A Study Based on NOAA NDVI and Weather Station Data

Total Page:16

File Type:pdf, Size:1020Kb

A Study Based on NOAA NDVI and Weather Station Data Land Use Policy 43 (2015) 42–47 Contents lists available at ScienceDirect Land Use Policy jo urnal homepage: www.elsevier.com/locate/landusepol Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data ∗ Minghong Tan , Xiubin Li Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing 100101, PR China a r a t i b s c t l e i n f o r a c t Article history: China launched its “Green Great Wall” (GGW) program in 1978. However, the effects of this program Received 7 July 2014 are subject to intense debate. This study compares changes in the vegetation index in regions where Received in revised form the GGW program has been implemented with those where it has not. Subsequently, a definition to 15 September 2014 measure dust storm intensity (DSI) was proposed that better calculates the intensity of dust events; it Accepted 22 October 2014 considers the frequency, visibility, and duration of dust events. The results show that in the GGW region, vegetation has greatly improved, while it varied dramatically outside the GGW region. In the mid-1980s, Keywords: DSI decreased significantly, different from the changes in dust storm frequency in the study region. By Green Great Wall NDVI discounting the effects of climatic change and human pressures, the results show that the GGW program greatly improved the vegetation index and effectively reduced DSI in northern China. Dust storm intensity © 2014 Elsevier Ltd. All rights reserved. Introduction with many observers concluding that they have been ineffective as desertification controls worldwide (Glenna et al., 1998). Dust has a considerable impact on aerosol radioactive forcing, China’s desert areas, which occupy approximately 13% of the biogeochemical cycling, and agricultural production. This impact country’s total surface area, are a major source of Asian dust (Song, often affects vast areas (Prospero, 1999; Prospero and Lamb, 2003; 2004). In a bid to improve broader environmental factors as well Schepanski et al., 2012). For instance, sand and dust from east and as to combat desertification, the Chinese Government has imple- central Asia are not only carried to Japan, North Korea, and South mented several ecological restoration projects including the Grain Korea across the sea, but can also influence the Pacific Ocean and for Green (GFG) program (Feng et al., 2003; Wang et al., 2007), even be transported to North America and Greenland (McKendry the Green Great Wall (GGW) program (Fang et al., 2001), and the et al., 2001; Huang et al., 2007; Uno et al., 2009; Wang et al., Natural Forest Conservation program (Zhang et al., 2000). Among 2013). Thus, many countries have instituted anti-desertification them, the GGW program is arguably one of the most aggres- programs at a national level, such as Iran’s National Action Program sive meteorological-modification programs of the 20th century to Combat Desertification (Amiraslani and Dragovich, 2011), the (Parungo et al., 1994). It was designed to curtail the expansion of the 2 Country Pilot Partnership for Integrated Sustainable Land Manage- Gobi Desert and will, ultimately, cover 4.1 million km . Also called ment in Namibia (Akhtar-schuster et al., 2011), the 22nd Country the Three-North Shelterbelt Forest Program, it will represent the Master Plan in Israel (Portnov and Safriel, 2004), and the Great dominant ecological engineering program in China and account for Plains Shelterbelt project in the United States. Of these, perhaps an important portion of the world’s total ecological construction the most famous is the Great Plains Shelterbelt, which stretches (Wang et al., 2010). The GGW program was launched in 1978 and over 29,000 km in a 160 km-wide zone from Canada to the Brazos is to be completed by 2050. River in the eastern Great Plains (Cook and Cable, 1995). However, In light of this information, has the implementation of the the outcomes following the implementation of these programs GGW program brought about the desired effect of dampening have spurred intense international debate (McTainsh et al., 2011), dust storms in China? Some authors consider the project to have been successful, pointing to the fact that the forest cover rate has increased from 5.1% in 1978 to 9.0% in 2001 (Zhu et al., 2004), and that vegetation conditions have improved (Duan et al., 2011). Both ∗ of these factors control desertification and may decrease dust storm Corresponding author. Tel.: +86 10 64889431; fax: +86 10 64854230. frequency (DSF), especially in the MuUs and Horqin sand lands E-mail address: [email protected] (M. Tan). http://dx.doi.org/10.1016/j.landusepol.2014.10.017 0264-8377/© 2014 Elsevier Ltd. All rights reserved. M. Tan, X. Li / Land Use Policy 43 (2015) 42–47 43 Table 1 of China. Conversely, other studies conclude that the program’s The visibility range denoted for every level (pre-1979 criterion). effectiveness at controlling dust storms should be questioned (Wang et al., 2010) because decreases in DSF are caused mainly by Grade Visibility (m) Mid-value of a visibility (m) climatic factors. Therefore, before a more rigorous evaluation of the effects of the implemented GGW program on dust storm intensity 0 <50 25 ≥ (DSI) can be carried out, we must resolve two fundamental issues. 