GPR116, an Adhesion G-Protein–Coupled Receptor, Promotes Breast Cancer Metastasis Via the Gaq-P63rhogef-Rho Gtpase Pathway

Total Page:16

File Type:pdf, Size:1020Kb

GPR116, an Adhesion G-Protein–Coupled Receptor, Promotes Breast Cancer Metastasis Via the Gaq-P63rhogef-Rho Gtpase Pathway Published OnlineFirst September 5, 2013; DOI: 10.1158/0008-5472.CAN-13-1049 Cancer Molecular and Cellular Pathobiology Research GPR116, an Adhesion G-Protein–Coupled Receptor, Promotes Breast Cancer Metastasis via the Gaq-p63RhoGEF-Rho GTPase Pathway Xiaolong Tang1, Rongrong Jin1, Guojun Qu1, Xiu Wang1, Zhenxi Li1, Zengjin Yuan1, Chen Zhao1, Stefan Siwko2, Tieliu Shi1, Ping Wang1, Jianru Xiao1, Mingyao Liu1,2, and Jian Luo1 Abstract Adhesion G-protein–coupled receptors (GPCR), which contain adhesion domains in their extracellular region, have been found to play important roles in cell adhesion, motility, embryonic development, and immune response. Because most adhesion molecules with adhesion domains have vital roles in cancer metastasis, we speculated that adhesion GPCRs are potentially involved in cancer metastasis. In this study, we identified GPR116 as a novel regulator of breast cancer metastasis through expression and functional screening of the adhesion GPCR family. We found that knockdown of GPR116 in highly metastatic (MDA-MB- 231) breast cancer cells suppressed cell migration and invasion. Conversely, ectopic GPR116 expression in poorly metastatic (MCF-7 and Hs578T) cells promoted cell invasion. We further showed that knockdown of GPR116 inhibited breast cancer cell metastasis in two mammary tumor metastasis mouse models. Moreover, GPR116 modulated the formation of lamellipodia and actin stress fibers in cells in a RhoA- and Rac1-dependent manner. At a molecular level, GPR116 regulated cell motility and morphology through the Gaq-p63RhoGEF-RhoA/Rac1 pathway. The biologic significance of GPR116 in breast cancer is substantiated in human patient samples, where GPR116 expression is significantly correlated with breast tumor progres- sion, recurrence, and poor prognosis. These findings show that GPR116 is crucial for the metastasis of breast cancer and support GPR116 as a potential prognostic marker and drug target against metastatic human breast cancer. Cancer Res; 73(20); 1–13. Ó2013 AACR. Introduction leading to metastasis (2). The Rho family GTPases, including Breast cancer is the leading cause of cancer-related mor- RhoA, Rac1, and Cdc42, are essential for cytoskeletal dynam- tality in females worldwide (1). Death caused by breast ics, especially cancer cell migration (3, 4). Among them, fi cancer primarily results from cancer cells metastasizing to RhoAregulatestheactincytoskeletoninstress ber forma- fi distal organs such as lung, bone, liver, or brain. Cell motility tion (5). Rac1 modulates a meshwork of actin laments at is regulated by the cytoskeleton, and disruptions in cyto- the cell periphery to produce lamellipodia and membrane fl skeletal regulation are a means by which cancer cells devel- ruf es (5). Activated Rho GTPases induce multiple down- op inappropriate migratory and invasive characteristics, stream signaling pathways during cancer cell migration, such as ROCK1/2 signaling (4). All Rho GTPases cycle between an inactive guanosine diphosphate (GDP)-bound Authors' Affiliations: 1East China Normal University and Shanghai and an active guanosine triphosphate (GTP)-bound state. Changzheng Hospital Joint Research Center for Orthopedic Oncology, The process is accelerated by a large family of Rho guanine Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, nucleotide exchange factors (Rho GEF; ref. 6). One such Rho Shanghai, China; and 2Center for Cancer and Stem Cell Biology, Alkek GEF is p63RhoGEF (also called GEFT), which is known as an Institute of Biosciences and Technology, Texas A&M University Health – Science Center, Houston, Texas effector of the heterotrimeric guanine nucleotide binding protein GaqandtherebylinksGaq-coupled receptors Note: Supplementary data for this article are available at Cancer Research a Online (http://cancerres.aacrjournals.org/). (GPCR) to the activation of the Rho GTPases (6). G q- p63RhoGEF-Rho GTPase has been reported as a protein X. Tang and R. Jin contributed equally to this work. complex (6), which is involved in multiple physiologic func- J. Xiao and M. Liu are co-senior authors of this article. tions such as vascular smooth muscle contractility (7) and cell movement (8). Corresponding Author: Jian Luo, The Institute of Biomedical Sciences, – School of Life Sciences, East China Normal University, 500 Dongchuan G-protein coupled receptors (GPCR or GPR) are integral Road, Shanghai 200241, China. Phone: 86-212420-6947; Fax: 86-215434- membrane proteins participating in the transmission of 4922; E-mail: [email protected] signals from the extracellular environment to the cytoplasm. doi: 10.1158/0008-5472.CAN-13-1049 A variety of external stimuli, including neurotransmitters, Ó2013 American Association for Cancer Research. hormones, phospholipids, growth factors, and proteases, can www.aacrjournals.org OF1 Downloaded from cancerres.aacrjournals.org on September 30, 2021. © 2013 American Association for Cancer Research. Published OnlineFirst September 5, 2013; DOI: 10.1158/0008-5472.CAN-13-1049 Tang et al. activate GPCRs (9, 10). Activated GPCRs typically transduce were purchased from Santa Cruz Biotechnology; and mono- signals to effector proteins through their heterotrimeric G clonal anti-Rac1 (23A8) antibody was obtained from Millipore, proteins. These signaling pathways represent important and GPR116 (Ab111169) antibody used to conduct immuno- specific targets for a variety of physiologic functions and histochemistry on human breast cancer tissue was purchased therapeutic approaches, ranging from the control of blood from Abcam. pressure, allergic response, kidney function, and hormonal disorders to neurologic diseases (11). As a result, approxi- GPR116 mouse monoclonal antibody production mately 50% of marketed pharmaceuticals target human The fragment of 27 amino acid residues from the N terminal GPCRs or their signaling pathways (12). However, there are region of human GPR116, with the sequence of "WNYES- few GPCRs that are cancer therapeutic targets. The adhesion TIHPLSLHEHEPAGEEALRQKR," was synthesized and used as GPCRs are the second largest GPCR family with 33 members, immunogen. BALB/c mice were immunized by intraperitoneal most of which are orphan receptors (13). This family is very injection with 100 mg of immunogen (dissolved in PBS) in a 50% special because of the so-called adhesion domains in their emulsion with complete Freunds adjuvant on day 1 and long N-terminal extracellular regions. Adhesion domains, boosted by intraperitoneal injection on days 21 and 36 with which are thought to have adhesive properties, mainly exist immunogen in incomplete Freunds adjuvant. After 60 days, in some adhesion molecules such as integrins, cadherins, freshly harvested spleen cells obtained from the immunized and selectins. However, limited studies have shown that mice were prepared for cell fusion to generate hybridoma lines, adhesion GPCRs are involved in the regulation of cell which were subsequently screened by ELISA and immuno- adhesion, motility, embryonic development, and immune blotting. The specificity of the antibody for immunoblotting response (12–14). GPR116, named Ig-hepta in the rat, is a was examined using a competition strategy with the antigen member of the adhesion GPCR family. Previous studies peptide. showed that rat Gpr116 forms a dimer and is cleaved at multiple sites in the N-terminal region yielding several Immunofluorescence staining fragments with unknown