J. APIC. SCI. Vol. 57 No. 2 2013 DOI: 10.2478/Jas-2013-0021 J

Total Page:16

File Type:pdf, Size:1020Kb

J. APIC. SCI. Vol. 57 No. 2 2013 DOI: 10.2478/Jas-2013-0021 J DOI: 10.2478/jas-2013-0021 J. APIC. SCI. Vol. 57 No. 2 2013 J. APIC. SCI. Vol. 57 No. 2 2013 Original Article Flowering dynamics and pollen production oF laburnum anagyroides med. under the conditions oF south-eastern poland Ernest Stawiarz Anna Wróblewska University of Life Sciences in Lublin, Department of Botany, Akademicka 15, 20-950 Lublin, Poland *corresponding author: [email protected] Received: 08 April 2013; accepted 05 November 2013 a b s t r a c t a study on the flowering biology and pollen production of the common laburnum (laburnum anagyroides med.) was conducted under the conditions of lublin during the period 2004 - 2006. the flowering of this species began in the second 10-day period of may and lasted for 2.5 - 4 weeks. the flowers of common laburnum are borne in showy golden-yellow pendulous racemes. they develop successively, starting from the base and moving to the tip of an inflorescence. during the growing season, one shrub produces 800 to 3200 racemes, with 14 to 35 flowers in a single raceme. on average, the flowering duration for a raceme was 12.8 days and 8.7 days for a single flower. throughout the study years, the shrubs proved to be most attractive in the third 10-day period of may when they reached full bloom. the average weight of pollen produced was 6.08 mg per 10 flowers of laburnum anagyroides, 14.02 mg per raceme, and 26.0 g per shrub. pollen grains reached average dimensions of 24.01 µm × 24.26 µm. Keywords: flowering, laburnum anagyroides, pollen forage, pollen grain morphology. INTRODUCTION Numerous studies conducted in different countries relate to the poisonous and medicinal The genus Laburnum comprises four species properties of this taxon (Greinwald et al. 1990; of low trees or shrubs of the family Fabaceae, Szentesi and Wink, 1991). subfamily Faboideae, tribe Genisteae (Lewis In a few papers, Laburnum anagyroides is and Schrire, 2003; Wojciechowski, 2003). In the mentioned as a species that can be used in wild, they are found in western Poland as well beekeeping (Bodnarčuk et al. 1993; Pritsch, as in central and south-western Europe, and in 2007; Kozłowski et al. 2011). Its entomophilous Central Asia (Scheller, 1974; Krüssmann, 1984; flowers, devoid of nectaries, only provide floral Pritsch, 2007; Johnson and More, 2009; Seneta pollen to bees (Szklanowska and Dąbska, 1993; and Dolatowski, 2012; Tokarska-Guzik et al. Lipiński, 2010). This raw material is a source of 2012). protein food for insects, and its abundance near The common laburnum (Laburnum anagyroides an apiary is necessary in the spring during the Med. also known as Cytisus laburnum L.) is development of bee families. often planted in many European countries as The aim of the present study was first, to an attractive ornamental species intended for determine the time, dynamics and abundance park plantings as well as for gardens and slopes of flowering of Laburnum anagyroides under (Bodnarčuk et al. 1993; Wasson, 2001; Pritsch, the conditions of Lublin; second, to estimate the 2007; Tokarska-Guzik et al. 2012). In the British weight of floral pollen as a source of forage for Isles, this species was also grown in the past for insects; and third, to determine the morphologi- wood fuel and was commonly used as a hedge cal characteristics of pollen grains, which can be plant (Chater, 1992; Johnson and More, 2009). useful for their identification in bee products. 