1 50 to <200 125 2 ≥200 to <500 350 First, can we prove that the changes in vegetation resulted from 3 ≥500 to <1000 750 the implementation of the program rather than from natural con- 4 ≥1000 to <2000 1500 ditions such as precipitation? Second, a more accurate definition 5 ≥2000 to <4000 3000 ≥ with which to measure dust storm activities is required because 6 4000 to <10,000 7000 7 ≥10,000 to <20,000 15000 DSF cannot fully reflect DSI, which has a close relationship with the 8 ≥20,000 to <50,000 35000 frequency, visibility, and duration of dust events (McTainsh et al., 9 ≥50,000 50000 2005; Speer, 2013; O’Loingsigh et al., 2014). a Note: Visibility is used in the calculation of DSI. In this study, we compare changes in the vegetation indices for the regions where the GGW program has been implemented (“GGW region”) with those for where it has not (“Outside GGW National Oceanic and Atmospheric Administration (NOAA). The region”; Fig. 1). Moreover, the effects of precipitation on the vege- NDVI value consists of bi-weekly composite images with 8-km res- tation indices are also taken into account. Next, we calculate DSI olutions. This data has been widely applied in semi-arid and arid with reference to duration, visibility, and frequency. Finally, we areas (Anyamba and Tucker, 2005; Fensholt et al., 2012; Funk and evaluate the effects of the implementation of the GGW program Brown, 2006; Holm et al., 2003) because the data are in good agree- on DSI. ment with ground-based observations (Holm et al., 2003; Fensholt et al., 2009). Therefore, the AVHRR NDVI data set is well suited for vegetation studies, especially in regions with an annual rainfall less Study area than 1000 mm, such as the Sahel–Sudanian area (Fensholt et al., 2 2009). The study area covers 6.9 million km and ranges from approx- ◦ ◦ ◦ ◦ imately 23 52 to 53 31 N and from 73 29 to 134 58 E (Fig. 1). In Definition of DSI this area, the main vegetation types include farmland, grass, for- est, desert, and no vegetation. The main soil types include aeolian, We calculated the summed DSIs (SDSIj) of all dust events calcic, desert, meadow, cinnamon, and brown earth soils. recorded by a station in year j using Eq. (1) (Tan et al., 2014): The study area includes two parts: the GGW region and the Out- side GGW region (Fig. 1). The GGW region includes 551 counties in n j 1 13 provinces, municipalities and autonomous regions in northern = × SDSIj DURAi j (1) China; it stretches from far-western Xinjiang to Heilongjiang in the VISIB i=1 i northeast, representing approximately 42% of the total land area of j the country. In this region, mean annual precipitation varies from where DURAi is the duration of dust event i at the station in year approximately 450 mm in the southeastern part to 20 mm in the j calculated according to the start and end times of the dust event, j northwestern part (Zheng and Zhu, 2013). and VISIBi is the visibility (in meters) of dust event i at the station in year j. We then further calculated the total value (T SDSI) of SDSIj for Data and methods all years at a station using the following Eq. (2): Dust storm data (from 1971 to 1998) were sourced from the k China Meteorological Administration and included the start and T SDSI = SDSIj (2) end times of the dust storm, visibility details, and the geographic j=1 location of each observation station (longitude and latitude). In China, before 1979, storm events were rated on a scale of ‘0’ to ‘9’ by In 1999, another afforestation initiative—the GFG program—was meteorological observation stations, mainly according to visibility launched in China; it is difficult to distinguish the effects of the range; however, the visibility was not recorded. Since 1980, visibil- GGW program from those of the GFG initiative. Thus, our study ity data has been recorded at all stations. Following the pre-1979 encompasses the period from 1971 to 1998 to discuss the effects criterion, this study first classified the dust events after 1979 into of the GGW program on DSI. Furthermore, in north China, the ten grades.