functions (15–17). Recent evidence After plating on coverslips and culturing in 24-well plates, from an adipocyte-specific GPR116-knockout mouse model cells were fixed in 4% paraformaldehyde for 15 minutes, shows that GPR116 plays a critical role in adipocyte biology permeabilized with 0.1% Triton/PBS for 5 minutes at room and systemic energy homeostasis (18). Further research on temperature, and blocked with 1% bovine serum albumin for lung development indicates that GPR116 regulates pulmo- 30 minutes. Then the cells were incubated with primary nary surfactant pool size and is important for lung surfac- antibody for 1 hour, followed by incubation with the appro- tant homeostasis (19, 20). These discoveries implicate the priate secondary antibody or Alexa Fluor 594 phalloidin for 30 physiologic and pathologic functions of GPR116. minutes at room temperature. Finally, cells were photographed As the adhesion molecules (integrins, cadherins, and selec- with a confocal laser scanning microscope (Leica TCS SP5). tins, etc.) have an important function in cancer metastasis (12), The concentrations of antibodies or dyes were: anti-paxillin it is reasonable to speculate that adhesion GPCRs also have (BD, 610051), 1 mg/mL; Alexa Fluor 488–conjugated anti-rabbit vital functions in cancer progression and metastasis. In this IgG (Invitrogen), 1 mg/mL; and Alexa Fluor 594 phalloidin study, we screened the adhesion GPCR family and identified (Invitrogen), 1:500 dilutions. GPR116 as a novel regulator of breast cancer cell migration and invasion in vitro and metastasis in vivo by modulation of the GTPase activity assay Gaq-p63RhoGEF-Rho GTPases signaling pathway. Moreover, RhoA activity in cell lysates was measured using the fusion GPR116 is strongly correlated with breast cancer progression, protein of glutathione S-transferase (GST) and the RhoA- metastasis and poor prognosis by analysis of human breast binding domain of Rhotekin (RBD). For Rac1 and Cdc42 cancer clinical samples. Our results suggest that GPR116 is a activities,
Recommended publications
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Synaptamide Activates the Adhesion GPCR GPR110 (ADGRF1) Through GAIN Domain Binding
    ARTICLE https://doi.org/10.1038/s42003-020-0831-6 OPEN Synaptamide activates the adhesion GPCR GPR110 (ADGRF1) through GAIN domain binding Bill X. Huang1, Xin Hu2, Heung-Sun Kwon1, Cheng Fu1, Ji-Won Lee1, Noel Southall2, Juan Marugan2 & ✉ Hee-Yong Kim1 1234567890():,; Adhesion G protein-coupled receptors (aGPCR) are characterized by a large extracellular region containing a conserved GPCR-autoproteolysis-inducing (GAIN) domain. Despite their relevance to several disease conditions, we do not understand the molecular mechanism by which aGPCRs are physiologically activated. GPR110 (ADGRF1) was recently deorphanized as the functional receptor of N-docosahexaenoylethanolamine (synaptamide), a potent synap- togenic metabolite of docosahexaenoic acid. Thus far, synaptamide is the first and only small- molecule endogenous ligand of an aGPCR. Here, we demonstrate the molecular basis of synaptamide-induced activation of GPR110 in living cells. Using in-cell chemical cross-linking/ mass spectrometry, computational modeling and mutagenesis-assisted functional assays, we discover that synaptamide specifically binds to the interface of GPR110 GAIN subdomains through interactions with residues Q511, N512 and Y513, causing an intracellular conforma- tional change near TM6 that triggers downstream signaling. This ligand-induced GAIN-tar- geted activation mechanism provides a framework for understanding the physiological function of aGPCRs and therapeutic targeting in the GAIN domain. 1 Laboratory of Molecular Signaling, National Institute on Alcohol Abuse
    [Show full text]
  • An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors
