Curriculum Vitae Fredrik Rüter 9 February 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Interconnector Services
Interconnector Services Industry Challenges OUR SERVICES AT A GLANCE The electricity sector around the world is undergoing significant changes, often driven by the decarbonisation Interconnector policy and regulation agenda. For most countries, however, security of supply • Design of regulatory regimes remains the number one priority. At the same time, (including Cap and Floor in consumer price also remains a key issue. Interconnectors Great Britain) are uniquely well placed to meet these challenges of • Policy design (e.g. incentives to sustainability, security and affordability. increase interconnection) Interconnectors are unique transmission • Energy market design (e.g. design assets that enable the flow of electricity of capacity market to incorporate interconnectors) over high voltage cables between different NorthConnect countries or regions. The economic Icelink rationale for interconnectors is driven by Quantitative analysis fundamental differences in the generation mixes in the connecting countries which • Power market fundamentals lead to systematic electricity price NSN modelling spreads over long periods of time. For • Cost-benefit analysis (e.g. example, the generation portfolio in Moyle Viking arbitrage revenues, Capacity Great Britain (primarily thermal and Greenwire Market, ancillary services) renewable generation, with some nuclear) Greenlink BritNed is very different from that in France • Socio-economic impact analysis East-West (predominantly nuclear) or Norway Nemo • Financial analysis (e.g. to support (predominantly hydro). This is beneficial to IFA2 IFA FABLink ElecLink investment decisions) consumers as it allows cheaper electricity Aquind to be imported at times of high local prices and to generators as it allows surplus Strategic support generation to be exported at times of low • Advising on negotiations with Currently operational local prices. -
Presentación De Powerpoint
COMPANY REFERENCES ACI-VZ008, EN, r02 2019-07-17 WE CONNECT ENERGY SS HAUGSVÆR (P19027) - Scope: o FAT of protection & control panels with ABB REx670 and Siemens SIPROTEC5 End User Location Duration Statnett Trutnov, Chech 2019 Republic Haugsvær, Norway SS ANDALI (P19023) - Scope: o Commissioning of Windfarm signalling from RTU to NCC End User Location Duration Andali Energia Italy 2019 800MW THERMAL POWER PLANT (P19013) - Scope: o Protection/control system modification End User Location Duration Tirreno Power Vado Italy 2019 Ligure 325MVA THERMAL POWER PLANT (P19008) - Scope: o Commissioning of protection and control system End User Location Duration Dalahoo Iran 2019 2 WE CONNECT ENERGY 30KV MV SUBSTATION (P19003) MFM 220KV (P18042) - Scope: - Scope: o FT anad FAT of Unigear Switchgear and protection and o Protection/control system engineering control system End User Location Duration End User Location Duration EPM Colombia Colombia 2018 Tep Tahiti Turkey 2019 800MW THERMAL POWER PLANT (P18040) PAPER INDUSTRY FACILITY (P18045) - Scope: - Scope: o Protection/control system modification o ABB LON protocol, communication restoration End User Location Duration End User Location Duration Tirreno Power Vado Italy 2019 Lecta Group Italy 2019 Ligure 20/3,3KV SUBSTATION (P18043) GLASS INDUSTRY FACILITY (P18039) - Scope: - Scope: o Yearly maintenance of protection/control system o Yearly maintanance of protection/control system End User Location Duration End User Location Duration Elektrarne RM d.o.o. Slovenia 2019 Vetrerie Piegaresi - Italy 2018 Piegaro (PG) 3 WE CONNECT ENERGY INDUSTRY, RAFINERY, POWER SUPPY SUBSTATIONS (P18037) - Scope: o Commissioning of refurbished substation End User Location Duration Raffineria RAM Italy 2018 STORE STEEL FACTORY (P18035) - Scope: o Motor protection system, fault analyze End User Location Duration Petrol d.d. -
Condition Measuring and Lifetime Modelling of Disconnectors, Circuit Breakers and Other Electrical Power Transmission Equipment
