Chapter 2 Indian Perspective Energy Economics and Electricity

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 2 Indian Perspective Energy Economics and Electricity Chapter 2 Indian Perspective: Energy, Economics and Electricity “The strongest of the species that survives, nor the most intelligent, but the one most responsive to change” -Charles Darwin Chapter 2 Indian Perspective: Energy, Economics and Electricity The chapter brings out the present and future analysis on Indian population, Gross Domestic Product (GDP), and per capita energy / electricity requirements. This chapter also discusses about the Indian nuclear energy programme and important milestones achieved. Details of present and proposed /planned nuclear plants including fuel waste management are also covered. National energy policy, important rules, acts, international treaties and conventions are also listed in this chapter. These form guidelines for the establishment of nuclear power plant. Environmental aspects related to nuclear energy are also coved in details. National perspective for energy, economics and electricity has been drawn mainly by available data analysis. 28 Chapter 2 Indian Perspective: Energy, Economics and Electricity 2.1 General Overview India is vast country with diverse topographies and culture. It’s social fabric and heritage has been synthesized over decades that amalgamated to be born as a nation in 1947. With 3,214 Km from North to South and 2,993 Km from West to East, it encompasses 32, 87,263 Sq Km of area in South East Asia. The country is bounded by Himalayas in the north east, Arabian Sea in the west and Bay of Bengal towards the east. India is divided in seven general physiographic zones, namely, Northern Mountains, Indo Gangetic Plains, Central Highlands, Peninsular Plateau, East Coast, West Coast Bordering Seas and Islands. Major portion of the land mainly comprises of plateau. South-west monsoon during June to September, and north east monsoon during October to December are the main seasons for rainfall. Due to diverse physiographic regions and vast area, the annual pattern of rainfall is quiet uneven and uncertain. The tropic of cancer runs through the middle part of India. There are three seasons: Winter (October-January), Summer (February-May) and Monsoon (June- September). Post independence, India became Republic State on 26 January 1950. When India was born on political map of the world, it was a country with un- exploited potential natural resources. With a marginal population of 318.7 millions at the time of independence India transformed through an era with the blend of conflicts, research, development and inventions. Post independence India realized the need to develop the society, it was then imperative that basic needs like energy, education, water, roads would require an immediate attention. For this, the efforts began to formulate the strategy through, planning commissions, five year development plans etc. As per the details of the population shown in Table 2.1, 17.64 % growth is recorded between year 2001 and 2011. Per capita energy requirement of increased population invariably adds to total energy requirements (excluding industry requirements).Also, India constitutes significantly towards the worldwide energy demand commiserating to 17.5% of world population (Figure 2.1). 29 Chapter 2 Indian Perspective: Energy, Economics and Electricity 2.2 Population index and GDP Table 2.1 India’s population as per year 2011 census Rank State or union territory Population % of % Rural Pop Urban Pop. Sex (2011 Census) Population Growth ratio 2001–11 01 Uttar Pradesh 199,581,477 16.49% 20.1% 155,111,022 44,470,455 908 02 Maharashtra 112,372,972 9.28% 16.0% 61,545,441 50,827,531 946 03 Bihar 103,804,637 8.58% 25.1% 92,075,028 11,729,609 916 04 West Bengal 91,347,736 7.55% 13.9% 62,213,676 29,134,060 947 05 Andhra Pradesh 84,665,533 7.00% 11.1% 56,311,788 28,353,745 992 06 Madhya Pradesh 72,597,565 6.00% 20.3% 52,537,899 20,059,666 930 07 Tamil Nadu 72,138,958 5.96% 15.6% 37,189,229 34,949,729 995 08 Rajasthan 68,621,012 5.67% 21.4% 51,540,236 17,080,776 926 09 Karnataka 61,130,704 5.05% 15.7% 37,552,529 23,578,175 968 10 Gujarat 60,383,628 5% 19.2% 34,670,817 25,712,811 918 11 Orissa 41,947,358 3.47% 14.0% 34,951,234 6,996,124 978 12 Kerala 33,387,677 2.76% 4.9% 17,445,506 15,932,171 1084 13 Jharkhand 32,966,238 2.72% 22.3% 25,036,946 7,929,292 947 14 Assam 31,169,272 2.58% 16.9% 26,780,526 4,388,756 954 15 Punjab 