Recommended publications
  • Journal the Center for Regenerative Practice
    SUMMER 2021 JOURNAL THE CENTER FOR REGENERATIVE PRACTICE Field of the Future New Definition of Nutrient Growing a New Crop SUSAN JENNINGS Density Goes Beyond Labels of Regenerative Farmers DAN KITTREDGE AMY HARPER & KAT CHRISTEN CONTRIBUTORS Matan Mazursky, Educator AGRARIA JOURNAL SUMMER 2021 Gabby Amrhein, Megan Bachman, Beth Bridgeman, Jyoti Miller, Database Coordinator Ariella Brown, Caressa Brown, Kat Christen, Scott Montgomery, Webmaster CONTENTS Sheryl Cunningham, David Diamond, Emily Foubert, Pam Miller, Office Manager Rose Hardesty, Amy Harper, Bob Huston, Rachel Isaacson, Teddy Pierson, Asst. Landuse Coordinator Susan Jennings, Dan Kittredge, Jim Linne, Peggy Nestor, Kaylee Rutherford, Miller Fellow An Invitation to Pay Attention— and Thrive, SHERYL CUNNINGHAM 4 Teddy Pierson, Kenisha Robinson, Rich Sidwell, Kenisha Robinson, Farmer Training Assistant What’s In a Name? Cheryl Smith Xinyuan Shi, Americorps VISTA 5 McKenzie Smith, Miller Fellow Field of the Future, PHOTOGRAPHY SUSAN JENNINGS 6 Mark Thornton, Educator Dennie Eagleson, Amy Harper, Rose Hardesty, New Definition of Nutrient Density Goes Beyond Labels, Tiffany Ward, Educator DAN KITTREDGE 9 Susan Jennings, Teddy Pierson, Renee Wilde Joseph Young, Melrose Acres Grant Coordinator Edible Ethics: To Harvest or Not to Harvest, GABBY LOOMIS-AMRHEIN 12 ILLUSTRATION FARMER PARTNER Natural Foods – Native Edible Plants, BY TEDDY PIERSON Bob Huston 14 Jason Ward Black Farming and Beyond, ARIELLA J. BROWN HORN 15 EDITORS COMMUNITY SOLUTIONS Amy Harper and Susan Jennings Farmer
    [Show full text]
  • Great Plains. in Respiration and Increase in Net Primary Productivity Due Source: Adapted from Anderson (1995) and Schaefer and Ball (1995)
    Great Plains Gary Bentrup and Michele Schoeneberger Gary Bentrup is a research landscape planner, U.S. Department of Agriculture (USDA), Forest Service, USDA National Agroforestry Center; Michele Schoeneberger is research program lead and soil scientist (retired), USDA Forest Service, USDA National Agroforestry Center. Description of the Region generates a total market value of about $92 billion, approx- imately equally split between crop and livestock production Extending from Mexico to Canada, the Great Plains Region (USDA ERS 2012). Agricultural activities range in the northern covers the central midsection of the United States and is Plains from crop production, dominated by alfalfa, barley, corn, divided into the northern Plains (Montana, Nebraska, North hay, soybeans, and wheat to livestock production centered on Dakota, South Dakota and Wyoming) and the southern Plains beef cattle along with some dairy cows, hogs, and sheep. In (Kansas, Oklahoma, and Texas). This large latitudinal range the southern Plains, crop production is centered predominantly leads to some of the coldest and hottest average temperatures in on wheat along with corn and cotton, and extensive livestock the conterminous United States and also to a sharp precipitation production is centered on pastureland or rangelands and inten- gradient from east to west (fig. A.6). The region also experi- sive production in feedlots. Crop production is a mixture of 82 ences multiple climate and weather hazards, including floods, percent dryland and 18 percent irrigated cropland, with 34 and droughts, severe thunderstorms, rapid temperature fluctuations, 31 percent of total irrigated cropland in the region occurring in tornadoes, winter storms, and even hurricanes in the far Nebraska and Texas, respectively (USDA NRCS 2013).