103 stawiarz and Wroblewska Flowering and Pollen production of Laburnum anagyroides MATERIAL and methods flowering stage, morphological measurements of the flowers were made, including their length Flowering observations and width, the dimensions of petals measured The study on flowering and flower production from the base to the tip of the corolla, and the of the common laburnum (Laburnum anagy- dimensions of the banner. roides Med.) was conducted in urban plantings in Lublin (51°14’ N and 22°34’ E), Poland, during investigation of the rate of pollen release the period 2004 - 2006. The flowering duration and pollen morphological characters of this taxon as well as its inflorescences Pollen production of this species was studied and flowers was determined. Flowering time using ether extraction and weight measure- was defined as the number of days from the ment following the modified method described beginning of flowering to the end of flowering, by Warakomska (1972). Mature stamens, and was measured on the same several-year- just before anther dehiscence, were sampled old shrubs in the successive years. Detailed separately for the flowers located at the base, observations of the flowering dynamics of this in the middle part, and in the apical part of the species were carried out over two growing inflorescence. Anther heads from 10 flowers seasons (in the period 2004 - 2005). They (100 stamens) were placed on individual watch were started when the first flower appeared glasses in 6 replications for each region of the on the shrubs and were continued until the last inflorescence. Anthers on the glasses were flowers faded. Observations of the flowering dried in a drying oven at a temperature of 30oC. pattern were recorded every day according to The pollen released from the anthers was first the recommendations of Łukasiewicz (1984). washed with 70% alcohol then washed several The following flower development stages were times with ether until the pollen grains were recorded: beginning of flowering, that is, when completely washed out of the anthers, which the first flowers open; full flowering when was carefully checked with a MSZ 200T ster- 50 - 75% of the flowers are in bloom; and eoscopic microscope. After the pollen grains the end of flowering when nearly 100% of the were completely washed out and the anther flowers had faded. walls were removed, the glasses with pollen The flowering of inflorescences was observed were weighed and pollen production per flower, at full bloom of the taxon in each year of the raceme, and shrub were calculated. study on 10 randomly selected racemes located The extracted pollen was used to prepare glyc- on different shrubs. Each day, the number of erol-gelatin coated microscope slides. The pollen open flowers on the flowering racemes was sampled from the flowers located at the base, determined on individual days of bloom. the middle part, and the apical parts of the in- The flowering duration of single flowers was -in florescence were fixed on separate slides. Two vestigated several times during the successive replications for each region of the inflorescence seasons under varying weather conditions. The were done. Subsequently, measurements of observations were started at bud burst, and the pollen grains were taken to determine the bud development was observed until petal fall. length of their polar and equatorial axes using The particular stages of flower development a Nikon Eclipse E 600 light microscope at were recorded using the phenological signs of a magnification of 40 × 15. Fifty pollen grains Krotoska (1958). These were as follows: bud were measured on each slide. stage, beginning of flowering, full flowering, and Statistical analysis of the study results was end of flowering. performed based on analysis of variance Measurements of the inflorescence rachis (ANOVA) and Tukey’s multiple t-tests at a signif- length were made and the number of flowers icance level of α = 0.05. Calculations were done per inflorescence was determined. At full using Statistica 6.0 software. 