27,704,236 2.30% 13.7% 17,316,800 10,387,436 893 16 Haryana 25,753,081 2.09% 19.9% 16,531,493 8,821,588 877 17 Chhattisgarh 25,540,196 2.11% 22.6% 19,603,658 5,936,538 991 18 Jammu and Kashmir 12,548,926 1.04% 23.7% 9,134,820 3,414,106 883 19 Uttarakhand 10,116,752 0.84% 19.2% 7,025,583 3,091,169 963 20 Himachal Pradesh 6,856,509 0.57% 12.8% 6,167,805 688,704 974 21 Tripura 3,671,032 0.30% 14.7% 2,710,051 960,981 961 22 Meghalaya 2,964,007 0.24% 27.8% 2,368,971 595,036 986 23 Manipur 2,721,756 0.22% 18.7% 1,899,624 822,132 987 24 Nagaland 1,980,602 0.16% -0.5% 1,406,861 573,741 931 25 Goa 1,457,723 0.12% 8.2% 551,414 906,309 968 26 Arunachal Pradesh 1,382,611 0.11% 25.9% 1,069,165 313,446 920 27 Mizoram 1,091,014 0.09% 22.8% 529,037 561,997 975 28 Sikkim 607,688 0.05% 12.4% 455,962 151,726 889 NCT Delhi 16,753,235 1.38% 21% 419,319 16,333,916 866 UT1 Po ndicherry 1,244,464 0.10% 27.7% 394,341 850,123 1,038 UT2 Chandigarh 1,054,686 0.09% 17.1% 29,004 1,025,682 818 UT3 Andaman & Nicobar 379,944 0.03% 6.7% 244,411 135,533 878 UT4 Dadra and Nagar 342,853 0.03% 55.5% 183,024 159,829 775 Haveli UT5 Daman and Diu 242,911 0.02% 53.5% 60,331 182,580 618 UT6 Lakshadweep 64,429 0.01% 6.2% 14,121 50,308 946 Total India 1,210,193,422 100% 17.64% 833,087,662 377,105,760 940 Source: http://censusindia.gov.in/PopulationFinder/Population_Finder.aspx C h in a 2 1.9 2 . 7 2 . 4 2 . 3 1 9 .4 O th e r In d ia 2 0 .4 U S B ras il P akis tan Ban glaDe sh 1 7 .5 4 1 .2 N ige ria Russian Fe d Jap a n Figure 2.1 Percentage of population (World) Source: http://www.prb.org/Publications/Datasheets/2011/world-population-data-sheet 30 Chapter 2 Indian Perspective: Energy, Economics and Electricity Three states, Bihar, Uttar Pradesh and Maharashtra have maximum population with considerable growth rate. The location and energy requirements of this section of population have important bearing on overall national energy demand. For example, to fulfill the electricity requirements of these areas, the power generating plants should be located in the vicinity. The issue of proximity of power plants is justified in Indian scenario for two reasons; firstly, too vast area for supply of electricity from single power station and secondly whopping 40% transmission losses. The location optimization of power generation industry (excluding renewable energy harnessing) in India requires a detailed perspective planning. Also, various factors like geographic, strategic, demographic, social impacts should also be considered. Decadal growth of Indian population is shown in Figure 2.2. Figure 2.2 Percentage decadal growth in India (2001 Census) Source: www.mapsofindia.com Figure 2.3 Per capita electricity consumption v/s per capita GDP (world) Sources: IMF, International Financial Statistics; International Energy Agency; World Bank,World Development Indicators; and IMF staff calculations . 31 Chapter 2 Indian Perspective: Energy, Economics and Electricity Figure 2.4 per capita energy consumption vs per capita GDP (OCED and Non OCED countries) Sources: IMF, International Financial Statistics; International Energy Agency; World Bank,World Development Indicators; and IMF staff calculations . Per capita electricity and /or energy consumption is directly proportional to per capita GDP. As shown in Figure 2.3 and 2.4, US has highest proportion followed by Organisation for Economic Cooperation and Development (OECD) countries. China and India are at the bottom of the list. As per the projections, if GDP of India has to overtake China by year 2050, it requires a sound and uninterrupted policy implementation towards achievement of desired GDP and per capita energy consumption. The comparison of GDP with respect to electricity is given in Table 2.2 Table 2.2 Gross Domestic Product (GDP) vs Electricity Consumption (India) Per Capita Growth Rate 2005 2006 2007 2008 2009 2010 2011 1990-2006 GDP (in Rupees) 402 428 443 506 610 655 774 12.57 Electricity 475 516 563 589 597 - - - (in KWh/y) Reference: http://www.world-nuclear.org/info/in 2.3 Supply of Electricity in India The history of power development in India began with the installation of a 130 kW hydro station at Darjeeling in 1899. This was followed by installation of a 100 kW steam generating unit in 1899 at Calcutta. Today the production and utilisation of energy have become one of the most important preconditions for socio- economic growth and welfare 32 Chapter 2 Indian Perspective: Energy, Economics and Electricity of the society.
