Hindawi Journal of Healthcare Engineering Volume 2018, Article ID 6920420, 19 pages https://doi.org/10.1155/2018/6920420 Review Article A Review on the Nonlinear Dynamical System Analysis of Electrocardiogram Signal 1 2 3 4 1 Suraj K. Nayak , Arindam Bit , Anilesh Dey , Biswajit Mohapatra, and Kunal Pal 1Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha 769008, India 2Department of Biomedical Engineering, National Institute of Technology, Raipur, Chhattisgarh 492010, India 3Department of Electronics and Communication Engineering, Kaziranga University, Jorhat, Assam 785006, India 4Vesaj Patel Hospital, Rourkela, Odisha 769004, India Correspondence should be addressed to Kunal Pal;
[email protected] Received 17 October 2017; Revised 13 January 2018; Accepted 27 February 2018; Published 2 May 2018 Academic Editor: Maria Lindén Copyright © 2018 Suraj K. Nayak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Electrocardiogram (ECG) signal analysis has received special attention of the researchers in the recent past because of its ability to divulge crucial information about the electrophysiology of the heart and the autonomic nervous system activity in a noninvasive manner. Analysis of the ECG signals has been explored using both linear and nonlinear methods. However, the nonlinear methods of ECG signal analysis are gaining popularity because of their robustness in feature extraction and classification. The current study presents a review of the nonlinear signal analysis methods, namely, reconstructed phase space analysis, Lyapunov exponents, correlation dimension, detrended fluctuation analysis (DFA), recurrence plot, Poincaré plot, approximate entropy, and sample entropy along with their recent applications in the ECG signal analysis.