, the use of which carries a great danger for the functioning of living organisms, including humans. Many mycoviruses, which are able to interfere with the host’s phenotypic image, have shown great potential in the control of phytopathogenic fungi. The symptoms are composed of the phenomenon of hypovirulence, i.e. the reduction of fungal pathogenicity in relation to the plant. There are known mycoviruses capable of infecting the most important phytopathogens, including Magnaporthe oryzae, Botrytis cinerea, Fusarium graminearum or Rhizoctonia solani. This is the basis for continuing research to develop effective antifungal agents. Key words: phytopathogenic fungi, mycovirus, biological control of crop, fungal diseases, hypovirulence Streszczenie Biologiczna ochrona roślin stanowi alternatywę dla wykorzystywanych na masową skalę związków chemicznych, których stosowanie niesie ze sobą duże niebezpieczeństwo dla funkcjonowania organizmów żywych, w tym człowieka. Ogromny potencjał w walce z grzybami fitopatogennymi kryje się w mykowirusach, które są zdolne do ingerowania w obraz fenotypowy gospodarza, ograniczając między innymi tempo wzrostu grzybni, zdolność sporulacji czy wywołując efekt cytolityczny. Powyższe objawy składają się na zjawisko hipowirulencji, czyli obniżenia patogenności grzyba w stosunku do rośliny. Poznane zostały mykowirusy zdolne do infekowania najistotniejszych fitopatogenów, w tym Magnaporthe oryzae, Botrytis cinerea, Fusarium graminearum czy Rhizoctonia solani.
    [Show full text]
  • Phylogeny, Identification and Nomenclature of the Genus Aspergillus
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 141–173. Phylogeny, identification and nomenclature of the genus Aspergillus R.A. Samson1*, C.M. Visagie1, J. Houbraken1, S.-B. Hong2, V. Hubka3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, A. Susca5, J.B. Tanney6, J. Varga7, S. Kocsube7, G. Szigeti7, T. Yaguchi8, and J.C. Frisvad9 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea; 3Department of Botany, Charles University in Prague, Prague, Czech Republic; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production National Research Council, 70126 Bari, Italy; 6Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan; 9Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark *Correspondence: R.A. Samson, [email protected] Abstract: Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera.
    [Show full text]
  • Biological and Evolutionary Diversity in the Genus Aspergillus
    Sexual structures in Aspergillus -- morphology, importance and genomics David M. Geiser Department of Plant Pathology Penn State University University Park, PA Geiser mini-CV • 1989-95: PhD at University of Georgia (Bill Timberlake and Mike Arnold): Aspergillus molecular evolutionary genetics (A. nidulans) • 1995-98: postdoc at UC Berkeley (John Taylor): (A. flavus/oryzae/parasiticus, A. fumigatus, A. sydowii) • 1998-: Faculty at Penn State; Director of Fusarium Research Center -- molecular evolution of Fusarium and other fungi Chaetosartorya Petromyces Hemicarpenteles Neosartorya Fennellia Aspergillus Neocarpenteles Eurotium Warcupiella Neopetromyces Emericella Sexual structures in Aspergillus -- morphology, importance and genomics • Sexual stages associated with Aspergillus • The impact (and lack thereof) of the sexual stage on population biology • What does it mean? Characteristics of clinically important Aspergillus spp. • Ability to grow at 37C • Commonly encountered by humans • Prolific sporulators • Nothing here about sexual stages Approx. 1/3 Aspergillus species has a known sexual stage Petromyces (3) Neopetromyces (1) Neosartorya (32, 3 heterothallic) Chaetosartorya (4) Aspergillus Emericella (34, 1 heterothallic) 148 homothallic 4 heterothallic (427 names) Fennellia (3) Eurotium (69) Warcupiella (1) Hemicarpenteles (4) Neocarpenteles (1) Heterothallics rare; virtually all have a conidial stage Types of ascomata cleistothecium (no hymenium - naked passive spore dispersal) asci asci and paraphyses (hymenium) apothecium perithecium
    [Show full text]
  • Antibiosis Enhancement of Drugs in Combination with Agnps Biosynthesized from Marine Fungus; Aspergillus Ochraceus
    International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.11, pp 4662-4666, Oct-Nov 2014 Antibiosis enhancement of drugs in combination with AgNPs biosynthesized from marine fungus; Aspergillus ochraceus B K Nayak* and Anitha K Department of Botany, K. M. Centre for P.G. Studies (Autonomous), Airport Road, Lawspet, Pondicherry - 605008, India *Corres.author: [email protected], Mobile: +91 9443653844 Abstract: In day today life, pathogenic microbes are found to be more resistance to broad spectrum antibioticscauses major health dysfunctions. Silver is used in different forms like metallic silver and silver nitrate to treat burns, wounds and several bacterial infections to get relief. In our present study, the extracellular biosynthesis of silver nanoparticles was made from a marine fungus; Aspergillus ochraceus. The silver nanoparticles (AgNPs) produced from A. ochraceus showed the maximum absorbance at 420nm on UV- spectrophotometer. Size of the nanoparticles was measured in between 30nm to 40nm. Silver nanoparticles showed good antimicrobial activity against the bacterial pathogens studied but combined formulation with antibiotics viz., vancomycin andampicillin, the biosynthesized nanoparticles from Aspergillus ochraceus enhanced the antimicrobial potency of the antibiotics at 3 fold rates against S. aureus followed by 1 fold rates against Bacillus cereus and S. aureus. The antibacterial efficacy of antibiotics was enhanced in the presence of silver nanoparticle against the test organisms. From the Clinical Editor: In the present study, the sand dune fungus; Aspergillus ochraceus was employed for the synthesis of silver nanoparticles. It is a mold species, widely distributed, found in soil and decaying matter, which produces the toxin “Ochratoxin” is one of the most abundant foods contaminating mycotoxin.