    Ecology and Evolutionary Biology 2021; 6(3): 53-77 http://www.sciencepublishinggroup.com/j/eeb doi: 10.11648/j.eeb.20210603.11 ISSN: 2575-3789 (Print); ISSN: 2575-3762 (Online) An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors Miguel Angel Fuertes*, Carlos Alonso Department of Microbiology, Centre for Molecular Biology “Severo Ochoa”, Spanish National Research Council and Autonomous University, Madrid, Spain Email address: *Corresponding author To cite this article: Miguel Angel Fuertes, Carlos Alonso. An Evolutionary Based Strategy for Predicting Rational Mutations in G Protein-Coupled Receptors. Ecology and Evolutionary Biology. Vol. 6, No. 3, 2021, pp. 53-77. doi: 10.11648/j.eeb.20210603.11 Received: April 24, 2021; Accepted: May 11, 2021; Published: July 13, 2021 Abstract: Capturing conserved patterns in genes and proteins is important for inferring phenotype prediction and evolutionary analysis. The study is focused on the conserved patterns of the G protein-coupled receptors, an important superfamily of receptors. Olfactory receptors represent more than 2% of our genome and constitute the largest family of G protein-coupled receptors, a key class of drug targets. As no crystallographic structures are available, mechanistic studies rely on the use of molecular dynamic modelling combined with site-directed mutagenesis data. In this paper, we hypothesized that human-mouse orthologs coding for G protein-coupled receptors maintain, at speciation events, shared compositional structures independent, to some extent, of their percent identity as reveals a method based in the categorization of nucleotide triplets by their gross composition. The data support the consistency of the hypothesis, showing in ortholog G protein-coupled receptors the presence of emergent shared compositional structures preserved at speciation events.
    [Show full text]
  • GPCR Expression Profiles Were Determined Using
    Supplemental Figures and Tables for Tischner et al., 2017 Supplemental Figure 1: GPCR expression profiles were determined using the NanoString nCounter System in 250 ng of pooled cell RNA obtained from freshly isolated CD4 T cells from naïve lymph nodes (CD4ln), spinal cord infiltrating CD4 T cells at peak EAE disease (CD4sc), and primary lung endothelial cells (luEC). Supplemental Figure 2: Array design and quality controls. A, Sorted leukocytes or endothelial cells were subjected to single‐cell expression analysis and re‐evaluated based on the expression of various identity‐defining genes. B, Expression of identity‐defining and quality control genes after deletion of contaminating or reference gene‐negative cells. Expression data are calculated as 2(Limit of detection(LoD) Ct – sample Ct) ; LoD Ct was set to 24. Supplemental Figure 3: Overview over GPCR expression frequencies in different freshly isolated immune cell populations and spinal cord endothelial cells as determined by single cell RT‐PCR. Abbreviations: CD4ln‐Tcon/CD4ln‐Treg, conventional (con) and regulatory (reg) CD4 T cells from lymph nodes (CD4ln) of naïve mice; CD4dr/CD4sc, CD4 T cells from draining lymph nodes (dr) or spinal cord (sc) at peak EAE disease; CD4spn2D/ CD4spn2DTh1/ CD4spn2DTh17, splenic CD4 T cells from 2D2 T cell receptor transgenic mice before (2D) and after in vitro differentiation towards Th1 (2DTh1) or Th17 (2DTh17); MonoSpn, splenic monocytes; CD11b_sc, spinal cord infiltrating CD11b‐ positive cells; sc_microglia, Ccr2neg,Cx3cr1pos microglia from spinal cord at peak disease; sc_macrophages, CCr2pos;Cx3cr1lo/neg macrophages from spinal cord at peak disease; BMDM_M1/BMDM_M2, bone marrow‐derived macrophages differentiated towards M1 or M2; ECscN and ECscEAE, spinal cord endothelial cells from naïve mice (N) and at peak EAE disease (EAE); SMC, smooth muscle cells from various vessel types (included as positive control to ascertain primer functionality).
