Toxicity of Pesticides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Restricted Use Product Summary Report
Page 1 of 17 Restricted Use Product Summary Report (January 19, 2016) Percent Active Registration # Name Company # Company Name Active Ingredient(s) Ingredient 4‐152 BONIDE ORCHARD MOUSE BAIT 4 BONIDE PRODUCTS, INC. 2 Zinc phosphide (Zn3P2) 70‐223 RIGO EXOTHERM TERMIL 70 VALUE GARDENS SUPPLY, LLC 20 Chlorothalonil 100‐497 AATREX 4L HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 42.6 Atrazine 100‐585 AATREX NINE‐O HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 88.2 Atrazine 100‐669 CURACRON 8E INSECTICIDE‐MITICIDE 100 SYNGENTA CROP PROTECTION, LLC 73 Profenofos 100‐817 BICEP II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 33; 26.1 Atrazine; S‐Metolachlor 100‐827 BICEP LITE II MAGNUM HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 28.1; 35.8 Atrazine; S‐Metolachlor 100‐886 BICEP MAGNUM 100 SYNGENTA CROP PROTECTION, LLC 33.7; 26.1 Atrazine; S‐Metolachlor 100‐898 AGRI‐MEK 0.15 EC MITICIDE/INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2 Abamectin 100‐903 DENIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 2.15 Emamectin benzoate 100‐904 PROCLAIM INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 5 Emamectin benzoate 100‐998 KARATE 1EC 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1075 FORCE 3G INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 3 Tefluthrin Acetochlor; Carbamothioic acid, dipropyl‐ 100‐1083 DOUBLEPLAY SELECTIVE HERBICIDE 100 SYNGENTA CROP PROTECTION, LLC 16.9; 67.8 , S‐ethyl ester 100‐1086 KARATE EC‐W INSECTICIDE 100 SYNGENTA CROP PROTECTION, LLC 13.1 lambda‐Cyhalothrin 100‐1088 SCIMITAR GC INSECTICIDE 100 SYNGENTA CROP PROTECTION, -
Common and Chemical Names of Herbicides Approved by the WSSA
Weed Science 2010 58:511–518 Common and Chemical Names of Herbicides Approved by the Weed Science Society of America Below is the complete list of all common and chemical of herbicides as approved by the International Organization names of herbicides approved by the Weed Science Society of for Standardization (ISO). A sponsor may submit a proposal America (WSSA) and updated as of September 1, 2010. for a common name directly to the WSSA Terminology Beginning in 1996, it has been published yearly in the last Committee. issue of Weed Science with Directions for Contributors to A herbicide common name is not synonymous with Weed Science. This list is published in lieu of the selections a commercial formulation of the same herbicide, and in printed previously on the back cover of Weed Science. Only many instances, is not synonymous with the active ingredient common and chemical names included in this complete of a commercial formulation as identified on the product list should be used in WSSA publications. In the absence of label. If the herbicide is a salt or simple ester of a parent a WSSA-approved common name, the industry code number compound, the WSSA common name applies to the parent as compiled by the Chemical Abstracts Service (CAS) with compound only. CAS systematic chemical name or the systematic chemical The chemical name used in this list is that preferred by the name alone may be used. The current approved list is also Chemical Abstracts Service (CAS) according to their system of available at our web site (www.wssa.net). -
Special Report 354 April 1972 Agricultural Experiment Station
ORTMAL DO ;10T REMOVE 7.9 m FILE Special Report 354 April 1972 Agricultural Experiment Station Oregon State University, Corvallis I FIELD APPLICATION OF HERBICIDES--AVOIDING DANGER TO FISH Erland T. Juntunen Department of Fisheries and Wildlife Oregon State University Corvallis, Oregon and Logan A. Norris Pacific Northwest Forestry Sciences Laboratory and Range Experiment Station Forest Service, U. S. Department of Agriculture Corvallis, Oregon April, 1972 Trade names are used in this publication solely to provide specific information. No endorsement of products is intended nor is criticism implieLl to products mentioned or