104 of of Under the conditions of Lublin, the biology flowering Flowering RESULTS Table 1. this season, the shrubs blossomed the flowering earliest (10 May). During period was the study, of the year In the first 2.5 - 4 weeks. the second 10-day period of May and lasted for Flowering of Laburnum anagyroides under the conditions in Lublin Laburnum Flowering Inflorescence length Number of flowers Length of flowering (days) Year time (cm) in inflorescence Flower Inflorescence (days) anagyroides Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range 10.05 - 07.06 2004 13.9 ± 2.86a 9 - 18 27.8 ± 5.14b 18 - 35 10.8 ± 2.66c 7 - 13 16.2 ± 1.93c 14 - 20 (29) 15.05 - 02.06 a a a a 2005 16.7 ± 4.22 9 - 23 21.7 ± 4.45 14 - 28 6.4 ± 0.97 5 - 8 8.5 ± 0.71 7 - 9 started during the (19) 19.05 - 11.06 2006 16.3 ± 2.36a 13 - 19 22.9 ± 6.15ab 14 - 33 8.8 ± 1.03b 8 - 10 13.8 ± 1.13b 12 - 16 (24) Mean - 15.6 - 24.1 - 8.7 - 12.8 - Abbreviations: SD - standard deviation. Mean values in column followed by the same letter do not differ significantly atα ≤0.05. Table 2. pendulous delicate, very loose, golden-yellow, in borne are laburnum common the of flowers The (Fig. 1). occurred during the first 10-day periodof June 10-day period of May and the end of flowering The shrubs reached full bloom during the third 19 days in 2005 and 24 days in 2006 1). (Tab. flowering time was shorter, with a durationof longest, lasting 29 days. In the next years, the Mean air temperatures and total rainfall during the decade of the study period relative to the long-term means 2004 2005 2006 Meteorological Month Decade Decade Decade 1951 - 2005 factor Mean Mean Mean I II III I II III I II III April 5.2 8.8 9.8 7.9 9.0 10.9 7.4 9.1 6.2 7.7 12.3 8.7 7.4 J. APIC.SCI.Vol.57No.22013 Temperature May 13.6 10.8 11.4 11.9 10.8 10.5 18.0 13.1 13.5 14.6 12.8 13.6 13.0 (oC) June 15.7 15.8 16.1 15.8 13.4 17.2 17.4 16.0 11.6 17.9 21.1 16.9 16.2 April 24.6 10.4 3.1 38.1 0.2 4.0 14.4 18.6 19.4 10.5 0.4 30.3 40.2 Precipitation May 10.1 11.3 16.6 38.0 32.8 65.0 0.2 98.0 9.0 18.4 32.2 59.5 57.7 (mm) June 3.7 25.9 20.3 49.9 47.1 7.4 1.4 55.9 28.4 0.0 9.5 37.9 65.7 105 stawiarz and Wroblewska Flowering and Pollen production of Laburnum anagyroides 200 180 2004 2005 160 140 120 100 80 60 Number of flowering racemes per shrub shrub per racemes flowering Numberof 40 20 0 8 10 12 14 16 18 20 22 24 26 28 30 1 3 5 7 May June Fig.
Recommended publications
  • Oberholzeria (Fabaceae Subfam. Faboideae), a New Monotypic Legume Genus from Namibia
    RESEARCH ARTICLE Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume Genus from Namibia Wessel Swanepoel1,2*, M. Marianne le Roux3¤, Martin F. Wojciechowski4, Abraham E. van Wyk2 1 Independent Researcher, Windhoek, Namibia, 2 H. G. W. J. Schweickerdt Herbarium, Department of Plant Science, University of Pretoria, Pretoria, South Africa, 3 Department of Botany and Plant Biotechnology, University of Johannesburg, Johannesburg, South Africa, 4 School of Life Sciences, Arizona a11111 State University, Tempe, Arizona, United States of America ¤ Current address: South African National Biodiversity Institute, Pretoria, South Africa * [email protected] Abstract OPEN ACCESS Oberholzeria etendekaensis, a succulent biennial or short-lived perennial shrublet is de- Citation: Swanepoel W, le Roux MM, Wojciechowski scribed as a new species, and a new monotypic genus. Discovered in 2012, it is a rare spe- MF, van Wyk AE (2015) Oberholzeria (Fabaceae subfam. Faboideae), a New Monotypic Legume cies known only from a single locality in the Kaokoveld Centre of Plant Endemism, north- Genus from Namibia. PLoS ONE 10(3): e0122080. western Namibia. Phylogenetic analyses of molecular sequence data from the plastid matK doi:10.1371/journal.pone.0122080 gene resolves Oberholzeria as the sister group to the Genisteae clade while data from the Academic Editor: Maharaj K Pandit, University of nuclear rDNA ITS region showed that it is sister to a clade comprising both the Crotalarieae Delhi, INDIA and Genisteae clades. Morphological characters diagnostic of the new genus include: 1) Received: October 3, 2014 succulent stems with woody remains; 2) pinnately trifoliolate, fleshy leaves; 3) monadel- Accepted: February 2, 2015 phous stamens in a sheath that is fused above; 4) dimorphic anthers with five long, basifixed anthers alternating with five short, dorsifixed anthers, and 5) pendent, membranous, one- Published: March 27, 2015 seeded, laterally flattened, slightly inflated but indehiscent fruits.
