Sensitivity of Soil Respiration to Moisture and Temperature
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Depolymerization and Mineralization – Investigating N Availability by a Novel N Tracing Model
SOIL Discuss., doi:10.5194/soil-2016-11, 2016 Manuscript under review for journal SOIL Published: 3 March 2016 c Author(s) 2016. CC-BY 3.0 License. Depolymerization and mineralization – investigating N availability by a novel 15N tracing model Louise C. Andresen1, Anna-Karin Björsne1, Samuel Bodé2, Leif Klemedtsson1, Pascal Boeckx2 and Tobias Rütting1 5 1Department of Earth Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden 2Isotope Bioscience Laboratory, ISOFYS, Ghent University, Ghent, 9000, Belgium Correspondence to: Louise C. Andresen ([email protected]) Abstract. Depolymerization of soil organic matter such as proteins and peptides into monomers (e.g. amino acids) is currently thought to be the rate limiting step for N availability in terrestrial N cycles. The mineralization of free amino acids 10 (FAA), liberated by depolymerization of peptides, is an important fraction of the total N mineralization. Accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better understanding of the N cycle dynamics. Due to the short time span, soil disturbance and unnatural high FAA content during the first few hours after the labelling with the traditional 15N pool dilution experiments, analytical models might overestimate peptide depolymerization rate. In this paper, we present an extended numerical 15N tracing model Ntrace which incorporates the FAA pool and related 15 N processes in order to 1) provide a more robust and coherent estimation of production and mineralization rates of FAAs; 2) and 2) suggest an amino acid N use efficiency (NUEFAA) for soil microbes, which is a more realistic estimation of soil microbial NUE compared to the NUE estimated by analytical methods. -
Effects of Nitrogen Additions on Soil Respiration in an Asian Tropical Montane Rainforest
Article Effects of Nitrogen Additions on Soil Respiration in an Asian Tropical Montane Rainforest Fangtao Wu 1,2, Changhui Peng 1,2,3,* , Weiguo Liu 1,2, Zhihao Liu 1,2, Hui Wang 1,2, Dexiang Chen 4 and Yide Li 4 1 Center for Ecological Forecasting and Global Change, College of Forestry, Northwest A&F University, Yangling 712100, China; [email protected] (F.W.); [email protected] (W.L.); [email protected] (Z.L.); [email protected] (H.W.) 2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China 3 Department of Biology Sciences, Institute of Environment Sciences, University of Quebec at Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada 4 Jianfengling National Key Field Observation and Research Station for Forest Ecosystem, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China; [email protected] (D.C.); [email protected] (Y.L.) * Correspondence: [email protected] Abstract: Understanding the impacts of nitrogen (N) addition on soil respiration (RS) and its temper- ature sensitivity (Q10) in tropical forests is very important for the global carbon cycle in a changing environment. Here, we investigated how RS respond to N addition in a tropical montane rainforest in Southern China. Four levels of N treatments (0, 25, 50, and 100 kg N ha−1 a−1 as control (CK), low N (N25), moderate N (N50), and high N (N100), respectively) were established in September 2010. Based on a static chamber-gas chromatography method, R was measured from January 2015 S to December 2018. -
Effects of Wheel Traffic and Farmyard Manure Applications on Soil CO2
Turkish Journal of Agriculture and Forestry Turk J Agric For (2018) 42: 288-297 http://journals.tubitak.gov.tr/agriculture/ © TÜBİTAK Research Article doi:10.3906/tar-1709-79 Effects of wheel traffic and farmyard manure applications on soil CO2 emission and soil oxygen content 1, 1 2 Sefa ALTIKAT *, H. Kaan KÜÇÜKERDEM , Aysun ALTIKAT 1 Department of Biosystem Engineering, Faculty of Agriculture, Iğdır University, Iğdır, Turkey 2 Department of Environmental Engineering, Faculty of Engineering, Iğdır University, Iğdır, Turkey Received: 20.09.2017 Accepted/Published Online: 17.04.2018 Final Version: 07.08.2018 Abstract: This 2-year field study