Condition measuring and lifetime modelling of disconnectors, circuit breakers and other electrical power transmission equipment PER WESTERLUND Doctoral Thesis Stockholm, Sweden 2017 TRITA-EE 2017:134 KTH Elektroteknisk teori och konstruktion ISSN 1653-5146 Skolan för elektro- och systemteknik ISBN 978-91-7729-543-3 SE-100 44 Stockholm, Sweden Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framläg- ges till offentlig granskning för avläggande av teknologie doktorsexamen i elektro- och systemteknik måndagen den 23 oktober 2017 klockan 13.15 i Kollegiesalen, Brinellvägen 8, Kungl Tekniska högskolan, Stockholm. © Per Westerlund, september 2017 Tryck: Universitetsservice US AB Abstract The supply of electricity is important in modern society, so the outages of the electric grid should be few and short, especially for the transmission grid.A summary of the history of the Swedish electrical system is presented. The objective is to be able to plan the maintenance better by following the condition of the equipment. The risk matrix can be used to choose which component to be maintained. The risk matrix is improved by adding a dimension, the uncertainty of the probability. The risk can be reduced along any dimension: better measurements, preventive maintenance or more redundancy. The number of dimensions can be reduced to two by following iso-risk lines calculated for the beta distribution. This thesis lists twenty surveys about circuit breakers and disconnectors, with statistics about the failures and the lifetime. It also presents about forty condition- measuring methods for circuit breakers and disconnectors, mostly applicable to the electric contacts and the mechanical parts. A method for scheduling thermography based on analysis of variance of the current is tried. -
Sweden 2000 Review INTERNATIONAL ENERGY AGENCY
SuèdeA prepaFT 4/09/00 13:12 Page 1 INTERNATIONAL ENERGY AGENCY Energy Policies of IEA Countries Sweden 2000 Review INTERNATIONAL ENERGY AGENCY Energy Policies of IEA Countries Sweden 2000 Review INTERNATIONAL ENERGY AGENCY ORGANISATION FOR 9, rue de la Fédération, ECONOMIC CO-OPERATION 75739 Paris, cedex 15, France AND DEVELOPMENT The International Energy Agency (IEA) is an Pursuant to Article 1 of the Convention signed in autonomous body which was established in Paris on 14th December 1960, and which came into November 1974 within the framework of the force on 30th September 1961, the Organisation for Organisation for Economic Co-operation and Economic Co-operation and Development (OECD) Development (OECD) to implement an international shall promote policies designed: energy programme. • To achieve the highest sustainable economic growth and employment and a rising standard of It carries out a comprehensive programme of living in Member countries, while maintaining energy co-operation among twenty-four* of the financial stability, and thus to contribute to the OECD’s twenty-nine Member countries. The basic development of the world economy; aims of the IEA are: • To contribute to sound economic expansion in • To maintain and improve systems for coping Member as well as non-member countries in the with oil supply disruptions; process of economic development; and • To promote rational energy policies in a global • To contribute to the expansion of world trade on context through co-operative relations with non- a multilateral, non-discriminatory -
For Hydropower
REVIEW GRID EXTENSION Swapping wind power for hydropower Two cable routes between Norway calm, power can run into the opposite direction. Everybody is intended to benefit from the and Germany are expected to arrangements. The project partners involved believe enhance the two countries’ security that the renewable energy sources in the two countries complement each other perfectly. Electricity of supply. The NorGer and Nord.Link demand in Norway is met by using huge storage reservoirs that fill up with water from melting snow projects are awaiting their approval. starting in May and reach their highest level in autumn. During winter, when precipitation is again lthough the issue is already well known, it is mostly snow, the water is used up due to high power now becoming politically charged because of consumption. Wind power from Germany is especial Athe German government’s decision to press ly produced between October and March and thus on towards the “Energiewende” – the exclusive reli could ensure that water reservoirs in Norway are not ance on renewable energy. Phasing out nuclear ener emptied too fast, while the well filled reservoirs in Wind power from Germany gy and moving the energy industry towards renew summer compensate for weak wind months. is set to be coupled to water able sources will only be possible if new storage sys storage reservoirs in Norway. tems are being developed and used. One possibility One idea, two models Photo: Statnett SF would be using hydro reservoirs. As capacities of this kind are fairly restricted in Germany, some are think However, there are two different business models be ing of looking for opportunities farther north: Norway hind this basic idea. -