omitted. Recommendations are not made concerning safe use of products nor is any guarantee or warranty of results or effects of the products intended or implied. ii Chemical weed and brush control with herbicides is an important land management practice in modern agriculture and forestry. In some cases, herbicides are applied directly to bodies of water for aquatic weed control. More commonly, herbicides are applied to lands adjacent to waterways for general weed and brush control. The responsible applicator will avoid damage to fishery resources by being fully aware of a particular herbicides potential hazard to fish. Herbicide applications should be considered hazardous to fish when there is the probability fish will be exposed to herbicide concen- trations which are harmful. This bulletin offers information that will aid in selecting the particular herbicides and formulations of least hazard to fish considering the toxicity of the herbicide and the poten- tial for its entry into streams, lakes, or ponds. Entry of Herbicides into the Aquatic Environment In aquatic weed control, the effective concentration of herbicide in the water depends on the rate of application, the rate of the spread of the chemical, the size and chemical composition of the body of water, the rate of degradation or adsorption of the chemical on sediments, and the rate of mixing of treated water with untreated water. -
Multi-Residue Method I for Agricultural Chemicals by LC-MS (Agricultural Products)
Multi-residue Method I for Agricultural Chemicals by LC-MS (Agricultural Products) 1. Analytes See Table 2 or 3. 2. Instruments Liquid chromatograph-mass spectrometer (LC-MS) Liquid chromatograph-tandem mass spectrometer (LC-MS/MS) 3. Reagents Use the reagents listed in Section 3 of the General Rules except for the following. 0.5 mol/L Phosphate buffer (pH 7.0): Weigh 52.7 g of dipotassium hydrogenphosphate (K2HPO4) and 30.2 g of potassium dihydrogenphosphate (KH2PO4), dissolve in about 500 mL of water, adjust the pH to 7.0 with 1 mol/L sodium hydroxide or 1 mol/L hydrochloric acid, and add water to make a 1 L solution. Reference standards of agricultural chemicals: Reference standards of known purities for each agricultural chemical. 4. Procedure 1) Extraction i) Grains, beans, nuts and seeds Add 20 mL of water to 10.0 g of sample and let stand for 15 minutes. Add 50 mL of acetonitrile, homogenize, and filter with suction. Add 20 mL of acetonitrile to the residue on the filter paper, homogenize, and filter with suction. Combine the resulting filtrates, and add acetonitrile to make exactly 100 mL. Take a 20 mL aliquot of the extract, add 10 g of sodium chloride and 20 mL of 0.5 mol/L phosphate buffer (pH 7.0), and shake for 10 minutes. Let stand, and discard the separated aqueous layer. Add 10 mL of acetonitrile to an octadecylsilanized silica gel cartridge (1,000 mg) and discard the effluent. Transfer the acetonitrile layer to the cartridge, elute with 2 mL of acetonitrile, collect the total eluates, dehydrate with anhydrous sodium sulfate, and filter out the anhydrous sodium sulfate. -
Diurnal Leaf Movement Effects on Spray Interception and Glyphosate Efficacy Author(S): Jason K
Diurnal Leaf Movement Effects on Spray Interception and Glyphosate Efficacy Author(s): Jason K. Norsworthy, Lawrence R. Oliver and Larry C. Purcell Source: Weed Technology, Vol. 13, No. 3 (Jul. - Sep., 1999), pp. 466-470 Published by: Cambridge University Press on behalf of the Weed Science Society of America Stable URL: http://www.jstor.org/stable/3989032 Accessed: 09-02-2018 21:24 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Cambridge University Press, Weed Science Society of America are collaborating with JSTOR to digitize, preserve and extend access to Weed Technology This content downloaded from 160.36.239.64 on Fri, 09 Feb 2018 21:24:07 UTC All use subject to http://about.jstor.org/terms Weed Technology. 1999. Volume 13:466-470 Diurnal Leaf Movement Effects on Spray Interception and Glyphosate Efficacy' JASON K. NORSWORTHY, LAWRENCE R. OLIVER, and LARRY C. PURCELL2 Abstract: Time of day at which a herbicide is applied can affect efficacy, and variability may be attributed to leaf angles at application. Spray interception by hemp sesbania (Sesbania exaltata), sicklepod (Senna obtusifolia), and prickly sida (Sida spinosa) under day and night conditions was quantified by measuring interception of a 2-M potassium nitrate solution. -