Recommended publications
  • Rule India Andpakistansanctionsother 15 Cfrparts742and744 Bureau Ofexportadministration Commerce Department of Part II 64321 64322 Federal Register / Vol
    Thursday November 19, 1998 Part II Department of Commerce Bureau of Export Administration 15 CFR Parts 742 and 744 India and Pakistan Sanctions and Other Measures; Interim Rule federal register 64321 64322 Federal Register / Vol. 63, No. 223 / Thursday, November 19, 1998 / Rules and Regulations DEPARTMENT OF COMMERCE Regulatory Policy Division, Bureau of missile technology reasons have been Export Administration, Department of made subject to this sanction policy Bureau of Export Administration Commerce, P.O. Box 273, Washington, because of their significance for nuclear DC 20044. Express mail address: explosive purposes and for delivery of 15 CFR Parts 742 and 744 Sharron Cook, Regulatory Policy nuclear devices. [Docket No. 98±1019261±8261±01] Division, Bureau of Export To supplement the sanctions of Administration, Department of RIN 0694±AB73 § 742.16, this rule adds certain Indian Commerce, 14th and Pennsylvania and Pakistani government, parastatal, India and Pakistan Sanctions and Avenue, NW, Room 2705, Washington, and private entities determined to be Other Measures DC 20230. involved in nuclear or missile activities FOR FURTHER INFORMATION CONTACT: to the Entity List in Supplement No. 4 AGENCY: Bureau of Export Eileen M. Albanese, Director, Office of to part 744. License requirements for Administration, Commerce. Exporter Services, Bureau of Export these entities are set forth in the newly ACTION: Interim rule. Administration, Telephone: (202) 482± added § 744.11. Exports and reexports of SUMMARY: In accordance with section 0436.
    [Show full text]
  • Nuclear Security: a Fortnightly Newsletter from Caps
    NUCLEAR SECURITY: A FORTNIGHTLY NEWSLETTER FROM CAPS NUCLEAR SECURITY: A FORTNIGHTLY NEWSLETTER FROM CAPS Vol 11, No. 15, 01 JUNE 2017 OPINION – Manpreet Sethi Nuclear India at 19: Keep Focus Right on CONTENTS Deterrence OPINION NUCLEAR STRATEGY India completes 19 years as a nuclear armed state BALLISTIC MISSILE DEFENCE this month. This period is no more than an eye blink in the life of a nation, but India has made NUCLEAR ENERGY significant progress towards operationalisation NUCLEAR COOPERATION of its deterrence capability (it was on May 11 URANIUM PRODUCTION and 13, 1998 that India conducted nuclear tests NUCLEAR NON-PROLIFERATION at the Pokhran range in Rajasthan. India has since NUCLEAR DISARMAMENT declared a moratorium on testing). NUCLEAR SAFETY It has worked according to a plan in the form of a NUCLEAR WASTE MANAGEMENT nuclear doctrine that it gave to itself in August 1999, and which was formalised, with largely the same attributes as mentioned in the draft, by the But it seeks to deter the adversary from making government of the day in January 2003. this move by holding up for him the prospect of massive retaliation which The doctrine defined a India has eschewed the first use of would negate any benefit narrow role for India’s nuclear weapons, leaving it to the of his action. This is a nuclear weapons — only adversary to take the difficult decision purely deterrence doctrine, for deterrence against of making the first nuclear move. But and that really is the only nuclear weapons of the it seeks to deter the adversary from purpose of nuclear adversary.
