Turtles and Tortoises

Total Page:16

File Type:pdf, Size:1020Kb

Turtles and Tortoises Lizards (continued) MRR-247 12” Chuckwalla MRR-248 8” Vietnamese Golden Gecko MRR-249 4” Mediterranean Gecko Eye Size: 6mm Eye Size: 5mm Eye Size: 2mm MRR-250 5” Prairie Skink MRR-251 19” Egyptian Uromastyx MRR-252 5 1/2” Ornate Tree Lizard - Utah Eye Size: 1mm Eye Size: 6mm Eye Size: 2mm MRR-253 11” Tiger Whiptail MRR-254 9” Clark Spiney Lizard MRR-270 4” Ornate Tree Lizard - Arizona Eye Size: 3mm Eye Size: 3mm Eye Size: 2mm Turtles MRR-18 7” Alligator Snapping Turtle MRR-19 11” Shell Mata Mata MRR-20 4” Shell Spotted Eye Size: 5mm Eye Size: 4mm Eye Size: 4mm MRR-21 4” Shell Eastern Box MRR-22 4” Shell Bog Turtle MRR-23 7” Shell Wood Eye Size: 5mm Eye Size: 4mm Eye Size: 5mm MRR-24 5” Shell Diamondback Terrapin MRR-57 5 ½” Shell Painted Turtle MRR-58 11 ½” Shell Desert Tortoise Eye Size: 4mm Eye Size: 4mm Eye Size: 6mm MRR-59 5” Shell Snapping Turtle MRR-61 2” Loggerhead Sea Turtle MRR-73 4 ½” Shell Mud Eye Size: 4mm Eye Size: 3mm Eye Size: 4mm MRR-74 4” Shell Musk MRR-80 13” Shell African Leopard MRR-81 5” Star Tortoise Eye Size: 4mm Eye Size: 7mm Eye Size: 4mm MRR-84 13” Kemp Ridley MRR-85 15” Shell Spiney Softshell MRR-88 5” Shell Wood Turtle Eye Size: 18mm Eye Size: 4mm Eye Size: 3mm MRR-91 6” Female Diamondback Terrapin MRR-97 7” Fly River Turtle MRR-98 19” Green Sea Turtle Eye Size: 4mm Eye Size: 4mm Eye Size: 18mm MRR-100 12” Yellow-bellied Slider MRR-126 3” Eastern Box Turtle MRR-134 3 1/2” Shell Loggerhead Eye Size: 6mm Eye Size: 3mm Eye Size: 3mm Turtles (continued) MRR-136 5” Red-eared Slider MRR-148 10” Gopher Tortoise MRR-190 Common Snapper Egg-Plain Eye Size: 4mm Eye Size: 7mm Eye Size: N/A MRR-191 Common Snapper Egg-Hatching MRR-192 3 1/2” Overall Length MRR-193 15” Snapping Turtle-Common Eye Size: 2mm Snapper-Hatchling Eye Size: 2mm Eye Size: 10mm MRR-194 9” Snapping Turtle-Common MRR-195 12” Green Sea Turtle MRR-196 6” Pancake Tortoise Eye Size: 5mm Eye Size: 12mm Eye Size: 4mm MRR-208 6” Three Toed Box Turtle MRR-209 5” Shell Ornate Box Turtle MRR-226 12 1/2” Shell Florida Cooter Eye Size: 5mm Eye Size: 5mm Eye Size: 7mm MRR-227 14” Shell Alligator Snapper MRR-230 8’ Shell Blandings Turtle MRR-261 1/4” Baby Diamondback Eye Size: 10mm Eye Size: 5mm Terripan Eye Size: 1mm MRR-262 1 1/4” Baby River Cooter MRR-263 Loggerhead Hatching From Egg MRR-264 Loggerhead Egg Eye Size: 1mm Eye Size: 3mm Eye Size: N/A MRR-265 1 1/4” Painted Turtle Hatching MRR-266 3/4” Baby Painted Turtle MRR-267 2 1/2” Baby Leatherback Eye Size: 2mm Eye Size: 2mm Eye Size:3mm MRR-268 1 3/4” Green Sea Turtle MRR-269 2 3/4” Bog Turtle Hatchling Eye Size: 3mm Eye Size: 3mm Salamanders MRR-12 5” Spotted Salamander on Rock MRR-13 4” Mud Salamander on Rock MRR-14 19” Hellbender Eye Size: 2mm Eye Size: 2mm Eye Size: 4mm MRR-54 10” Tiger Salamander MRR-56 Marbled Salamander on Oak Leaf MRR-115 5” Seal Salamander Eye Size: 3mm Eye Size: 2mm Eye Size: 2mm MRR-118 7” Slimy Salamander MRR-122 4” Marbled Salamander MRR-144 3 1/2” Red Salamander Eye Size: 2mm Eye Size: 2mm Eye Size: 2mm.