(12) United States Patent (10) Patent No.: US 7,943,644 B2 Uhr Et Al
USOO794364.4B2 (12) United States Patent (10) Patent No.: US 7,943,644 B2 Uhr et al. (45) Date of Patent: May 17, 2011 (54) STABILIZATION OF IODINE-CONTAINING (56) References Cited BOCDES BY MEANS OF SPECIAL AZOLE COMPOUNDS U.S. PATENT DOCUMENTS 2,739,922 A * 3/1956 Shelanski ..................... 524,548 (75) Inventors: Hermann Uhr, Leverkusen (DE); 4,276,211 A 6/1981 Singer et al. ... 260/29.6 MN Johannes Kaulen, Odenthal (DE); 4.297.258 A 10/1981 Long, Jr. .............. 260f29.6 MN Thomas Jaetsch, Köln (DE); Peter 4,552,885. A 1 1/1985 Gabriele et al. .............. 514/316 Spetmann, Leverkusen (DE) 5,051,256 A * 9/1991 Barnes ........... ... 424/402 6,143,204. A 1 1/2000 Lutz et al. ...... ... 252/384 rsr rr 6.353,021 B1 3/2002 Gaglani et al. ... 514,478 (73) Assignee: NNESS putschland GmbH, 6,472,424 B1 10/2002 Gaglani et al. ... 514,478 everkusen (DE) 6,946,427 B2* 9/2005 Lutz et al. ...... ... 504,140 c - 2006/00 13833 A1 1/2006 Bartko ........... ... 424/400 (*) Notice: Subject to any disclaimer, the term of this 2007/0128246 A1* 6/2007 Hossainy et al. ............. 424/423 patent is extended or adjusted under 35 U.S.C. 154(b) by 18 days. FOREIGN PATENT DOCUMENTS WO 98.22543 5, 1998 (21) Appl. No.: 12/281,163 WO 99.291.76 6, 1999 WO OOf 16628 3, 2000 (22) PCT Filed: Feb. 21, 2007 WO 2007 O28527 3, 2007 (86). PCT No.: PCT/EP2007/001480 OTHER PUBLICATIONS S371 (c)(1), Nomiya, Kenji, et al. -
California Restricted Materials Requirements (English)
CALIFORNIA RESTRICTED MATERIALS REQUIREMENTS FEDERAL RESTRICTED USE PESTICIDES RESTRICTED USE PESTICIDE A (Included by reference as California Restricted Materials) DUE TO (reason for restricted use classification) Pesticides display the RESTRICTED USE PESTICIDE (RUP) statement on For retail sale to and use only by Certified Applicators or the pesticide container similar to the statement shown here. RUPs require an persons under their direct supervision and only for those RUP statement enclosed in a box, at the top of the front panel of the label. uses covered by the Certified Applicator's certification. Some product labels require a Certified Applicator be “physically present” at the use site. B CALIFORNIA RESTRICTED MATERIALS This section is written in a quick reference format; refer to Title 3, California Code of Regulations (3 CCR) section 6400 for complete text. Acrolein, labeled for use as an aquatic Chlorpyrifos, labeled for the Metam sodium, labeled for the Potassium n-methyldithiocarbamate herbicide production of an agricultural production of agricultural plant (metam-potassium), labeled for the Aldicarb – unregistered commodity commodities production of agricultural plant All dust (except products containing Dazomet, labeled for the production Methamidophos – unregistered commodities only exempt pesticides)** of agricultural plant commodities Methidathion Propanil (3,4-dichloropropionanilide) Aluminum phosphide Dicamba* Methomyl†† Sodium cyanide Any pesticide containing active 2,4-dichlorophenoxyacetic acid Methyl bromide Sodium -
Ten Reasons Not to Use Pesticides