    [Show full text]
  • Planting and Care of Trees in South Dakota E
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Extension Circulars SDSU Extension 2-1936 Planting and Care of Trees in South Dakota E. R. Ware Follow this and additional works at: http://openprairie.sdstate.edu/extension_circ Recommended Citation Ware, E. R., "Planting and Care of Trees in South Dakota" (1936). Extension Circulars. Paper 355. http://openprairie.sdstate.edu/extension_circ/355 This Circular is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Extension Circulars by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Extension Circular 356 F'ebruary 1936 Planting and Care of TreeS:in0 J South Dakota Fig. 1.-Large specimen of a Russian olive tree. SOUTH DAKOTA STATE COLLEGE EXTENSION SERVICE A. M. Eberle, Director, Brookings, South Dakota ( South Dakota State Planning Board Board Members Forestation Committee W. R. Ronald, Mitchell, Chairman Robert D. Lusk, Huron, Chairman Robert D. Lusk, Huron, Vice Chair. Walter Webb, Mitchell S. H. Collins, Aberdeen, Secretary A. L. Ford, Brookings I. D. Weeks, Vermillion Theodore Krueger, Deadwood Theodore Reise, Mitchell Robert G. Fair, Huron Nick Caspers, Rapid City Emil Loriks, Arlington Judge J. R. Cash, Bonesteel Theo W osnuk, Aberdeen Dr. P. B. Jenkins, Pierre C. A. Russell, Pierre Dr. James C. Clark, Sioux Falls Dr. Chas. W. Pugsley, Consultant Charles Entsminger, Chamberlain Dr. T. H. Cox, Associate Consultant Charles Trimmer, Pierre Walter Slocum, Researc;h Assistant EXPLANATION OF COVER CUT Fig.
    [Show full text]
  • The "Great Plains Shelterbelt" and Its Development Into "The Prarie States
    (con) THE "GREAT PLAINS SHELTERBELT" AND ITS DEVEWPM!NT iiro "THE PRAIRIE STATES FORESTRY PROJECT" by Lester C. Dunn A Thosis Presented to the Faculty JAN 7 1958 of the School of Forestry Oregon State College In Partial Fulfillment of the Requirements for the Decree Bachelor of Science March 1914 Approved: Professor of Forestry Table of Contents Pago Introduotion Part One i The'Groat Plaina Shelterbelt" Project I The Inception of the Plan i II. Reasons for the Prorsn 2 III. The Scopo of the Proram Iv. Development of the Project V. The Aims und Pror&n of the Forat Sorvice in the light of the investigations made 9 VI. Organisation of the Sholterbolt Administration when planting was started 13 VII. Work Conzpleted by the "Groat Plaine Sheiterbolt Project" 13 Part Two 15 "The Prairie States Forestry Project" 15 I. The Establishment of the Treo Planting Project on a Secure Basis 15 Ii. The Organization and Provisions of the Now Program 15 Part Three Results of the Plantings Under Both Systems 17 I, General Results 17 II. Specific Results 10 Part Four The Major Difforencea Between the Oriina1 and Present Shelterbelt Planting Programs I. Sise and Location of the Shelterboits 19 II . The Type of Belts to be Planted 19 III. The Permanence of the Program 19 IV. The Distribution of Expense 20 V.. Rho Representation in the Planning 20 Part Five Conclusions 21 Appendix Table i 22 Table 3 23 Table 14 214 Bibliography I NTRODUCT IO' The purposc of this thesis is the presentation of a olear, understand- able review of the original "Great Plain8 Sheltorbelt" and its successor tIThe Prairie Stateß Forestry Project." Due to the rather unfortunate publioity attendant to the announcement of the oriina1 shelterbelt ,1an, and the many and varied ideas pained concerning it, there is often a somewhat confused conception of the entire program in the minds of those who hear "he1terbe1t" mentioned.