Recommended publications
  • Ecology of the River Cooter, Pseudemys Concinna, in a Southern Illinois Floodplain Lake
    He!peto!ogica! Nalllral Historv, 5(2), 1997, pages 135-145. 135 ©1997 by the International Herpetological Symposium. Inc. ECOLOGY OF THE RIVER COOTER, PSEUDEMYS CONCINNA, IN A SOUTHERN ILLINOIS FLOODPLAIN LAKE Michael J. Dreslikl Department of Zoology, Eastern Illinois University, Charleston, Illinois 61920, USA Abstract. In Illinois, the river cooter, Pseudemys concinna. is a poorly studied endangered species. During 1994-1996. I quantified growth, population size and structure. and diet of a population from a floodplain lake in Gallatin County, Illinois. For males and females. growth slowed between 8-15 and 13-24 years, respectively. Comparisons between male and female curves revealed that growth parameters and proportional growth toward the asymptote were not significantly different, while asymptotes differed significantly. Differences of scute ring- and Sexton-aged individuals from von Bertalanffy model estimates were not significant through age five for males and six for females. I estimated that 153, !57, and 235 individuals were found in the lake at densities of 5.1, 5.2, and 7.8 turtles/ha in 1994. 1995, and 1996, respectively. Associated biomass estimates were 3.84, 3.94, and 5.90 kg/ha, respectively. The overall sex ratio was female-biased, whereas the adult sex ratio was male-biased; both were not significantly different from equality. Key Words: Population ecology: Growth: Diet: Population structure; Tcstudines; Emydidae: Pseudemys concinna. Ecological studies can elucidate specific life its state-endangered status in Illinois (Herkert history traits which can be utilized in conservation 1992), and because of the scarcity of information and management planning. Many chelonian ecology concerning its natural history and ecology.
    [Show full text]
  • Year of the Turtle News No
    Year of the Turtle News No. 1 January 2011 Basking in the Wonder of Turtles www.YearoftheTurtle.org Welcome to 2011, the Wood Turtle, J.D. Kleopfer Bog Turtle, J.D. Willson Year of the Turtle! Turtle conservation groups in partnership with PARC have designated 2011 as the Year of the Turtle. The Chinese calendar declares 2011 as the Year of the Rabbit, and we are all familiar with the story of the “Tortoise and the Hare”. Today, there Raising Awareness for Turtle State of the Turtle Conservation is in fact a race in progress—a race to extinction, and turtles, unfortunately, Trouble for Turtles Our Natural Heritage of Turtles are emerging in the lead, ahead The fossil record shows us that While turtles (which include of birds, mammals, and even turtles, as we know them today, have tortoises) occur in fresh water, salt amphibians. The majority of turtle been on our planet since the Triassic water, and on land, their shells make threats are human-caused, which also Period, over 220 million years ago. them some of the most distinctive means that we can work together to Although they have persisted through animals on Earth. Turtles are so address turtle conservation issues many tumultuous periods of Earth’s unique that some scientists argue that and to help ensure the continued history, from glaciations to continental they should be in their own Class of survival of these important animals. shifts, they are now at the top of the vertebrates, Chelonia, separate from Throughout the year we will be raising list of species disappearing from the reptiles (such as lizards and snakes) awareness of the issues surrounding planet: 47.6% of turtle species are and other four-legged creatures.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • In AR, FL, GA, IA, KY, LA, MO, OH, OK, SC, TN, and TX): Species in Red = Depleted to the Point They May Warrant Federal Endangered Species Act Listing