JOURNAL OF PESTICIDE REFORM/ SUMMER 2006 • VOL. 26, NO. 2 PESTICIDE BASICS contaminated with pesticides. They play in ways that in- crease their exposure. Also, their growing bodies can be Ten Reasons Not to Use particularly sensitive. EPA succinctly summarizes the reasons why children should not be Pesticides exposed to pesticides: • their internal organs are still BY CAROLINE COX has written, “the range of these adverse developing and maturing, health effects includes acute and persis- • in relation to their body weight, tent injury to the nervous system, lung infants and children eat and drink damage, injury to reproductive organs, more than adults, possibly increasing 1. Pesticides don’t solve pest dysfunction of the immune and endo- problems. They don’t change their exposure to pesticides in food crine [hormone] systems, birth defects, and water. the conditions that encourage and cancer.”3 pests. • certain behaviors--such as play- Pesticides that damage human ing on floors or lawns or putting Some pesticides are remarkably ef- health are used in staggering amounts. objects in their mouths—increase a ficient tools for killing pests, but almost Consider just the 27 most commonly 4 child’s exposure to pesticides used in all do nothing to solve pest problems. used pesticides. Fifteen of these have 8 5 homes and yards. To solve a pest problem, the most been classified as carcinogens by EPA Researchers continue to gather de- important step is to change the con- and their use totals about 300 million 4 tailed evidence that EPA’s concerns ditions that have allowed the pest to pounds every year. -
AP-42, CH 9.2.2: Pesticide Application
9.2.2PesticideApplication 9.2.2.1General1-2 Pesticidesaresubstancesormixturesusedtocontrolplantandanimallifeforthepurposesof increasingandimprovingagriculturalproduction,protectingpublichealthfrompest-bornediseaseand discomfort,reducingpropertydamagecausedbypests,andimprovingtheaestheticqualityofoutdoor orindoorsurroundings.Pesticidesareusedwidelyinagriculture,byhomeowners,byindustry,andby governmentagencies.Thelargestusageofchemicalswithpesticidalactivity,byweightof"active ingredient"(AI),isinagriculture.Agriculturalpesticidesareusedforcost-effectivecontrolofweeds, insects,mites,fungi,nematodes,andotherthreatstotheyield,quality,orsafetyoffood.Theannual U.S.usageofpesticideAIs(i.e.,insecticides,herbicides,andfungicides)isover800millionpounds. AiremissionsfrompesticideusearisebecauseofthevolatilenatureofmanyAIs,solvents, andotheradditivesusedinformulations,andofthedustynatureofsomeformulations.Mostmodern pesticidesareorganiccompounds.EmissionscanresultdirectlyduringapplicationorastheAIor solventvolatilizesovertimefromsoilandvegetation.Thisdiscussionwillfocusonemissionfactors forvolatilization.Thereareinsufficientdataavailableonparticulateemissionstopermitemission factordevelopment. 9.2.2.2ProcessDescription3-6 ApplicationMethods- Pesticideapplicationmethodsvaryaccordingtothetargetpestandtothecroporothervalue tobeprotected.Insomecases,thepesticideisapplieddirectlytothepest,andinotherstothehost plant.Instillothers,itisusedonthesoilorinanenclosedairspace.Pesticidemanufacturershave developedvariousformulationsofAIstomeetboththepestcontrolneedsandthepreferred -
Advances in Enzyme-Based Biosensors for Pesticide Detection
biosensors Review Advances in Enzyme-Based Biosensors for Pesticide Detection Bogdan Bucur 1 ID , Florentina-Daniela Munteanu 2 ID , Jean-Louis Marty 3,* and Alina Vasilescu 4 ID 1 National Institute of Research and Development for Biological Sciences, Centre of Bioanalysis, 296 Splaiul Independentei, 060031 Bucharest, Romania; [email protected] 2 Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, Elena Dragoi, No. 2, 310330 Arad, Romania; fl[email protected] 3 BAE Laboratory, Université de Perpignan via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France 4 International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania; [email protected] * Correspondence: [email protected]; Tel.: +33-468-66-1756 Received: 28 February 2018; Accepted: 20 March 2018; Published: 22 March 2018 Abstract: The intensive use of toxic and remanent pesticides in agriculture has prompted research into novel performant, yet cost-effective and fast analytical tools to control the pesticide residue levels in the environment and food. In this context, biosensors based on enzyme inhibition have been proposed as adequate analytical devices with the added advantage of using the toxicity of pesticides for detection purposes, being more “biologically relevant” than standard chromatographic methods. This review proposes an overview of recent advances in the development of biosensors exploiting the inhibition of cholinesterases, photosynthetic system II, alkaline phosphatase, cytochrome P450A1, peroxidase, tyrosinase, laccase, urease, and aldehyde dehydrogenase. While various strategies have been employed to detect pesticides from different classes (organophosphates, carbamates, dithiocarbamates, triazines, phenylureas, diazines, or phenols), the number of practical applications and the variety of environmental and food samples tested remains limited. -