    [Show full text]
  • Expression Map of 78 Brain-Expressed Mouse Orphan Gpcrs Provides a Translational Resource for Neuropsychiatric Research
    ARTICLE DOI: 10.1038/s42003-018-0106-7 OPEN Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research Aliza T. Ehrlich1,2, Grégoire Maroteaux2,5, Anne Robe1, Lydie Venteo3, Md. Taufiq Nasseef2, 1234567890():,; Leon C. van Kempen4,6, Naguib Mechawar2, Gustavo Turecki2, Emmanuel Darcq2 & Brigitte L. Kieffer 1,2 Orphan G-protein-coupled receptors (oGPCRs) possess untapped potential for drug dis- covery. In the brain, oGPCRs are generally expressed at low abundance and their function is understudied. Expression profiling is an essential step to position oGPCRs in brain function and disease, however public databases provide only partial information. Here, we fine-map expression of 78 brain-oGPCRs in the mouse, using customized probes in both standard and supersensitive in situ hybridization. Images are available at http://ogpcr-neuromap.douglas. qc.ca. This searchable database contains over 8000 coronal brain sections across 1350 slides, providing the first public mapping resource dedicated to oGPCRs. Analysis with public mouse (60 oGPCRs) and human (56 oGPCRs) genome-wide datasets identifies 25 oGPCRs with potential to address emotional and/or cognitive dimensions of psychiatric conditions. We probe their expression in postmortem human brains using nanoString, and included data in the resource. Correlating human with mouse datasets reveals excellent suitability of mouse models for oGPCRs in neuropsychiatric research. 1 IGBMC, Institut Génétique Biologie Moléculaire Cellulaire, Illkirch, France. 2 Douglas Mental Health University Institute and McGill University, Department of Psychiatry, Montreal, Canada. 3 Label Histologie, 51100 Reims, France. 4 Lady Davis Institute for Medical Research, Jewish General Hospital and McGill University, Department of Pathology, Montreal, Canada.
    [Show full text]
  • Supplemental Data 5-21-18
    Supplemental Methods and Data Androgen receptor polyglutamine expansion drives age-dependent quality control defects and muscle dysfunction Samir R. Nath1,2,3, Zhigang Yu1, Theresa A. Gipson4, Gregory B. Marsh5, Eriko Yoshidome1, Diane M. Robins6, Sokol V. Todi5, David E. Housman4, Andrew P. Lieberman1 1 Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 2 Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109 3 Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109 4 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 5 Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201 6 Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109 Supplemental Methods qPCR For Drosophila samples, total RNA was extracted from adult fly heads using TRIzol. Fifteen heads were used per sample. Extracted RNA was treated with TURBO DNAse (Ambion) to eliminate contaminating DNA, and reverse transcription was carried out as indicated above. RNA levels were quantified using StepOnePlus Real-Time PCR System with Fast SYBR Green Master Mix (Applied Biosystems). rp49 was used as the internal control. Each round of qRT-PCR was conducted in technical triplicates. A total of three independent repeats was conducted. Fly histology: For histological preparation (75, 76), wings and proboscises of adult flies were removed and bodies were fixed overnight in 2% glutaraldehyde/2% paraformaldehyde in Tris- buffered saline with 0.1% Triton X-100, rotating at 4˚C. Fixed bodies were subsequently dehydrated by using a series of 30%, 50%, 75%, and 100% ethanol/propylene oxide.
    [Show full text]
  • Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard.