    [Show full text]
  • The Shelterbelt “Scheme”: Radical Ecological Forestry and the Production Of
    The Shelterbelt “Scheme”: Radical Ecological Forestry and the Production of Climate in the Fight for the Prairie States Forestry Project A Dissertation SUBMITTED TO THE FACULTY OF UNIVERSITY OF MINNESOTA BY MEAGAN ANNE SNOW IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Dr. Roderick Squires January 2019 © Meagan A. Snow 2019 Acknowledgements From start to finish, my graduate career is more than a decade in the making and getting from one end to the other has been not merely an academic exercise, but also one of finding my footing in the world. I am thankful for the challenge of an ever-evolving committee membership at the University of Minnesota’s Geography Department that has afforded me the privilege of working with a diverse set of minds and personalities: thank you Karen Till, Eric Sheppard, Richa Nagar, Francis Harvey, and Valentine Cadieux for your mentorship along the way, and to Kate Derickson, Steve Manson, and Peter Calow for stepping in and graciously helping me finish this journey. Thanks also belong to Kathy Klink for always listening, and to John Fraser Hart, an unexpected ally when I needed one the most. Matthew Sparke and the University of Washington Geography Department inspired in me a love of geography as an undergraduate student and I thank them for making this path possible. Thank you is also owed to the Minnesota Population Center and the American University Library for employing me in such good cheer. Most of all, thank you to Rod Squires - for trusting me, for appreciating my spirit and matching it with your own, and for believing I am capable.
    [Show full text]
  • Reducing Wind Erosion with Barriers
    Reducing Wind Erosion with Barriers E. L. Skidmore, L. J. Hagen ASSOC. MEMBER ASAE ABSTRACT or drag force exerted on the ground surface is deter­ mined by velocity gradient or the change in velocity HEN wind shear forces on the soil surface exceed with height. The velocity gradient windspeed profile is the soil's resistance to those forces, soil particles W given by detach and are transported by the wind. Barriers ob­ struct the wind and reduce the wind's speed, thus, du u* reducing wind erosion. [1] Application of a model, developed for evaluating ef­ dz kz fectiveness of a barrier for reducing the capacity of local wind to cause erosion, illustrated: (a) Wind erosion forces are reduced more than windspeed. (b) Properly where oriented barriers give much more protection when pre­ u = mean windspeed at height z above the mean ponderance of wind erosion forces in prevailing wind ground surface; erosion direction is high than when preponderance is k = the von Karman constant (0.4); and low. (c) When preponderance of wind erosion forces is u* = friction velocity further defined as (T/Q)1/2, low, barrier orientation is almost inconsequential. where (d) Because of seasonal variation of wind direction and T = surface shear (force per unit area) and speed, need for and amount of protection also vary Q = fluid density. seasonally. The surface shear then is Many trees, shrubs, tall growing crops, and grasses, and slat-fences all can be used as barriers to reduce T = PU* [2] wind erosion. INTRODUCTION The eddy diffusion equation for steady-state, one- Wind erosion continues to be a serious problem in dimensional momentum transport is many parts of the world (Food and Agricultural Or­ ganization, 1960) and is the dominant problem on about 30 million ha of land in the United States (USDA, T = pK.
    [Show full text]
  • Plant Agriculture
    Plant Agriculture “The soil is the great connector of lives, the source and destination of all… without proper care for it we can have no life.” - Wendell Barry 1 ● Plants need three basic components to grow: ● Energy, which they gain by absorbing sunlight through chlorophyll in their leaves. ● The elements carbon, oxygen and hydrogen for producing sugar, which they gain from the air and water. ● Smaller amounts of other elements like nitrogen, phosphorus, and potassium, which they absorb through the soil. 2 The Great ● During the early exploration of the Great Plains in the United States, the land was American found to be unsuitable for European-style Desert agriculture because the ecosystems were too dry. ● The area was called the “Great American Desert”. 3 ● The area of the United States from the eastern Rockies through Nebraska is considered mixed or shortgrass prairie. ● Precipitation is lower than the tallgrass prairie to the east, leading to overall shorter plant species. 4 ● Farmers encouraged to settle into these arid shortgrass prairies also had a difficult time plowing, or turning over the soil. ● Cast iron plows would become stuck and caked with clay stuck in the thick mat of prairie grasses. 5 ● A blacksmith named John Deere invented a polished steel plow that was able to cut through the Midwestern soil. ● Further improvements, including gasoline tractors and combine harvesters, lead to the conversion of arid grassland into fields of corn, wheat, and cotton. 6 ● A combination of overhunting and habitat loss severely diminished the population of grey wolves and Eastern coyotes in the Great Plains.