    [Show full text]
  • India's Pathway to Sumit Ganguly Pokhran H
    India's Pathway to Sumit Ganguly Pokhran H The Prospects and Sources of New Delhi's Nuclear Weapons Program On May 11 and 13, 1998, India set off five nuclear devices at its test site in Pokhran in the northwestern Indian state of Rajasthan-its first such tests in twenty-four years. The initial test had been carried out at the same site on May 18, 1974. Not unexpectedly, as in 1974 much of the world community, including the majority of the great powers, unequivocally condemned the Indian tests.' The coalition national government, dominated by the jingoistic Bharatiya Janata Party (BJP), knew that significant international pressures would be brought to bear upon India once it breached this important threshold. Yet the BJP chose to disregard the likely adverse consequences and departed from India's post- 1974 "nuclear option" policy, which had reserved for India the right to weaponize its nuclear capabilities but had not overtly declared its weapons capability. National governments of varying political persuasions had adhered to this strategy for more than two decades. A number of seemingly compelling possibilities have been offered to explain India's dramatic departure from its policy of nuclear restraint. None, however, constitutes a complete explanation. Yet each offers useful insights into the forces that led to the Indian nuclear tests. One explanation holds that the chauvinistic BJP-led government conducted the tests to demonstrate both its own virility to the Indian populace and India's military prowess to the rest of the world. A second argument suggests that the BJP conducted the tests to cement its links with contentious parliamentary allies.
    [Show full text]
  • Self-Reported Morbidities Among Tribal Workers Residing Adjacent the Turamdih Uranium Mine and Mill in Jharkhand, India
    Self-Reported Morbidities among Tribal workers Residing adjacent the Turamdih Uranium Mine and Mill in Jharkhand, India. Ashwani Kumar1, K. C. Das2 1Monitoring and Evaluation Specialist, FP Track20 Avenir Health, India Email: [email protected] Contact No: 91+9969789292 ORCID ID: 0000-0002-5515-2840 2Professor, Department of Migration and Urban Studies, International Institute for Population Sciences, Mumbai, India – 400088 Email: [email protected] Abstract The study was conducted among 411 main workers of tribal communities, aged 15-59 years, residing surrounding hazardous uranium tailing pond of Turamdih Uranium mine in Jharkhand, India. The survey was conducted between January and June 2016. The objective of the study was to explore the differential morbidities among mineworkers and non- mineworkers and the association of the morbidity with various socio-demographic factors. Chi-square test, and binary logistic regression were used for data analysis. The results indicate that the prevalence of digestive problems, skin diseases, cancerous diseases, and urinary dysfunction was significantly higher among the Uranium mine-workers than the non-mineworkers. The main workers living within a range of 2 km from the tailing pond being more likely to suffer digestive problems (OR=1.57; 95% CI, 0.94–2.60) and respiratory illnesses (OR=1.89; 95% CI, 1.06–3.37) than those living further away. The findings have important program and policy implications related to safety measures, nuclear regulation acts, and resettlement of tribal victims. Keywords: uranium mining, radiation, mineworkers, morbidities, tailing pond, distance Introduction In view of alternate sources of efficient energy generation, Uranium has gained enormous global importance driven by its medical, military and civil applications, albeit with potential safety and environmental legacies.(1) In India, Uranium Corporation of India (UCIL), founded in 1967 under the Department of Atomic Energy, is responsible for the mining and milling of uranium ore.
    [Show full text]
  • SVI Foresight Strategic Vision Institute Islamabad