    [Show full text]
  • Laburnum Anagyroides
    All the knowledge. Almost all of the trees. https://www.vdberk.com/trees/laburnum-anagyroides/ Laburnum anagyroides Height 5 - 7 (9) m Crown narrow vase-shaped, half-open crown, capricious growing Bark and branches brownish-green, young twigs green Leaf triple leaf segments ovoid to oval, green, 10 - 16 cm Flowers long pendulous bunches, 10 - 20 (25) cm, golden yellow, April/May, fragrant flowers Fruits pods up to 8 cm in length with black seeds Spines/thorns None Toxicity has toxic components Soil type stands up to calcareous soil Paving tolerates no paving Winter hardiness zone 5b (-26,0 to -23,4 °C) Wind resistance good Other resistances resistant to frost (WH 1 - 6), can withstand wind, resistant to de-icing salt Fauna tree resistant to frost (WH 1 - 6), can withstand wind, resistant to de-icing salt, valuable for butterflies Application parks, cemeteries, industrial areas, large gardens, small gardens, patio gardens Shape multi-stem treem Origin Central and Southern Europe Shrub that grows vertically and can turn into a multi-trunked tree. Usually a conscious choice is made for several trunks when growing this bush. This is done to reinforce the effect created by the flowers. Young twigs are remarkably green. Old branches and trunk turn brownish-green. The trunk remains smooth. The dark green leaf is triple, each leaf segment being 3 - 8 cm long with a blue-green underside. There are a great many flowers in golden-yellow pendulous bunches, 10 - 20 (25) cm long, but the flowers have no scent. The seedpods, leaves and young twigs carry soft hairs.
    [Show full text]
  • Ilias Saxelmwifo Universitetis Entomologiisa Da Biokontrolis Kvleviti Centri Entomology and Biocontrol Research Centre of Ilia State University
    ilias saxelmwifo universitetis entomologiisa da biokontrolis kvleviTi centri Entomology and Biocontrol Research Centre of Ilia State University თეა არაბული Tea Arabuli ვაზის მავნებელი ტეტრანიხისებრი (Acari: Tetranychoidea) ტკიპები Vitis Pest Tetranychoid (Acari: Tetranychoidea) Mites ნაშრომი დაფინანსდა შოთა რუსთაველის ეროვნული სამეცნიეერო ფონდის მიერ. გრანტი N 2-2/05 The monograph was financed by Sota Rustaveli national scientific fond SRNSF. grant N 2-2/05 გამომცემლობა ”უნივერსალი” Pulishing House “UNIVERSAL” თბილისი - Tbilisi 2011 უდკ (UDC) ე თბილისი 0179, ჭავჭავაძის გამზ. 31. ტელ. 220164 Tbilisi 0179, Chavchavadze avenieu 31. Tel.: 995 32 220164 www.iliauni.edu.ge რედაქტორი: ერისტო ყვავაძე ბიოლოგიის მეცნიერებათა დოქტორი Editor: Eristo Kvavadze Doctor of Biological Sciences © თ. არაბული გამომცემლობა ”უნივერსალი”, 2011 თბილისი, ჭავჭავაძის გამზ. 19, ტელ: 22 36 09, 8(99) 17 22 30 E-mail: [email protected] ISBN 978-9941-12-507-2 2 შ ი ნ ა ა რ ს ი 1. შესავალი 2. მავნებელი