    [Show full text]
  • Winter 2017 the Rendezvous the Newsletter of the Rocky Mountain Forest Service Association
    Te Rendezvous Winter 2017 The Rendezvous The Newsletter of the Rocky Mountain Forest Service Association R o s Volume 4 - Number 1 R c r o k e n ck y e io y M n iat ou M ai oc nta ount Ass in Forest Service Pershing’s Call For Help Foresters and Lumbermen needed! by Tom Thompson In this Issue Welcome from 5 As we welcome the year 2017, it profound impact on our country, Nancy appropriate that we recognize its people, and the course of what was happening a hundred history. Scholars 7 years ago in the early part of 1917. The storm of Great War had The Forest Service and many of Ski Day! 10 burst upon the world’s nations its young and spirited rangers and the ravages and were called upon to play a consequences of the war were significant role in the war. It is Ashville 11 being felt in America. Many of nearly impossible to know how our country’s young men were many in the Forest Service served Plains Trees 13 filling out draft registration cards, the country in this time of need, like my grandfather’s shown here, but we know a great many did. Regional Office 18 We know that many in District 2 went, and at least five, What’s Funny? 20 who are honored at our Memorial Grove, did not Ellie 21 return. Harold K. Steen acknowledges in his book New Retirees 29 that the War impacted the Forest Service greatly Remembrances 31 and organization was “sapped by loss of men to The Last word 35 the Army.” Most of the over 750 ranger stations “The official newsletter nationwide at that time of the Rocky Mountain had only one or two Forest Service Association, as our nation was poised to enter rangers, so the impact of having a what would become known as the the Rocky Mountaineers.” ranger go off to war was hugely 1st World War.
    [Show full text]
  • Assessment of the World Largest Afforestation Program: Success
    bioRxiv preprint doi: https://doi.org/10.1101/105619; this version posted February 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Assessment of the World Largest Afforestation Program: Success, Failure, and Future Directions J.J. Zhu1*, X. Zheng1, G.G. Wang1, 2*, B.F. Wu3, S.R. Liu5, C.Z. Yan4, Y. Li6, Y.R. Sun1, Q.L. Yan1, Y. Zeng3, S.L. Lu3, X. F. Li7, L.N. Song1, Z. B. Hu1, K. Yang1, N.N. Yan 3, X.S. Li3, T. Gao1, J. X. Zhang1, Aaron M. Ellison8 1 Key Laboratory of Forest Ecology and Management, Qingyuan Forest CERN, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China. 2 Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634-0317, USA 3 Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China. 4 Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China. 5 Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Sciences, Beijing 100091, China. 6 Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China. 7 Shenyang Agricultural University, Shenyang 110866, China. 8 Harvard Forest, Harvard University, Petersham, Massachusetts, 01366, USA. 1 bioRxiv preprint doi: https://doi.org/10.1101/105619; this version posted February 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Plains Farms Need Trees a H Istory of the U.S
    The Rendezvous Winter 2017 Plains Farms Need Trees A H istory of the U.S. Forest Service and Agroforestry by Andy Mason and Sarah Karle Mary Peterson’s article “There’s a animal production systems to services we depend on from National Forest in Nebraska” in create environmental, economic, agricultural lands. the Fall 2016 issue of The and social benefits.” In addition Rendezvous provides a great to windbreaks (includes These services include improved segue to explore another piece of shelterbelts), we recognize four water and air quality, greenhouse lesser known Forest Service other categories of agroforestry gas mitigation especially through history that also originated in the practices/systems in the U.S.: carbon sequestration, critical Great Plains. If you know alley cropping, forest farming, habitat for pollinators and other anything about the Forest riparian forest buffers, and wildlife and aquatic species, and Service, you know that our silvopasture. Used early on to to diversify production. Today, responsibility to manage national protect crop production and soil the Forest Service has national forests and grasslands began in health, these practices are now agroforestry science and earnest with the agency’s designed to provide many other technology transfer founding in 1905. As a history responsibilities, with leadership buff (or if you worked in State and coordination provided by & Private Forestry), you may the USDA National also know that the 1990 Farm Agroforestry Center “NAC”. Bill contained the first ever Located in Lincoln, Nebraska, Forestry Title, which NAC is a partnership of the authorized the Forest Service, agency’s Research & in cooperation with State Development and State & Foresters, to provide Private Forestry arms and the assistance to manage trees Natural Resources and forests in our cities and Conservation Service.