    [Show full text]
  • Murine Perinatal Beta Cell Proliferation and the Differentiation of Human Stem Cell Derived Insulin Expressing Cells Require NEUROD1
    Page 1 of 105 Diabetes Murine perinatal beta cell proliferation and the differentiation of human stem cell derived insulin expressing cells require NEUROD1 Anthony I. Romer,1,2 Ruth A. Singer1,3, Lina Sui2, Dieter Egli,2* and Lori Sussel1,4* 1Department of Genetics and Development, Columbia University, New York, NY 10032, USA 2Department of Pediatrics, Columbia University, New York, NY 10032, USA 3Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY 10032, USA 4Department of Pediatrics, University of Colorado Denver School of Medicine, Denver, CO 80045, USA *Co-Corresponding Authors Dieter Egli 1150 St. Nicholas Avenue New York, NY 10032 [email protected] Lori Sussel 1775 Aurora Ct. Aurora, CO 80045 [email protected] Word Count: Abstract= 149; Body= 4773 Total Paper Figures= 7, Total Supplemental Tables= 4, Total Supplemental Figures= 5 Diabetes Publish Ahead of Print, published online September 13, 2019 Diabetes Page 2 of 105 Abstract Inactivation of the β cell transcription factor NEUROD1 causes diabetes in mice and humans. In this study, we uncovered novel functions of Neurod1 during murine islet cell development and during the differentiation of human embryonic stem cells (HESCs) into insulin-producing cells. In mice, we determined that Neurod1 is required for perinatal proliferation of alpha and beta cells. Surprisingly, apoptosis only makes a minor contribution to beta cell loss when Neurod1 is deleted. Inactivation of NEUROD1 in HESCs severely impaired their differentiation from pancreatic progenitors into insulin expressing (HESC-beta) cells; however survival or proliferation was not affected at the time points analyzed. NEUROD1 was also required in HESC-beta cells for the full activation of an essential beta cell transcription factor network.
    [Show full text]
  • Defining the Gene Repertoire and Spatiotemporal Expression Profiles of Adhesion G Protein-Coupled Receptors in Zebrafish Harty Et Al
    Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish Harty et al. Harty et al. BMC Genomics 2015, 16: http://www.biomedcentral.com/1471-2164/16/1/ Harty et al. BMC Genomics (2015) 16:62 DOI 10.1186/s12864-015-1296-8 RESEARCH ARTICLE Open Access Defining the gene repertoire and spatiotemporal expression profiles of adhesion G protein-coupled receptors in zebrafish Breanne L Harty1, Arunkumar Krishnan2, Nicholas E Sanchez1, Helgi B Schiöth2 and Kelly R Monk1,3* Abstract Background: Adhesion G protein-coupled receptors (aGPCRs) are the second largest of the five GPCR families and are essential for a wide variety of physiological processes. Zebrafish have proven to be a very effective model for studying the biological functions of aGPCRs in both developmental and adult contexts. However, aGPCR repertoires have not been defined in any fish species, nor are aGPCR expression profiles in adult tissues known. Additionally, the expression profiles of the aGPCR family have never been extensively characterized over a developmental time-course in any species. Results: Here, we report that there are at least 59 aGPCRs in zebrafish that represent homologs of 24 of the 33 aGPCRs found in humans; compared to humans, zebrafish lack clear homologs of GPR110, GPR111, GPR114, GPR115, GPR116, EMR1, EMR2, EMR3,andEMR4. We find that several aGPCRs in zebrafish have multiple paralogs, in line with the teleost-specific genome duplication. Phylogenetic analysis suggests that most zebrafish aGPCRs cluster closely with their mammalian homologs, with the exception of three zebrafish-specific expansion events in Groups II, VI, and VIII.