ტეტრანიხისებრი ტკიპების შესწავლის ისტორია, მრავალფეროვნება და გავრცელება 3. ვაზის კულტურა საქართველოში და ტეტრანიხისებრი ტკიპების მავნებლობა 4. მასალა და მეთოდიკა 1. საიტების დახასიათება 2. მასალის შეგროვება 3. პრეპარატების მომზადება და რკვევა 5. საკუთარი გამოკვლევები: 1. კახეთის რეგიონის ვაზის მავნებელი ტეტრანიხისებრი (Acari: Tetranychoidea) ტკიპები 2. Eotetranychus pruni - ის და მისი ბუნებრივი მტრის (Phytoseius plumifer) რიცხოვნების დინამიკა ვაზზე 3. ვაზზე აღრიცხული უხერხემლო ცხოველები და მათი როლი 6. დასკვნა 7. ციტირებული ლიტერატურა 3 შ ე ს ა ვ ა ლ ი ტეტრანიხისებრი ტკიპები (Tetranychoidea) ობობასნაირთა კლასს განეკუთვნებიან, ისინი ფართოდ არიან გავრცელებულნი მთელს დედამიწაზე, გვხვდებიან ყველგან სადაც ყვავილოვანი მცენარეები იზრდება და წარმოადგენენ ხილის, ბოსტნეულის, მარცვლოვანი კულტურების, დეკორატიული და ველურად მოზარდი მცენარეების საშიშ მავნებლებს. მცენარეების პარაზიტი ტეტრანიხისებრი ტკიპები მცირე ზომის (0,40-0,5 მმ), სუსტად ქიტინიზებული საფარველის მქონე ცხოველებია, რომელთა დანახვა ბუნებრივ პირობებში შეუიარაღებელი თვალით შეუძლებელია.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Latifoglie 4
    Latifoglie 4 Ebook - Le Guide di www.giardinaggio.org Ebook Le Guide di www.giardinaggio.org Fragno In questa pagina parleremo di : Generalità Clima e terreno Impianto e tecniche di coltivazione Parassiti e malattie Caratteristiche del legno Varietà Aiutaci a crescere clicca Generalità Il Fragno (Quercus trojana) è una piccola quercia semisempreverde appartenente alla famiglia delle Fagaceae, con il tronco dritto e ramoso fino alla base, che assume spesso un portamento di tipo arbustivo. La chioma è arrotondata e espansa. A maturità raggiunge appena i 10-15 m di altezza, quindi pur essendo simile al Leccio ha dimensioni molto inferiori. La corteccia è di colore grigio cenere nelle fasi iniziali di sviluppo, poi grazie alla presenza di cristalli minerali si forma un un ritidoma scuro e fessurato, rugoso, e molto duro. I rametti dell’anno sono grigiastri e finemente pubescenti all’inizio, poi nel corso della stagione vegetativa diventano glabri. Le gemme sono piccole e ovoidali, pluriperulate e glabre. Le foglie sono semplici, ad inserzione alterna, di forma ovale lanceolata, simili a quelle del castagno ma molto più piccole, con un picciolo molto corto (5-6 mm) e con stipole che cadono nel giro di breve tempo. Le loro dimensioni si aggirano sui 6-10 cm di lunghezza e 1-3 cm di larghezza, e sono coriacee e lucide, con i margini seghettati e 8-14 coppie di denti ottusi e mucronati. Entrambe le pagine fogliari sono glabre, quella inferiore appare più chiara della superiore che è verde scuro a causa della presenza di sostanze cerose che la ricoprono, gli stomi sono ellittici o sub orbicolari, mentre la rima stomatica è decisamente ellittica.