    SVI Foresight Volume 3, Number 1 January 2017 Compiled & Edited by: S. Sadia Kazmi Strategic Vision Institute Islamabad SVI Foresight Volume 3, Number 1 January 2017 Compiled & Edited by: S. Sadia Kazmi Strategic Vision Institute (SVI) Disclaimer: The views and opinions expressed in this edition are those of the authors and do not necessarily reflect the official policy or position of Strategic Vision Institute. Strategic Vision Institute (SVI) Strategic Vision Institute (SVI) is an autonomous, multidisciplinary and non-partisan institution, established in January 2013. It is a non-governmental and non-commercial organization, administered by a Board of Governors (General Body) supervised under a Chairperson and administered by a Management Committee headed by a President/Executive Director. SVI aims to project strategic foresight on issues of national and international import through dispassionate, impartial and independent research, analyses and studies. The current spotlight of the SVI is on the national security, regional and international peace and stability, strategic studies, nuclear non- proliferation, arms control, and strategic stability, nuclear safety and security and energy studies. SVI Foresight SVI Foresight is a monthly electronic journal. It has a multi-disciplinary perspective highlighting on the contemporary strategic and security studies. The Journal is envisioned to be a collection of policy-oriented articles written by its Research Associates, Visiting Faculty and professional experts. The objective is to provide
    [Show full text]
  • Uranium Mining and Heap Leaching in India and Related Safety Measures — a Case Study of Jajawal Mines
    XA0103131 URANIUM MINING AND HEAP LEACHING IN INDIA AND RELATED SAFETY MEASURES — A CASE STUDY OF JAJAWAL MINES V.P. SAXENA Atomic Minerals Division, Department of Atomic Energy, Uniara Garden, Jaipur S.C. VERMA Atomic Minerals Division, Department of Atomic Energy Civil Lines, Nagpur India Abstract Exploration and exploitation of uranium involves drilling, mining, milling and extraction processes including heap leaching in some cases. At the exploration stage, the country's laws related to statutory environmental clearance covering forest and sanctuaries or Coastal Regulatory Zones (CRZ) are: equally applicable for atomic minerals. At the developmental mining or commercial exploitation stage in addition to the environmental impact assessment, the provisions of Atomic Energy (working of Mines, Minerals and handling of Prescribed Substances) Rules 1984 are also to be followed which covers radiation monitoring, pollution control and other safety measures which are enforced by licensing authorities and the Atomic Energy Regulatory Board (AERB) of India. In India, Jaduguda, Bhatin, Narwapahar in Singhbhum Thrust Belt (STB), Asthota and Khiya in Siwaliks, Domiasiat in Cretaceous sandstones, Bodal and Jajawal in Precambrian crystallines, are some of the centres, where mining has been carried out up to various underground levels. Substantial amount of dust and radon gas are generated during mining and milling operations. Though uranium mining is considered as hazardous for contamination by radionuclides, it is observed that many non-uranium mines have registered up to 100 mWL radon concentration, e.g. copper mines in STB area show up to 900 mewl in a few cases. Compared to this the Uranium mines in India have not shown any increase over the limits prescribed by AERB.
    [Show full text]
  • Parastatal and Private Entities Determined to Be Involved In
    INDIAN PARASTATAL AND PRIVATE ENTITIES INVOLVED IN NUCLEAR OR MISSILE ACTIVITIES AURO Engineering, Pondicherry Ammonia Plants Collocated with Heavy Water Plants: Baroda, Hazira, Talcher,Thal-Vaishet in Maharashtra, Tuticorin Baroda Ammonia Plant, Gujarat Fertilizers Bharat Dynamics Ltd., Hyderabad, Bhanur Bharat Earth Movers, Ltd. (BEML), Bangalore Bharat Electronics, Ltd. (BEL), Bangalore, Hyderabad, Ghaziabad Bharat Heavy Electrical Ltd. (BHEL), Trichy (Tiruchirapalli), Hyderabad, Hardwar, New Delhi, Ranipet Electronics Corporation of India Ltd. (ECIL), Hyderabad Ferrodie Private, Ltd. (FPL), Thane Fertilizer Corporation of India, Talcher Ammonia Plant, Talcher Godrej & Boyce Manufacturing, Ltd., Precision Equipment Division (PED) and Tool Room Division, Mumbai (formerly Bombay) Hazira Ammonia Plant, Kirshak Bharati Cooperative, Ltd., Hazira Hindustan Aeronautics Ltd.(HAL), Aerospace and Engine Divisions, Bangalore India Rare Earths Ltd. (IREL), Mumbai (formerly Bombay) Minerals Recovery Plant, Chavara Mineral Separation Plant, Chhatrapur in Orissa Orissa Sands Complex (OSCOM), Chhatrapur in the Gunjan District of Orissa Rare Earth Development Laboratory (a.k.a. Thorium Plant),Trombay (suburban city of Mumbai (formerly Bombay)) Rare Materials Plant, Mysore Thorium Plant, Chhatrapur in Orissa Zirconium Oxide Plant, Manavalakuruchi Kirloskar Brothers, Ltd. (KB), Pune Larsen & Toubro, Hazira Works, Hazira Machine Tool Aids & Reconditioning (MTAR), Hyderabad Mishra Dhatu Nigam Ltd. (MIDHANI), Hyderabad Nuclear Power Corporation of India