    [Show full text]
  • Windbreaks and Shelterbelts
    191 WINDBREAKS AND SHELTERBELTS JOSEPH H. STOECKELER, ROSS A. WILLIAMS In an effort to determine the value The tree-protected animals gained of adequate windbreaks on American 34.9 more pounds each during a mild farms, 508 farmers in South Dakota winter, and lost 10.6 pounds less dur- and Nebraska were asked for their ing a severe winter, than the unpro- opinions. They placed the annual sav- tected herd. ings in their fuel bill alone at $15.85. Another experiment conducted by In another measure of the value, the V. I. Clark, superintendent of the ex- Lake States Forest Experiment Station periment station at Ardmore, S. Dak., conducted an experiment at Holdrege, involved the weighing of two herds of Nebr. Exact fuel requirements were cattle in different pastures—one pro- recorded in identical test houses. One tected by the natural tree and shrub was protected from winds; the other growth along a stream, the other with- was exposed to the full sweep of the out protection. They w^ere reweighed wind. From the experimental data it after a 3-day blizzard. The animals was possible to calculate the savings to that had some protection each lost an be expected under various prevailing average of 30 pounds less than those conditions, if a constant house tem- in the exposed pasture. perature of 70° F. were maintained. Farm families depend upon gardens The amount of fuel used was reduced for much of their subsistence, and most by 22.9 percent. of them are aware of the influence of a Also the average of the savings for windbreak in increasing the quality houses protected on the north in Hol- and quantity of vegetables and fruit drege and three other localities in the from gardens and orchards.
    [Show full text]
  • Essays on Sustainability and Poverty
    Essays on Sustainability and Poverty Tianshu Li Shenyang, China Master of Economics, University of Tokyo, 2010 M.A. Economics, University of Virginia, 2012 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Economics University of Virginia May, 2016 UNIVERSITY OF VIRGINIA Abstract Department of Economics Doctor of Philosophy by Tianshu Li The three chapters of my dissertation mainly study two related issues. Chapter1 focuses on the sustainability problem concerning inter-generational welfare disparity, and Chap- ters2 and3 focus on the poverty problem concerning cross-sectional welfare disparity. In Chapter1, \Protecting the Breadbasket with Trees? The Effect of the Great Plains Shelterbelt Project on Agricultural Production", I empirically estimate the short- and long-term effects of planting windbreak trees on agricultural revenue by analyzing the Great Plains Shelterbelt Project implemented in 1935-1942 in the US. In order to address the endogeneity problem in the location choice of tree planting, I use a 100-mile-wide belt-shaped shelterbelt zone designated by the program as the instrument. My estimates show that a 10% increase in shelterbelt coverage in a county leads to a 7-10% increase in agricultural revenue. This increase is attributable to animal products rather than crops, and farmers in the treated counties were more likely to switch from cropland to pasture, especially for cattle ranching. In addition, I find heterogeneous effects by levels of soil erosion caused by the 1930s Dust Bowl. The regions with lower levels of soil erosion benefit from shelterbelts, whereas highly eroded regions do not.
    [Show full text]