    [Show full text]
  • Lajiluettelo 2019
    Lajiluettelo 2019 Artlistan 2019 Checklist 2019 Helsinki 2020 Viittausohje, kun viitataan koko julkaisuun: Suomen Lajitietokeskus 2020: Lajiluettelo 2019. – Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Viittausohje, kun viitataan osaan julkaisusta, esim.: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020: Hymenoptera, pistiäiset. – Julkaisussa: Suomen Lajitietokeskus 2020: Lajiluettelo 2019. Suomen Lajitietokeskus, Luonnontieteellinen keskusmuseo, Helsingin yliopisto, Helsinki. Citerande av publikationen: Finlands Artdatacenter 2020: Artlistan 2019. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citerande av en enskild taxon: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020. Hymenoptera, steklar. – I: Finlands Artdatacenter 2020: Artlistan 2019. – Finlands Artdatacenter, Naturhistoriska centralmuseet, Helsingfors universitet, Helsingfors Citation of the publication: FinBIF 2020: The FinBIF checklist of Finnish species 2019. – Finnish Biodiversity Information Facility, Finnish Museum of Natural History, University of Helsinki, Helsinki Citation of a separate taxon: Paukkunen, J., Koponen, M., Vikberg, V., Fernandez-Triana, J., Jussila, R., Mutanen, M., Paappanen, J., Várkonyi, G. 2020: Hymenoptera, sawflied, wasps, ants and bee. – In: FinBIF 2020: The FinBIF checklist of Finnish species 2019. – Finnish Biodiversity
    [Show full text]
  • Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution
    Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution Pierre-Marc Delaux1*, Kranthi Varala2, Patrick P. Edger3,4, Gloria M. Coruzzi2, J. Chris Pires3, Jean-Michel Ane´ 1* 1 Department of Agronomy, University of Wisconsin–Madison, Madison, Wisconsin, United States of America, 2 Center for Genomics and Systems Biology, New York University, New York, New York, United States of America, 3 Bond Life Sciences Center, Division of Biological Sciences, University of Missouri, Columbia, Missouri, United States of America, 4 Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America Abstract Mutualistic symbioses between eukaryotes and beneficial microorganisms of their microbiome play an essential role in nutrition, protection against disease, and development of the host. However, the impact of beneficial symbionts on the evolution of host genomes remains poorly characterized. Here we used the independent loss of the most widespread plant– microbe symbiosis, arbuscular mycorrhization (AM), as a model to address this question. Using a large phenotypic approach and phylogenetic analyses, we present evidence that loss of AM symbiosis correlates with the loss of many symbiotic genes in the Arabidopsis lineage (Brassicales). Then, by analyzing the genome and/or transcriptomes of nine other phylogenetically divergent non-host plants, we show that this correlation occurred in a convergent manner in four additional plant lineages, demonstrating the existence of an evolutionary pattern specific to symbiotic genes. Finally, we use a global comparative phylogenomic approach to track this evolutionary pattern among land plants. Based on this approach, we identify a set of 174 highly conserved genes and demonstrate enrichment in symbiosis-related genes.
    [Show full text]
  • Reconstructing the Deep-Branching Relationships of the Papilionoid Legumes
    SAJB-00941; No of Pages 18 South African Journal of Botany xxx (2013) xxx–xxx Contents lists available at SciVerse ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Reconstructing the deep-branching relationships of the papilionoid legumes D. Cardoso a,⁎, R.T. Pennington b, L.P. de Queiroz a, J.S. Boatwright c, B.-E. Van Wyk d, M.F. Wojciechowski e, M. Lavin f a Herbário da Universidade Estadual de Feira de Santana (HUEFS), Av. Transnordestina, s/n, Novo Horizonte, 44036-900 Feira de Santana, Bahia, Brazil b Royal Botanic Garden Edinburgh, 20A Inverleith Row, EH5 3LR Edinburgh, UK c Department of Biodiversity and Conservation Biology, University of the Western Cape, Modderdam Road, \ Bellville, South Africa d Department of Botany and Plant Biotechnology, University of Johannesburg, P. O. Box 524, 2006 Auckland Park, Johannesburg, South Africa e School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA f Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA article info abstract Available online xxxx Resolving the phylogenetic relationships of the deep nodes of papilionoid legumes (Papilionoideae) is essential to understanding the evolutionary history and diversification of this economically and ecologically important legume Edited by J Van Staden subfamily. The early-branching papilionoids include mostly Neotropical trees traditionally circumscribed in the tribes Sophoreae and Swartzieae. They are more highly diverse in floral morphology than other groups of Keywords: Papilionoideae. For many years, phylogenetic analyses of the Papilionoideae could not clearly resolve the relation- Leguminosae ships of the early-branching lineages due to limited sampling.