    [Show full text]
  • Uranium for Nuclear Power: an Introduction 1
    Stichting Laka: Documentatie- en onderzoekscentrum kernenergie De Laka-bibliotheek The Laka-library Dit is een pdf van één van de publicaties in This is a PDF from one of the publications de bibliotheek van Stichting Laka, het in from the library of the Laka Foundation; the Amsterdam gevestigde documentatie- en Amsterdam-based documentation and onderzoekscentrum kernenergie. research centre on nuclear energy. Laka heeft een bibliotheek met ongeveer The Laka library consists of about 8,000 8000 boeken (waarvan een gedeelte dus ook books (of which a part is available as PDF), als pdf), duizenden kranten- en tijdschriften- thousands of newspaper clippings, hundreds artikelen, honderden tijdschriftentitels, of magazines, posters, video's and other posters, video’s en ander beeldmateriaal. material. Laka digitaliseert (oude) tijdschriften en Laka digitizes books and magazines from the boeken uit de internationale antikernenergie- international movement against nuclear beweging. power. De catalogus van de Laka-bibliotheek staat The catalogue of the Laka-library can be op onze site. De collectie bevat een grote found at our website. The collection also verzameling gedigitaliseerde tijdschriften uit contains a large number of digitized de Nederlandse antikernenergie-beweging en magazines from the Dutch anti-nuclear power een verzameling video's. movement and a video-section. Laka speelt met oa. haar informatie- Laka plays with, amongst others things, its voorziening een belangrijke rol in de information services, an important role in the Nederlandse anti-kernenergiebeweging. Dutch anti-nuclear movement. Appreciate our work? Feel free to make a small donation. Thank you. www.laka.org | [email protected] | Ketelhuisplein 43, 1054 RD Amsterdam | 020-6168294 Woodhead Publishing is an imprint of Elsevier The Officers’ Mess Business Centre, Royston Road, Duxford, CB22 4QH, UK 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, USA The Boulevard, Langford Lane, Kidlington, OX5 1GB, UK Copyright © 2016 Elsevier Ltd.
    [Show full text]
  • Marine Nuclear Power 1939 – 2018 Part 5 China-India-Japan & Others
    Marine Nuclear Power: 1939 - 2018 Part 5: China, India, Japan & other nations Peter Lobner July 2018 1 Foreword In 2015, I compiled the first edition of this resource document to support a presentation I made in August 2015 to The Lyncean Group of San Diego (www.lynceans.org) commemorating the 60th anniversary of the world’s first “underway on nuclear power” by USS Nautilus on 17 January 1955. That presentation to the Lyncean Group, “60 years of Marine Nuclear Power: 1955 – 2015,” was my attempt to tell a complex story, starting from the early origins of the US Navy’s interest in marine nuclear propulsion in 1939, resetting the clock on 17 January 1955 with USS Nautilus’ historic first voyage, and then tracing the development and exploitation of marine nuclear power over the next 60 years in a remarkable variety of military and civilian vessels created by eight nations. In July 2018, I finished a complete update of the resource document and changed the title to, “Marine Nuclear Power: 1939 – 2018.” What you have here is Part 5: China, India, Japan and Other Nations. The other parts are: Part 1: Introduction Part 2A: United States - Submarines Part 2B: United States - Surface Ships Part 3A: Russia - Submarines Part 3B: Russia - Surface Ships & Non-propulsion Marine Nuclear Applications Part 4: Europe & Canada Part 6: Arctic Operations 2 Foreword This resource document was compiled from unclassified, open sources in the public domain. I acknowledge the great amount of work done by others who have published material in print or posted information on the internet pertaining to international marine nuclear propulsion programs, naval and civilian nuclear powered vessels, naval weapons systems, and other marine nuclear applications.