    Southern and Midwestern Turtle Species Affected by Commercial Harvest (in AR, FL, GA, IA, KY, LA, MO, OH, OK, SC, TN, and TX): species in red = depleted to the point they may warrant federal Endangered Species Act listing Common snapping turtle (Chelydra serpentina) – AR, GA, IA, KY, MO, OH, OK, SC, TX Florida common snapping turtle (Chelydra serpentina osceola) - FL Southern painted turtle (Chrysemys dorsalis) – AR Western painted turtle (Chrysemys picta) – IA, MO, OH, OK Spotted turtle (Clemmys gutatta) - FL, GA, OH Florida chicken turtle (Deirochelys reticularia chrysea) – FL Western chicken turtle (Deirochelys reticularia miaria) – AR, FL, GA, KY, MO, OK, TN, TX Barbour’s map turtle (Graptemys barbouri) - FL, GA Cagle’s map turtle (Graptemys caglei) - TX Escambia map turtle (Graptemys ernsti) – FL Common map turtle (Graptemys geographica) – AR, GA, OH, OK Ouachita map turtle (Graptemys ouachitensis) – AR, GA, OH, OK, TX Sabine map turtle (Graptemys ouachitensis sabinensis) – TX False map turtle (Graptemys pseudogeographica) – MO, OK, TX Mississippi map turtle (Graptemys pseuogeographica kohnii) – AR, TX Alabama map turtle (Graptemys pulchra) – GA Texas map turtle (Graptemys versa) - TX Striped mud turtle (Kinosternon baurii) – FL, GA, SC Yellow mud turtle (Kinosternon flavescens) – OK, TX Common mud turtle (Kinosternon subrubrum) – AR, FL, GA, OK, TX Alligator snapping turtle (Macrochelys temminckii) – AR, FL, GA, LA, MO, TX Diamond-back terrapin (Malaclemys terrapin) – FL, GA, LA, SC, TX River cooter (Pseudemys concinna) – AR, FL,
    [Show full text]
  • Caring for Your River Cooter Turtles
    caring for your River Cooter Turtles Scientific Name: Pseudemys concinna Native to: Central and Eastern United States Maximum Length: Females up to 16 inches, males up to 10 inches Life Span: 40 + years characteristics: River Cooters are large turtles with relatively flat shells. River Cooters have a brown to black carapace, with reddish tinges, and the plastron is yellow, orange or reddish with prominent patterns of orange and black. Their head stripes are yellow, but may even seem orange. These gorgeous turtles are good for a beginner. River Cooters are typically found in large rivers with clear water, gravel river beds, and aquatic plants. care tips: Enclosure: Juvenile River Cooters can be kept in a 20 – 30 gallon long tank, adults require much larger accommodations. A minimum 300 gallon tank is needed to house an adult River Cooter. Substrate: Reptile sand or even fine pea gravel. Habitat: Cooters do well in aquariums when the water is kept clean and filtered. Make sure to provide plenty of space for your River Cooter including a basking area where they can get completely out of the water and swimming area with water deep enough to swim. Temperature and Lighting: Provide UVB lighting, a basking area of 85 degrees and water temperature of 75 degrees are recommended for these turtles. The basking platform must allow River Cooters enough room to stretch out and fully dry their shell and plastron to avoid shell rot. Food and Water: River Cooters are omnivores. Their diet should consist of a mix of pelleted turtle food, crickets, mealworms, and leafy greens such as romaine, collard, and turnip greens..