    [Show full text]
  • Harmful Garden Plants in Western Australia
    Research Library Bulletins 4000 - Research Publications 4-2005 Harmful garden plants in Western Australia Department of Agriculture and Food, Western Australia Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/bulletins Part of the Botany Commons, and the Pharmacology, Toxicology and Environmental Health Commons Recommended Citation Department of Agriculture and Food, Western Australia. (2005), Harmful garden plants in Western Australia. Department of Primary Industries and Regional Development, Western Australia, Perth. Bulletin 4641. This bulletin is brought to you for free and open access by the Research Publications at Research Library. It has been accepted for inclusion in Bulletins 4000 - by an authorized administrator of Research Library. For more information, please contact [email protected]. Bulletin No. 4641 ISSN 1448-0352 April 2005 Harmful garden plants inWestern Australia JJ1631-DeptOfAg-20pp-FA.indd1631-DeptOfAg-20pp-FA.indd I 222/04/20052/04/2005 112:04:552:04:55 PPMM Disclaimer 1. The information, representations and statements contained in this publication (“Information”) are provided for general information purposes only. 2. The State of Western Australia, the Minister for Agriculture, the Chief Executive Officer of Agriculture and their respective officers, employees and agents: (a) do not make any representation or warranty as to the accuracy, reliability, completeness or currency of the Information; and (b) shall not be liable, in negligence or otherwise, to any person for any loss, liability, damage, personal injury or death arising out of any act or failure to act by any person in using or relying on the Information. 3. Any person who uses the Information does so at his or her own risk.
    [Show full text]
  • Laburnum Watereri 'Vossii'
    http://vdberk.demo-account.nl/trees/laburnum-watereri-vossii/ Fabaceae Laburnum Laburnum watereri 'Vossii' Height 5 - 7 m Crown vase-shaped, half-open crown, capricious growing Bark and branches trunk smooth and brownish-green, young twigs green Leaf triple, leaf segments ovoid to oval, dark green, 10 - 16 cm Flowers remarkably rich in bunches up to 50 cm long, golden yellow, May/June, fragrant flowers Fruits pods containing few black seeds Spines/thorns none Toxicity toxic components Soil type substantial, open and nutritious soil Paving tolerates no paving Winter hardiness 5b (-26,0 to -23,4 °C) Wind resistance moderate to good, roots sometimes badly anchored Wind / frost / salt resistant to frost (WH 1 - 6), resistant to de-icing salt Fauna tree valuable for bees (honey plant), valuable for butterflies Application parks, cemeteries, industrial areas, large gardens, small gardens, patio gardens Type/shape multi-stem tree, specimen tree Origin C. de Vos, Hazerswoude, Netherlands, 1875 Laburnum x watereri came from a cross between L. alpinum and L. anagyroides. The cultivar 'Vossii' of this cross has turned into the best known Laburnum. From a trunk height of approx. 1.5 m the main trunk often divides into a number of sturdy lateral branches. These grow in a spreading fashion producing a broad, vase-shaped crown. Crown width up to approx. 4 m. Young twigs are remarkably green. Branches and trunk turn brownish- green. The leaves are triple and each leaf segment is 2.5 - 7 cm long. Of all types and cultivars it produces the richest flowers, hanging in bunches sometimes up to 50 cm in length.