Developmental Ramifications of Dithiocarbamate Pesticide Exposure in Zebrafish
AN ABSTRACT OF THE DISSERTATION OF Fred Tilton for the degree of Doctor of Philosophy in Toxicology presented on May 24, 2006. Title:Developmental Ramifications of Dithiocarbamate Pesticide Exposure in Zebrafish. Redacted for Privacy Abstract approved Robert Dithiocarbamates are widely used agricultural pesticides, industrial chemicals and effluent additives. DTCs and their related compounds have historical and current relevance in clinical and experimental medicine. DTC developmental toxicity is well established, but poorly understood. Dithiocarbamates according to the U.S. EPA have a mechanism of action involving, "the inhibition of metal-dependent and sulfhydryl enzyme systems in fungi, bacteria, plants, as well as mammals." We hypothesized that by using the zebrafish development model we could better define the mechanism of action of DTCs and for the first time establish a molecular understanding of DTC developmental toxicity in vertebrates. We have established that all types of dithiocarbamate pesticides and some degradation products have the potential to elicit a common toxic effect on development resulting in a distorted notochord and a significant impact to the body axis. We provide evidence to support the hypothesis that metal chelation is not the primary mechanism of action by which DTCs impact the developing vertebrate. By manipulating the exposure window of zebrafish we hypothesized that somitogenesis was the targeted developmental process. We tested this by using the Affymetrix microarray to observe gene expression induced by the N-methyl dithiocarbamate, metam sodium (NaM). Throughout this process it is clear that genes related to muscle development are perturbed. These gene signatures are consistent with the morphological changes observed in larval and adult animals and that somitogenesis is the developmental target. -
Literature Review of Controlling Aquatic Invasive Vegetation With
Eurasian watermilfoil in Christmas Lake, 2011 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Prepared for: Prepared by: Minnehaha Creek Watershed District Steve McComas Blue Water Science St. Paul, MN 55116 September 2011 1 Literature Review on Controlling Aquatic Invasive Vegetation with Aquatic Herbicides Compared to Other Control Methods: Effectiveness, Impacts, and Costs Steve McComas, Blue Water Science Table of Contents page number Introduction .................................................................................................................................................................. 1 Use of Herbicides as an Aquatic Plant Control Technique ...................................................................................... 2 How Herbicides Work and Their Mode of Action ....................................................................................................... 3 Aquatic Herbicide Impacts on Humans and the Ecosystem ....................................................................................... 8 Where to Find Sources of Specific Information on herbicide Products and Their Active Ingredients ....................... 16 Harvesting, Drawdown, and Biocontrol as Aquatic Plant Control Techniques ................................................... 17 Summary of Control Techniques for Non-Native Curlyleaf Pondweed and Eurasian Watermilfoil ................... 25 Control Techniques for Other