    [Show full text]
  • What's Inside
    What’s Inside 1 Greeting 2 Project Updates 5 In Action 7 Field Techniques 14 Season Highlights 15 The PARS Experience 20 Meet the Volunteers 21 Species Spotlight 27 Wanted Species Photo: Brandon Hunsberger A Partnership Project of The Mid-Atlantic Center for Herpetology and Conservation and The Pennsylvania Fish & Boat Commission 1 Greetings SpringSpring 20162016 Once again, it was a genuine pleasure to see so many of our volunteers in the same room as we held our second Annual PARS Meeting on the cusp of this year’s vernal season. Good vibes permeated the atmosphere with ample opportunity for members to socialize. The guest speakers gave excellent presentations, the venue was beautiful and in an interesting location, and several new County Coordinators were recruited. One aspect of the meeting was the formal beginning of a partnership between PARS and Clarion University, with numerous participants trained to collect field samples for an important study designed to determine the presence distribution of amphibian diseases in Pennsylvania. This project is one of several ways PARS is partnering with other conservation efforts and a good example of how the PARS project reaches beyond simply documenting the presence of species. Other current examples include PARS volunteer participation in PA Fish & Boat projects focused on rare herp species, and in numerous bio-blitz events this year. Undoubtedly more partnerships will develop as our project continues. The annual meeting was a great kick-off to what is shaping up to be another great year for PARS. Volunteer recruitment also continues at an impressive rate, and we have already received some incredible records this spring, including several new county records and a new block for the Eastern Smooth Earthsnake.
    [Show full text]
  • Sea Turtles : the Importance of Sea Turtles to Marine Ecosystems
    PHOTO TIM CALVER WHY HEALTHY OCEANS NEED SEA TURTLES : THE IMPORTANCE OF SEA TURTLES TO MARINE ECOSYSTEMS Wilson, E.G., Miller, K.L., Allison, D. and Magliocca, M. oceana.org/seaturtles S E L T R U T Acknowledgements The authors would like to thank Karen Bjorndal for her review of this report. We would also like to thank The Streisand Foundation for their support of Oceana’s work to save sea turtles. PHOTO MICHAEL STUBBLEFIELD OCEANA | Protecting the World’s Oceans TABLE OF CONTENTS WHY HEALTHY OCEANS NEED SEA TURTLES 3 Executive Summary 4 U.S. Sea Turtles 5 Importance of Sea Turtles to Healthy Oceans 6 Maintaining Habitat Importance of Green Sea Turtles on Seagrass Beds Impact of Hawksbill Sea Turtles on Coral Reefs Benefit of Sea Turtles to Beach Dunes 9 Maintaining a Balanced Food Web Sea Turtles and Jellyfish Sea Turtles Provide Food for Fish 11 Nutrient Cycling Loggerheads Benefit Ocean Floor Ecosystems Sea Turtles Improve Nesting Beaches 12 Providing Habitat 14 The Risk of Ecological Extinction 15 Conclusions oceana.org/seaturtles 1 S E L T R U T PHOTO TIM CALVER 2 OCEANA | Protecting the World’s Oceans EXECUTIVE SUMMARY Sea turtles have played vital roles in maintaining the health of the world’s oceans for more than 100 million years. These roles range from maintaining productive coral reef ecosystems to transporting essential nutrients from the oceans to beaches and coastal dunes. Major changes have occurred in the oceans because sea turtles have been virtually eliminated from many areas of the globe. Commercial fishing, loss of nesting habitat and climate change are among the human-caused threats pushing sea turtles towards extinction.
    [Show full text]
  • N040p017.Pdf
    Vol. 40: 17–29, 2019 ENDANGERED SPECIES RESEARCH Published September 19§ https://doi.org/10.3354/esr00978 Endang Species Res OPENPEN ACCESSCCESS Behavior, growth, and survivorship of laboratory-reared juvenile gopher tortoises following hard release Thomas A. Radzio1,*, Nicholas J. Blase1, James A. Cox2, David K. Delaney3, Michael P. O’Connor1 1Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, Pennsylvania 19104, USA 2Tall Timbers Research Station and Land Conservancy, Tallahassee, Florida 32312, USA 3United States Army Construction Engineering Research Laboratory, Champaign, Illinois 61822, USA ABSTRACT: Captive rearing represents a vital component of many conservation and research programs. However, captive animals can exhibit unnatural behaviors and experience high preda- tion following release, which can limit reintroduction success and the inferential value of studies that use released animals. Soft-release measures (e.g. penning) can acclimate individuals and limit interactions with predators but can also require considerable resources. We reared hatchling gopher tortoises Gopherus polyphemus in the laboratory for physiology experiments and subse- quently hard-released them as yearlings to assess the efficacy of this low-cost release method and to explore possible captivity effects on tortoise behavior, growth, and survivorship. Hard-released yearlings exhibited limited dispersal; most constructed burrows soon after release, and, like wild juveniles, exhibited a preference for burrowing under deadwood. Video observations at burrows indicated natural behavior, including overnighting in burrows, extensive basking directly in front of burrows, and limited time away from these important refugia. Basking tortoises responded to simulated predator approach by rapidly entering burrows, with flight initiation distances and hid- ing times equivalent or similar to those of wild individuals.