    [Show full text]
  • Violaceae – Violkovité
    Fabaceae – bobovité F. krytosemenné (angiosperms) oddělení: Angiospermae (Magnoliophyta) dvouděložné (Dicots) pravé dvouděložné (Eudicots) rosidy (Rosids, Eudicots I) pravé rosidy (Eurosids) fabidy (Eurosids I) Řád: Fabales – bobotvaré Fabaceae – bobovité - Byliny i dřeviny (keře i stromy) Robilnia pseudoacacia - Symbióza s hlízkovými bakteriemi rodu Rhizobium Trifolium pratense Rhizobium Cytisus nigricans Fabaceae – bobovité - Listy střídavé, složené Genista tinctoria Securigera varia (zpeřené nebo dlanité), vzácně jednoduché - Palisty přítomny - Vzácně fylodia Trifolium pratense palist Trifolium ochroleucon Lathyrus vernus Fabaceae – bobovité - Květenství hrozen nebo strboul Laburnum anagyroides Trifolium ochroleucon květenství - hrozen květenství - strboul Fabaceae – bobovité - Květy oboupohlavné, Anthylis vulneraria zygomorfní (aktinomorfní pouze u cizokrajných), cyklické, pentamerické - Květní obaly rozlišené (kalich vytrvalý kalich srostlý, koruna volná) Lathyrus sylvestris pavéza Vicia faba křídla http://upload.wikimedia.org člunek Fabaceae – bobovité - Tyčinky zpravidla srostlé (9+1) - Gyneceum apokarpní, svrchní Lotus corniculatus Lathyrus vernus nitky 9 tyčinek srůstající v rourku čnělka dvoubratré tyčinky semeník vzniklý z 1 plodolistu Fabaceae – bobovité - Plod lusk, struk nebo nažka Trifolium fragiferum Lathyrus hirsutus Vicia tetrasperma nažka ukrytá ve lusk vytrvalém kalichu Fabaceae – bobovité Naši zástupci Dorycnium germanicum Lotus corniculatus Astragalus onobrychis Hedysarum hedysaroides Lathyrus vernus Lamiaceae –
    [Show full text]
  • Traverse Mountain Approved Plant List
    08.03.2010 Traverse Mountain Approved Plant List Evergreen Trees Type Scientific Name Common Name Sun/Shade Water Req. Zone Color Evergreen Trees Abies concolor White Fir Full Sun/Part Shade Medium 3 Silver Blue-Green Evergreen Trees Abies lasiocarpa 'Arizonica' Corkbark Fir Full Sun Low 4 Blue-Green Evergreen Trees Chamaecyparis nootkatensis Alaskan Cedar Full Sun Low 4 Blue-Green Evergreen Trees Cedrus Alantica Glauca Blue Atlas Cedar Full Sun Moderate 3 Silver Blue-Green Evergreen Trees Cedrus Deodora Prostratra 'Emeral Prostrate Deodora Cedar Full Sun Moderate 3 Green- Silvery Blue Evergreen Trees Juniperus osteosperma Utah Juniper Full Sun Low 4-7 Green Evergreen Trees Juniperus scopulorum Rocky Mountain Juniper Full Sun Low 2 Green Evergreen Trees Juniperus squamata 'Blue Alps' Flaky Juniper Full Sun Medium 4 Medium Blue Evergreen Trees Juniperus virginiana 'Cupressifolia' Hillspire Juniper Full Sun Low 5 Green Evergreen Trees Juniperus virginiana 'Skyrocket' Skyrocket Juniper Full Sun Low 5 Silver-gray Evergreen Trees Picea Abies Norway Spruce Full Sun-Light Shade Low 3 Dark Green Evergreen Trees Picea englemannii Englemann Spruce Full Sun Low 2 Green Evergreen Trees Picea Omorika Serbian Spruce Full Sun Low 2 Green Evergreen Trees Picea Pungens Colorado Spruce Full Sun Low 2 Green Evergreen Trees Picea Pungens Glauca Colorado Blue Spruce Full Sun Low 2 Blue Green Evergreen Trees Picea glauca densata Black Hills Spruce Full Sun Medium 3 Green Evergreen Trees Picea pungens glauca 'Baby Blue Eyes' Baby Blue Eyes Spruce Full Sun Medium
    [Show full text]