Swepol Link Sets New Environmental Standard for HVDC Transmission
00 ABB Review 4/2001 SwePol Link sets new environmental standard for HVDC transmission Leif Söderberg, Bernt Abrahamsson Six cable links – all of them HVDC (high-voltage direct current) – are currently in service between the power grids of continental Europe and the Nordic region, with another five planned. The latest to be brought on line is the SwePol Link, which connects the electricity networks of Poland and Sweden. It is unique in that, unlike previous installations that depend on electrode stations to transmit the return current under ground or under water, it uses 20-kV XLPE cable to carry this current. The high-voltage HVDC submarine cable used for the SwePol Link is designed for 600 MW at 450 kV. he reason for all these links is the technically feasible to reverse the entire onds to prevent grid failure if the voltage T vital need to secure power system 600 MW power throughput of the in southern Sweden drops below 380 kV. reliability in each of the participating SwePol Link in just 1.3 seconds, although With all previous links of this kind, countries. They make it easier to this is not a feature that will be used in electrode stations off the coast transmit optimize power generation in an area in practice. Nevertheless, a typical emer- the return current under the sea, and this which different countries use different gency power measure could call for a has worked perfectly well (Table 1). The means of power generation and have ∆P ramp-up of 300 MW within a few sec- first such cable link was laid in 1954 different power demand profiles over a 24-hour period. -
Expert Perspectives on Norway's Energy Future
Research Paper Antony Froggatt, Paul Stevens and Siân Bradley Edited by Germana Canzi and Amanda Burton Energy, Environment and Resources Programme | June 2020 Expert Perspectives on Norway’s Energy Future Future on Norway’s Energy Expert Perspectives Expert Perspectives on Norway’s Energy Future Froggatt, Stevens and Bradley Stevens Froggatt, Chatham House Contents Abbreviations 2 Summary 3 1 Preamble: Energy Transition in a Post-COVID-19 World 5 2 Challenges and Opportunities for Norway 8 3 Norway’s Energy Future 13 4 Conclusions and Recommendations 38 Annex: Expert Perspectives 40 About the Editors 90 About the Interviewees 91 About the Authors 95 Acknowledgments 96 1 | Chatham House Expert Perspectives on Norway’s Energy Future Abbreviations CCS carbon capture and storage CCU carbon capture and use CCUS carbon capture, use and storage COP Conference of the Parties EIA Energy Information Administration EV electric vehicle GHG greenhouse gas GtCO2e gigatonnes of carbon dioxide equivalent IEA International Energy Agency IPCC International Panel on Climate Change LUC land-use change mtoe million tonnes of oil equivalent NETs negative emissions technologies SAF sustainable aviation fuels SMR steam methane reformer SWF sovereign wealth fund UNEP United Nations Environment Programme UNFCCC United Nations Framework Convention on Climate Change 2 | Chatham House Expert Perspectives on Norway’s Energy Future Summary • The world is undergoing a transition away from fossil fuels towards renewable energy. However, the speed and depth of this transition is uncertain and controversial. This will have significant implications for Norway, one of the world’s largest exporters of both energy and capital. • With international efforts to limit increases in global temperature to 2°C, and as close as possible to 1.5°C, appearing increasingly off-track, there is an urgent need for a rapid move away from the unabated use of fossil fuels. -
Annual and Sustainability Report 2018