    [Show full text]
  • The Effect of Invertebrate Infestation and Its Correlation with Loggerhead Sea Turtle (Caretta Caretta) Nest Success in Laganas Bay, Zakynthos, Greece
    The effect of invertebrate infestation and its correlation with loggerhead sea turtle (Caretta caretta) nest success in Laganas Bay, Zakynthos, Greece Adam J. Andrews1, Andrew C. Smith1, ALan F. Rees2 & Dimitris Margaritoulis2 1Anglia Ruskin University, Cambridge, CB1 1PT, UK (E-mail: [email protected], [email protected]); 2ARCHELON, Solomou 57, GR104-32 Athens, Greece (E-mail:[email protected], [email protected]) Loggerhead sea turtle (Caretta caretta) nests are vulnerable to relative threat of this source of predation of sea turtle eggs (Bolton predators and scavengers, including invertebrates (Paris et al. 2002). et al. 2008). Dipteran larvae (Phoridae and Sarcophagidae) have been found to At the rookery level, infestation may be high, with reports of infest loggerhead and green sea turtle (Chelonia mydas) nests both 90% (Lopes 1982) and 84.6% (Hall & Parmenter 2006) of nests in northern Cyprus (Broderick & Hancock 1997; McGowan et al. being infested. However, at nest level, infestation is typically much 2001a), and Australia (Hall & Parmenter 2006), green sea turtle lower, e.g., 10.6% (Broderick & Hancock 1997), 0.8% (McGowan nests in Costa Rica and Mexico (Fowler 1979; Lopes 1982), as well et al. 2001a) and 3.6% (Katılmış et al. 2006) of eggs within a nest as hawksbill (Eretmochelys imbricata) (Bjorndal et al. 1985) and being infested. In terms of nest success, Gautreau (2007) noted that leatherback sea turtle (Dermochelys coriacea) nests in Costa Rica it was not significantly lower for infested leatherback nests in Costa (Gautreau 2007). In the Mediterranean, coleopteran larvae were Rica, as did Bolton et al. (2008) for spiny softshell turtles (Apalone found to infest loggerhead nests in Turkey (Baran & Türkozan 1996) spinifera) in Canada.
    [Show full text]
  • Investigating the Thermal Biology and Behaviour of Captive Radiated Tortoises
    MedDocs Publishers ISSN: 2639-4391 Journal of Veterinary Medicine and Animal Sciences Open Access | Research Article Investigating the Thermal Biology and Behaviour of Captive Radiated Tortoises Avraham Terespolsky; James Edward Brereton* University Centre Sparsholt, England *Corresponding Author(s): James Edward Brereton Abstract University Centre Sparsholt, Westley Lane, Sparsholt, Thermoregulation is integral to the maintenance of rep- Winchester, Hampshire, SO21 2NF, England. tile biological function and health, and therefore is a key Email: [email protected] area of investigation for herpetologists. To investigate the relationship between core body temperature and behav- iour, a behavioural study was conducted in which iButton data loggers were placed on a group of captive radiated tor- Received: Nov 09, 2020 toises (Astrochelys radiata) located at Sparsholt College’s Accepted: Jan 04, 2021 Animal Management Centre, in Hampshire, UK. Correla- tions between core body temperature and specific behav- Published Online: Jan 08, 2021 iours were covered. Body mass had a significant effect on Journal: Journal of Veterinary Medicine and Animal Sciences average core body temperature (P= <0.0001) with higher Publisher: MedDocs Publishers LLC average temperatures recorded in larger individuals over Online edition: http://meddocsonline.org/ longer periods. There was a significant positive relationship between mean body temperature and basking behaviour, Copyright: © Brereton JE (2021). This Article is (P= 0.001, r= 0.485), and a negative correlation between distributed under the terms of Creative Commons mean body temperature and feeding (P= 0.006, r= -0.155). Attribution 4.0 International License Temperature did not significantly affect the prevalence of any other behaviours, though a trend toward greater ex- pression of social behaviour, and fewer bouts of aggressive ramming, was observed when tortoises achieved higher body temperatures.