investigated the effects of different wheel traffic passes, manure amounts, and manure application methods on soil temperature, soil moisture, CO2 emission, and soil O2 content. To achieve this purpose, three different wheel traffic applications (no traffic, one pass, and two passes) were used. In the experiments, two different methods of manure applications (surface and subsurface) and three different farmyard manure amounts were used with a control plot (N0), 40 Mg ha–1 (N40), and 80 Mg ha–1 (N80). Manure was applied in both years of the experiment in the first week of April. For the subsurface application, the manure was mixed in at approximately 10 cm of soil depth with a rotary tiller. According to the results, soil temperature, soil moisture, penetration resistance, and bulk density increased with increasing wheel traffic except 2CO emission for 2014 and 2015. CO2 emission values decreased with traffic. Subsurface manure application caused more 2CO emission compared to surface application. The increase in manure amounts led to an increase in CO2 emission and soil moisture content. -
Dynamics of Carbon 14 in Soils: a Review C
Radioprotection, Suppl. 1, vol. 40 (2005) S465-S470 © EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-068 Dynamics of Carbon 14 in soils: A review C. Tamponnet Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, BP. 1, 13108 Saint-Paul-lez-Durance Cedex, France, e-mail: [email protected] Abstract. In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial ecosphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. 1. INTRODUCTION The importance of carbon 14 of anthropic origin in the environment has been quite early a matter of concern for the authorities [1]. When the behaviour of carbon 14 in the environment is to be modelled, it is an absolute necessity to understand the biogeochemical cycles of carbon. One can distinguish indeed, a global cycle of carbon from different local cycles. As far as the biosphere is concerned, pedosphere is considered as a primordial exchange zone. Pedosphere, which will be named from now on as soils, is mainly located at the interface between atmosphere and lithosphere. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
The Muencheberg Soil Quality Rating (SQR)
The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Zentrum fuer Agrarlandschaftsforschung (ZALF), Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 1 Draft, Nov. 2007 The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V., Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 2 TABLE OF CONTENTS PAGE 1. Objectives 4 2. Concept 5 3. Procedure and scoring tables 7 3.1. Field procedure 7 3.2. Scoring of basic indicators 10 3.2.0. What are basic indicators? 10 3.2.1. Soil substrate 12 3.2.2. Depth of A horizon or depth of humic soil 14 3.2.3. Topsoil structure 15 3.2.4. Subsoil compaction 17 3.2.5. Rooting depth and depth of biological activity 19 3.2.6. -
Progressive and Regressive Soil Evolution Phases in the Anthropocene
Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal. -
Soil Respiration and Net Ecosystem Production Under Different Tillage Practices in Semi-Arid Northwest China
Vol. 63, 2017, No. 1: 14–21 Plant Soil Environ. doi: 10.17221/403/2016-PSE Soil respiration and net ecosystem production under different tillage practices in semi-arid Northwest China Shirley LAMPTEY1,2,4, Lingling LI1,2,*, Junhong XIE1,2, Renzhi ZHANG1,3, Zhuzhu LUO1,3, Liqun CAI1,3, Jie LIU1,2 1Gansu Provincial Key Lab of Arid Land Crop Science, Lanzhou, P.R. China 2College of Agronomy, Gansu Agricultural University, Lanzhou, P.R. China 3College of Resources and Environmental Sciences, Gansu Agricultural University Lanzhou, P.R. China 4University for Development Studies, Tamale, Ghana *Corresponding author: [email protected] ABSTRACT Lamptey S., Li L., Xie J., Zhang R., Luo Z., Cai L., Liu J. (2017): Soil respiration and net ecosystem production under different tillage practices in semi-arid Northwest China. Plant Soil Environ., 63: 14–21. In semi-arid areas, increasing CO2 emissions are threatening agricultural sustainability. It is unclear whether differ- ent tillage practices without residue returned could help