    [Show full text]
  • Federal Register/Vol. 63, No. 223/Thursday, November 19, 1998
    64322 Federal Register / Vol. 63, No. 223 / Thursday, November 19, 1998 / Rules and Regulations DEPARTMENT OF COMMERCE Regulatory Policy Division, Bureau of missile technology reasons have been Export Administration, Department of made subject to this sanction policy Bureau of Export Administration Commerce, P.O. Box 273, Washington, because of their significance for nuclear DC 20044. Express mail address: explosive purposes and for delivery of 15 CFR Parts 742 and 744 Sharron Cook, Regulatory Policy nuclear devices. [Docket No. 98±1019261±8261±01] Division, Bureau of Export To supplement the sanctions of Administration, Department of RIN 0694±AB73 § 742.16, this rule adds certain Indian Commerce, 14th and Pennsylvania and Pakistani government, parastatal, India and Pakistan Sanctions and Avenue, NW, Room 2705, Washington, and private entities determined to be Other Measures DC 20230. involved in nuclear or missile activities FOR FURTHER INFORMATION CONTACT: to the Entity List in Supplement No. 4 AGENCY: Bureau of Export Eileen M. Albanese, Director, Office of to part 744. License requirements for Administration, Commerce. Exporter Services, Bureau of Export these entities are set forth in the newly ACTION: Interim rule. Administration, Telephone: (202) 482± added § 744.11. Exports and reexports of SUMMARY: In accordance with section 0436. all items subject to the EAR to listed 102(b) of the Arms Export Control Act, SUPPLEMENTARY INFORMATION: government, parastatal, and private entities require a license. A license is President Clinton reported to the Background Congress on May 13th with regard to also required if you know that the India and May 30th with regard to In accordance with section 102(b) of ultimate consignee or end-user is a Pakistan his determinations that those the Arms Export Control Act, President listed government, parastatal, or private non-nuclear weapon states had each Clinton reported to the Congress on May Indian or Pakistani entity, and the item detonated a nuclear explosive device.
    [Show full text]
  • India's Rise After Pokhran II
    INDIA’S RISE AFTER POKHRAN II Chinese Analyses and Assessments Jing-dong Yuan The South Asian nuclear tests of May 1998 represented a major setback for international nuclear nonproliferation efforts. New Delhi and Islamabad have so far resisted international calls for nuclear restraint and have declined to sign unconditionally the Comprehensive Test Ban Treaty (CTBT) and the nuclear nonproliferation treaty (NPT). Both India and Paki- stan are in the process of formulating their respective nuclear doctrines and determining the structure of their nuclear forces; at the same time, the two countries are also moving apace with their ballistic missile programs through a series of test launches. The current standoff along the India-Pakistan line of control (LOC) risks potential escalation to open military conflict. These de- velopments have serious implications for South Asian security. The May 1998 nuclear tests and the changing South Asian security dy- namic significantly affect China’s assessments of its own security environ- ment in the face of an emerging and nuclear India, its South Asia policy in general and the relationship with Pakistan in particular, and its relations with India in the coming years. This article reviews and discusses Chinese re- sponses to the Indian nuclear tests and seeks to address three sets of issues. First, the consequences of India’s nuclear tests for international arms control and nonproliferation, South Asian security, and Sino-Indian relations will be considered. Second, India’s rise as a major power and the challenges this Jing-dong Yuan is Senior Research Associate, Center for Nonprolifer- ation Studies, Monterey Institute of International Studies, Monterey, Calif.
    [Show full text]
  • The Perils of Naval Nuclearization and Brinkmanship in the Indian Ocean
    Naval War College Review Volume 65 Article 8 Number 4 Autumn 2012 Drowning Stability: The eP rils of Naval Nuclearization and Brinkmanship in the Indian Ocean Iskander Rehman Follow this and additional works at: https://digital-commons.usnwc.edu/nwc-review Recommended Citation Rehman, Iskander (2012) "Drowning Stability: The eP rils of Naval Nuclearization and Brinkmanship in the Indian Ocean," Naval War College Review: Vol. 65 : No. 4 , Article 8. Available at: https://digital-commons.usnwc.edu/nwc-review/vol65/iss4/8 This Article is brought to you for free and open access by the Journals at U.S. Naval War College Digital Commons. It has been accepted for inclusion in Naval War College Review by an authorized editor of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Rehman: Drowning Stability: The Perils of Naval Nuclearization and Brinkm DROWNING STABILITY The Perils of Naval Nuclearization and Brinkmanship in the Indian Ocean Iskander Rehman n May 1998, the sun-scorched deserts of the Indian state of Rajasthan shook with Ia succession of nuclear explosions. Barely two weeks later, in a seemingly tit-for- tat response, Pakistan conducted its own series of detonations, in the remote western hills of Baluchistan. Both nations’ previously concealed nuclear capa- bilities had suddenly burst out into the open, giving a new and terrifying form to the enduring rivalry that had convulsed the subcontinent for decades. Caught off guard, the international community reacted with indignation and dismay. Concerns over nuclear escalation in the event of another Indo-Pakistani con- flict refocused Washington’s attention on South Asia and triggered the longest- sustained level of bilateral Indo-American engagement in history.1 This had the unexpected benefit of enabling both democracies finally to find common ground, after many years of acrimony, chronic mistrust, and squandered opportunities.
    [Show full text]