    [Show full text]
  • Nest Guarding in the Gopher Tortoise (Gopherus Polyphemus)
    148 CHELONIAN CONSERVATION AND BIOLOGY, Volume 11, Number 1 – 2012 Chelonian Conservation and Biology, 2012, 11(1): 148–151 g 2012 Chelonian Research Foundation Nest Guarding in the Gopher Tortoise (Gopherus polyphemus) 1 1 ANDREW M. GROSSE ,KURT A. BUHLMANN , 1 1 BESS B. HARRIS ,BRETT A. DEGREGORIO , 2 1 BRETT M. MOULE ,ROBERT V. H ORAN III , AND 1 TRACEY D. TUBERVILLE 1Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina 29802 USA [[email protected]; [email protected]; [email protected]; [email protected]; [email protected]; [email protected]]; 2South Carolina Department of Natural Resources, Columbia, South Carolina 29201 USA [[email protected]] ABSTRACT. – Nest guarding is rarely observed among reptiles. Specifically, turtles and tortoises are generally perceived as providing no nest protection once the eggs are laid. Here, we describe observations of nest guarding by female gopher tortoises (Gopherus poly- phemus). Nest guarding among reptiles is considered uncom- mon (Reynolds et al. 2002). Although many crocodilians are known to protect their nests and offspring from potential predators, turtles and tortoises are generally NOTES AND FIELD REPORTS 149 perceived as providing no parental care once the egg around the southeastern United States, have been laying process is complete. However, some tortoise translocated and penned in 1-ha enclosures for at least species have been observed defending their nests from one year to increase site fidelity by limiting dispersal after potential predators, namely the desert tortoise (Gopherus pen removal (Tuberville et al. 2005). One such pen was agassizii; Vaughan and Humphrey 1984) and Asian removed in July 2009, and all tortoises (n 5 14) were brown tortoise (Manouria emys; McKeown 1990; Eggen- equipped with Holohil (Ontario, Canada) AI-2F transmit- schwiler 2003; Bonin et al.
    [Show full text]
  • Impact of Increased Green Turtle Nesting on Loggerhead Fitness
    University of Central Florida STARS Honors Undergraduate Theses UCF Theses and Dissertations 2018 Impact of Increased Green Turtle Nesting on Loggerhead Fitness Amanda R. Carmichael University of Central Florida Part of the Behavior and Ethology Commons, and the Marine Biology Commons Find similar works at: https://stars.library.ucf.edu/honorstheses University of Central Florida Libraries http://library.ucf.edu This Open Access is brought to you for free and open access by the UCF Theses and Dissertations at STARS. It has been accepted for inclusion in Honors Undergraduate Theses by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Carmichael, Amanda R., "Impact of Increased Green Turtle Nesting on Loggerhead Fitness" (2018). Honors Undergraduate Theses. 284. https://stars.library.ucf.edu/honorstheses/284 Impact of Increased Green Turtle Nesting on Loggerhead Fitness by Amanda R. Carmichael A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Biology in the College of Sciences and in the Burnett Honors College at the University of Central Florida Orlando, Florida Spring Term, 2018 Thesis Chair: Kate Mansfield, Ph.D. ABSTRACT Marine turtles exhibit strong fidelity to their nesting beaches, making the conservation of nesting beaches important for ensuring successful sea turtle populations. Conservation of these nesting beaches involves understanding how species interact with the environment and each other, and understanding how environmental change and population growth can affect the suitability of the nesting habitat. The Archie Carr National Wildlife Refuge (ACNWR) is unusual in its high density of sea turtle nesting by two species: green (Chelonia mydas) and loggerhead (Caretta caretta) turtles.
    [Show full text]