    [Show full text]
  • Comparative Gene Expression Analysis to Identify Common Factors in Multiple Cancers
    COMPARATIVE GENE EXPRESSION ANALYSIS TO IDENTIFY COMMON FACTORS IN MULTIPLE CANCERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Leszek A. Rybaczyk, B.A. ***** The Ohio State University 2008 Dissertation Committee: Professor Kun Huang, Adviser Professor Jeffery Kuret Approved by Professor Randy Nelson Professor Daniel Janies ------------------------------------------- Adviser Integrated Biomedical Science Graduate Program ABSTRACT Most current cancer research is focused on tissue-specific genetic mutations. Familial inheritance (e.g., APC in colon cancer), genetic mutation (e.g., p53), and overexpression of growth receptors (e.g., Her2-neu in breast cancer) can potentially lead to aberrant replication of a cell. Studies of these changes provide tremendous information about tissue-specific effects but are less informative about common changes that occur in multiple tissues. The similarity in the behavior of cancers from different organ systems and species suggests that a pervasive mechanism drives carcinogenesis, regardless of the specific tissue or species. In order to detect this mechanism, I applied three tiers of analysis at different levels: hypothesis testing on individual pathways to identify significant expression changes within each dataset, intersection of results between different datasets to find common themes across experiments, and Pearson correlations between individual genes to identify correlated genes within each dataset. By comparing a variety of cancers from different tissues and species, I was able to separate tissue and species specific effects from cancer specific effects. I found that downregulation of Monoamine Oxidase A is an indicator of this pervasive mechanism and can potentially be used to detect pathways and functions related to the initiation, promotion, and progression of cancer.
    [Show full text]
  • Mutations in G Protein–Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approachess
    Supplemental Material can be found at: /content/suppl/2020/11/26/73.1.89.DC1.html 1521-0081/73/1/89–119$35.00 https://doi.org/10.1124/pharmrev.120.000011 PHARMACOLOGICAL REVIEWS Pharmacol Rev 73:89–119, January 2021 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: PAUL INSEL Mutations in G Protein–Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approachess Torsten Schöneberg and Ines Liebscher Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany Abstract ................................................................................... 90 Significance Statement. .................................................................. 90 I. Introduction . .............................................................................. 90 II. History .................................................................................... 92 III. General Mechanisms of GPCR Pathologies . ................................................ 93 IV. Inactivating Mutations of GPCRs .......................................................... 95 A. Partially Inactivating Mutations—Loss of Basal Activity . ............................... 97 — B. Partially Inactivating Mutations Alteration of Distinct Receptor Functions............. 97 Downloaded from C. The Special Case—Pseudogenization of GPCRs ......................................... 99 V. Activating Mutations in GPCRs—GoF.....................................................
    [Show full text]
  • The Orphan 7TM Protein GPR50 As a Novel Regulator of TGF Signal
    The orphan 7TM protein GPR50 as a novel regulator of TGFβ signal transduction Stéfanie Wojciech To cite this version: Stéfanie Wojciech. The orphan 7TM protein GPR50 as a novel regulator of TGFβ signal transduction. Agricultural sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA11T084. tel- 01164966 HAL Id: tel-01164966 https://tel.archives-ouvertes.fr/tel-01164966 Submitted on 18 Jun 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ PARIS SUD XI ÉCOLE DOCTORALE : 419 BIOSIGNE - Signalisations et réseaux intégratifs en biologie - Laboratoire de « Pharmacologie fonctionnelle et Physiopathologie des Récepteurs Membranaires » Institut Cochin, Paris DISCIPLINE : Biochimie et Biologie moléculaire THÈSE DE DOCTORAT soutenue le 02 décembre 2013 par Stefanie WOJCIECH The orphan 7TM protein GPR50 as a novel regulator of transforming growth factor β signal transduction Directeur de thèse : Dr Ralf JOCKERS, Directeur de Recherche (Institut Cochin, Paris) JURY Pr Mohammed TAOUIS Président Pr Olivier HERMINE Rapporteur Dr Laurent PRÉZEAU Rapporteur Dr Céline PRUNIER Examinateur Dr Philippe DELAGRANGE Examinateur Dr Mark SCOTT Examinateur Résumé La protéine à 7TM GPR50 : un nouveau régulateur de la voie de signalisation TGFβ La protéine GPR50, qui fait partie de la famille des récepteurs de la mélatonine, est classée, avec une centaine d’autres protéines à sept domaines transmembranaires (7TM), dans la catégorie des récepteurs couplés aux protéines G hétérotrimériques (RCPG) orphelins, c’est-à-dire pour lesquels aucun ligand n’a pu être identifié.
    [Show full text]