Annual and Sustainability Report 2018 Fossil-free living within one generation The future is fossil free At Vattenfall we exist to help our customers power their lives in ever climate smarter ways. The goal is to be free from fossil fuels within one generation. Contents Overview Our people Non-financial information 2 This is Vattenfall 58 Our people 153 Materiality analysis 4 The year in numbers 154 Stakeholders Risks and risk management 6 CEO’s message 155 Social information 62 Risks and risk management 8 Important events 160 Environmental information 10 Targets and target Corporate governance 164 GRI Index achievement 70 Corporate Governance Report 168 Combined Assurance Report 12 Market trends 80 Board of Directors 168 Auditor’s statement 82 Executive Group Management Business model More on Vattenfall 84 AGM proposal 14 Business model 170 Five-year overview, sustainability data Strategic direction Financial information 171 Quarterly overview 18 Strategy 86 Financial performance 173 Ten-year overview 22 Investment plan 93 Consolidated accounts 99 Notes to the consolidated 174 Definitions and calculations Markets and regulations accounts of key ratios 24 Markets and regulations 133 Parent Company accounts 176 Facts about Vattenfall’s 136 Notes to the Parent Company markets Operating segments accounts Glossary 30 Operating segment overview 148 Audit Report 32 Operating segments 179 Glossary 54 Research & Development 181 Contacts and financial calendar About the report The 2018 Annual and Sustainability Report for Vattenfall AB (publ) is submitted by the by the Integrated Reporting Framework with the ambition that the report will reflect how Board of Directors and describes the company’s overall targets and strategy as well as sustainability is embedded in the overall strategy as well as in the daily work. -
Network Development Plan 2016 – 2025
NOVEMBER 2015 NETWORK DEVELOPMENT PLAN 2016 – 2025 A Ten-Year Plan for the Swedish National Grid. SVENSKA KRAFTNÄT Our society is dependent on electricity. Svenska kraftnät is responsible for ensuring that Sweden has a safe, environmentally sound and cost-effective transmission system for electricity – today and in the future. We achieve this in the short term by monitoring the electrical system around the clock, and in the long term by building new power lines to meet tomorrow’s electricity needs. Cover photo Tomas Ärlemo Org. Nr 202100-4284 SVENSKA KRAFTNÄT Box 1200 172 24 Sundbyberg Sweden Sturegatan 1 Tel +46 10-475 80 00 Fax +46 10-475 89 50 www.svk.se/en PREFACE The board of Svenska kraftnät decided in April 2013 on a long-term plan document for the development of the Swedish National Grid. Long-term plan 2025 described the challenges for Svenska kraftnät in the 10 to 15 years term. The purpose was, among other things, to increase the transparency of Svenska kraftnät’s planning and to provide an opportunity for the various stakeholders in the electricity market to influence it. Until then, the national network planning mainly consisted of the three-year investment and financing plans that Svenska kraftnät annually provide to the Government. These plans are, however, primarily a description of how investments already decided are expected to turn out over the next three financial years. They do not give an account of the Administration’s long-term priorities and the grounds for them. A certain network planning is conducted also at Nordic level in order to identify grid reinforcements with specific benefit for the whole of the Nordic electricity market. -
20 Jahre Elektrische Wiedervereinigung Deutschlands
20 Jahre Elektrische Wiedervereinigung Deutschlands 20 Jahre Elektrische Wiedervereinigung Deutschlands VDE-Bezirksverein Kassel e.V., Universität Kassel am 21.01.2016 Walter Schossig, Gotha VDE Ausschuss Geschichte der Elektrotechnik [email protected] www.walter-schossig.de [email protected] www.walter-schossig.de Tel: 03621/701016 Folie 1 20 Jahre Elektrische Wiedervereinigung Deutschlands Chronologie Entstehung von Verbundnetzen Trennung des Deutschen Verbundnetzes Entwicklung in Ost- und Westeuropa Innerdeutscher Stromexport Elektrische Wiedervereinigung Deutschlands Erweiterung des Europäischen Verbundnetzes Ein Auszug der Vortragsfolien. Bei Interesse an Quellenangaben oder weiteren Informationen: [email protected] bzw. www.walter-schossig.de/Literatur [email protected] www.walter-schossig.de Tel: 03621/701016 Folie 2 20 Jahre Elektrische Wiedervereinigung Deutschlands Beginn der Stromversorgung 1866-1878 Technisch wirtschaftliche Versuche 1878-1884 Einzelanlagen 1884-1890 Blockanlagen 1890-1900 Ortszentralen 1900-1913 Überlandzentralen 1913-1915 Anfänge der Verbundwirtschaft [email protected] www.walter-schossig.de Tel: 03621/701016 Folie 3 20 Jahre Elektrische Wiedervereinigung Deutschlands < Einzelanlagen 1878-1884 > 1878 St.George Lane Fox (GB) u. Thomas Alva Edison (US) entwickeln erste Pläne zur kollektiven Verteilung des Stromes in ganze Stadtteile, die im Jahre 1881 in Godalming (GB) und ein Jahr später in New York (US) ihre erste Anwendung finden [email protected] www.walter-schossig.de -
Requirements for Interconnection of HVDC Links with DC-DC Converters
Requirements for interconnection of HVDC links with DC-DC converters Daniel Gomez A., Juan Paez, Marc Cheah-Mane, Jose Maneiro, Piotr Dworakowski, Oriol Gomis-Bellmunt, Florent Morel To cite this version: Daniel Gomez A., Juan Paez, Marc Cheah-Mane, Jose Maneiro, Piotr Dworakowski, et al.. Re- quirements for interconnection of HVDC links with DC-DC converters. IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society, Oct 2019, Lisbon, Portugal. pp.4854-4860, 10.1109/IECON.2019.8927640. hal-02432353 HAL Id: hal-02432353 https://hal.archives-ouvertes.fr/hal-02432353 Submitted on 8 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Requirements for interconnection of HVDC links with DC-DC converters Daniel Gómez A. Juan D. Páez Marc Cheah-Mane Jose Maneiro SuperGrid Institute SuperGrid Institute CITCEA-UPC SuperGrid Institute Villeurbanne, France Villeurbanne, France Barcelona, Spain Villeurbanne, France https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0002- 5647-0488 8712-3630 0942-661X 5717-6176 Piotr Dworakowski Oriol Gomis-Bellmunt Florent Morel SuperGrid Institute CITCEA-UPC SuperGrid Institute Villeurbanne, France Barcelona, Spain Villeurbanne, France https://orcid.org/0000-0002- https://orcid.org/0000-0002- https://orcid.org/0000-0003- 6893-0103 9507-8278 3098-7806 Abstract— The number of high voltage direct current (HVDC) links continue to increase over the years, most of them, for offshore applications or bulk power transmission over long distances. -
Energy Infrastructure Projects in the Baltic Sea
FACTS ISSUE 2 | 06 – 2007 FACTS ABOUT THE NATURAL GAS PIPELINE ACROSS THE BALTIC SEA ENERGY INFRASTRUCTURE PROJECTS IN THE BALTIC SEA ENVIRONMENTAL CHALLENGES CAN BE numerous rivers that flow into the sea. Historically, COPED WITH the main challenge for infrastructure projects has therefore been to maintain this balance. Nord Stream is only one of several planned or already operating energy infrastructure projects Energy infrastructure projects like pipelines, wind in the Baltic Sea. In addition to the pipeline from farms and submarine power cables are in general Vyborg to Greifswald, further offshore natural gas smaller than infrastructure projects like bridges, pipelines across the Baltic Sea are under consid- tunnels and harbours. However, the energy projects eration: Poland is interested in a connection from stretch over longer distances and it may therefore Denmark across the Baltic Sea (Baltic Pipe), while be necessary to cross sensitive areas, like munitions Estonia and Finland are also planning a connecting dump sites. pipeline across the sea (Balticconnector). Further- more, subsea power cables and several offshore All use of the sea has an impact; this includes energy wind parks already exist or are planned in the infrastructure as well as ship traffic or traffic infra- Baltic Sea. All of these projects are striving to keep structure. One of the reasons for choosing locations their impact on the environment as low as possible in the sea instead of onshore is the availability of and to preserve the Baltic ecosystem as it is. “Nord space, which is becoming a scarce resource. In this Stream: Facts” talked to Per Jørgensen, a leading context, the impact of large diameter pipelines like international expert in the field of infrastructure, Nord Stream is almost the same as smaller pipeline energy and environment about these projects.