    [Show full text]
  • Fungi Morphology, Cytology, Vegetative and Sexual Reproduction
    Fungi morphology, cytology, vegetative and sexual reproduction Jarmila Pazlarová Micromycetes, molds, filamentous fungi • Filamentous fungi - molds • In mycology – molds – only the fungi of subphyllum Oomycota (ie. Phytophtora infestans – potato mold), Chytridiomycota (ie. Synchytrium endobioticum) and Zygomycota (ie. Mucor mucedo ) • In some popular medical booklets is term mold used even for indication of yeasts. Alternative system of Kingdom Simpson and Roger (2004) Today situation FUNGI -Kingdom of Eukaryota -Eukaryotic organisms without plastids -Nutrition absorptive (osmotrophic) -Cell walls containing chitin and β-glucans -mitochondria with flattened cristae -Unicelullar or filamentous -Mostly non flagellate -Reproducing sexually or asexually -The diploid phase generally short-lived -Saprobic, mutualialistic or parasitic Size of micromycetes • 1,5 milions species, only 5% of them was formaly classified • Great diversity of life cycles and morphology • Recent taxonomy is based on DNA sequences Fungi and pseudofungi Kingdom: PROTOZOA Division Acrasiomycota Myxomycota Plasmodiophoromycota Kingdom: CHROMISTA Division Labyrinthulomycota Peronosporomycota Hyphochytriomycota Kingdom: FUNGI Division Chytridiomycota Microsporidiomycota Glomeromycota Zygomycota Ascomycota Basidiomycota kingdom: Fungi Division: Eumycota – true fungi Subdivision: Zygomycotina Ascomycotina Basidiomycotina Supporting subdivision: Deuteromycotina Kingdom: Fungi (Ophisthokonta) • Division: • Chytridiomycota • Microsporidiomycota • Zygomycota • Glomeromycota • Ascomycota
    [Show full text]
  • New Ochratoxin a Producing Species of Aspergillus Section Circumdati
    STUDIES IN MYCOLOGY 50: 23–43. 2004. New ochratoxin A producing species of Aspergillus section Circumdati 1 2 3 3 Jens C. Frisvad , J. Mick Frank , Jos A.M.P. Houbraken , Angelina F.A. Kuijpers and 3* Robert A. Samson 1Center for Microbial Biotechnology, BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark; 233 Tor Road, Farnham, Surrey, GU9 7BY, United Kingdom; 3Centraalbureau voor Schimmelcultures, P.O. Box 85167, 3508 AD Utrecht, The Netherlands *Correspondence: Robert A. Samson, [email protected] Abstract: Aspergillus section Circumdati contains species with yellow to ochre conidia and non-black sclerotia that produce at least one of the following extrolites: ochratoxins, penicillic acids, xanthomegnins or melleins. The exception to this is A. robustus, which produces black sclerotia, phototropic conidiophores and none of the extrolites listed above. Based on a polyphasic approach using morphological characters, extrolites and partial β-tubulin sequences 20 species can be distin- guished, that, except for A. robustus, are phylogenetically and phenotypically strongly related. Seven new species are de- scribed here, A. cretensis, A. flocculosus, A. neobridgeri, A. pseudoelegans, A. roseoglobulosus, A. steynii, and A. westerdi- jkiae. Twelve species of section Circumdati produce mellein, 17 produce penicillic acid and 17 produce xanthomegnins. Eight species consistently produce large amounts of ochratoxin A: Aspergillus cretensis, A. flocculosus, A. pseudoelegans, A. roseoglobulosus, A. westerdijkiae, A. sulphurous, and Neopetromyces muricatus. Two species produce large or small amounts of ochratoxin A, but less consistently: A. ochraceus and A. sclerotiorum. Ochratoxin production in these species has been confirmed using HPLC with diode array detection and comparison to authentic standards.
    [Show full text]
  • Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity
    Agriculture 2015, 5, 492-537; doi:10.3390/agriculture5030492 OPEN ACCESS agriculture ISSN 2077-0472 www.mdpi.com/journal/agriculture Review Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity Ahmed A. Ismaiel 1,* and Jutta Papenbrock 2 1 Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt 2 Institut für Botanik, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannover D-30419, Germany; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +2-012-2711-2912; Fax: +2-055-230-8213. Academic Editor: Anna Andolfi Received: 19 May 2015 / Accepted: 16 July 2015 / Published: 23 July 2015 Abstract: Mycotoxins are secondary fungal metabolites, toxic to humans, animals and plants. Among the hundreds of known mycotoxins, aflatoxins, citrinin, patulin, penicillic acid, tenuazonic acid, ochratoxin A, cytochalasins, deoxynivalenol, fumonisins, fusarin C, fusaric acid, and zearalenone are considered the types that most contaminate cereal grain. The majority of the mycotoxins in these groups are produced by three fungal genera: Aspergillus, Penicillium and Fusarium. These metabolites primarily affect the seed quality, germination, viability, seedling vigour, growth of root and cleoptile. Additionally, since the fungi responsible for the production of these mycotoxins are often endophytes that infect and colonize living plant tissues, accumulation of mycotoxins in the plant tissues may at times be associated with development of plant disease symptoms. The presence of mycotoxins, even in the absence of disease symptoms, may still have subtle biological effects on the physiology of plants. Several studies highlight the toxic effects of mycotoxins on animals and cell lines but little is known about the mode of action of most of these metabolites on plant cells.
    [Show full text]