alleviate these issues while increasing crop productivity. This study aimed to quantify soil respiration under conventional tillage (CT); rotary tillage (RT); subsoiling (SS) and no-till (NT), all without residue returned in the Western Loess Plateau. The results showed that SS and NT significantly decreased soil respiration compared to CT, but the effects of SS was the greatest. As a result, SS -de creased carbon emission by 22% in 2014 and 19% in 2015 versus CT. The trends of net ecosystem production under different tillage systems were as follows: CT > RT > NT > SS. No-till increased net ecosystem production by 33% in 2014 and 12% in 2015 relative to CT. -
1 1 2 3 4 Estimating Organic Carbon in the Soils of Europe For
CORE Metadata, citation and similar papers at core.ac.uk Provided by Cranfield CERES 1 European Journal of Soil Science, 2005, Volume 56 Issue 5, Pages 655 – 671 2 3 4 5 Estimating Organic Carbon in the Soils of Europe for Policy Support 6 7 1,3 2 1 1 8 R.J.A. JONES , R. HIEDERER , E. RUSCO & L. MONTANARELLA 9 10 11 1Institute for Environment & Sustainability, Joint Research Centre, Ispra (VA) 21020, 12 Italy, 2Land Management Unit, Institute for Environment & Sustainability, Joint 13 Research Centre, Ispra (VA) 21020 Italy and 3National Soil Resources Institute, 14 Cranfield University, Silsoe, Bedfordshire MK45 4DT, UK 15 16 Correspondence: R.J.A. Jones. Email: [email protected] 17 18 Running title: Estimating soil organic carbon for Europe 19 1 20 Summary 21 The estimation of soil carbon content is of pressing concern for soil protection and in 22 mitigation strategies for global warming. This paper describes the methodology developed 23 and the results obtained in a study aimed at estimating organic carbon contents (%) in 24 topsoils across Europe. The information presented in map form provides policy makers 25 with estimates of current topsoil organic carbon contents for developing strategies for soil 26 protection at regional level. Such baseline data is also of importance in global change 27 modelling and may be used to estimate regional differences in soil organic carbon (SOC) 28 stocks and projected changes therein, as required for example under the Kyoto Protocol to 29 UNFCCC, after having taken into account regional differences in bulk density. 30 The study uses a novel approach combining a rule-based system with detailed 31 thematic spatial data layers to arrive at a much-improved result over either method, using 32 advanced methods for spatial data processing. -
Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area
Article Variations in Soil Respiration at Different Soil Depths and Its Influencing Factors in Forest Ecosystems in the Mountainous Area of North China Dandan Wang 1, Xinxiao Yu 2, Guodong Jia 2,*, Wei Qin 1 and Zhijie Shan 1 1 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; [email protected] (D.W.); [email protected] (W.Q.); [email protected] (Z.S.) 2 Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1312-187-9600 Received: 12 April 2019; Accepted: 26 November 2019; Published: 27 November 2019 Abstract: An in-depth understanding of the dominant factors controlling soil respiration is important to accurately estimate carbon cycling in forest ecosystems. However, information on variations in soil respiration at different soil depths and the influencing factors in forest is limited. This study examined the variations in soil respiration at two soil depths (0–10 and 10–20 cm) as well as the effects of soil temperature, soil water content, litter removal, and root cutting on soil respiration in three typical forest types (i.e., Pinus tabulaeformis Carrière, Platycladus orientalis (L.) Franco, and Quercus variabilis Bl.) in the mountainous area of north China from March 2013 to October 2014. The obtained results show that soil respiration exhibited strong seasonal variation and decreased with soil depth. Soil respiration was exponentially correlated to soil temperature, and soil respiration increased with soil water content until reaching threshold values (19.97% for P. -
Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere. -
Unit 2.3, Soil Biology and Ecology
2.3 Soil Biology and Ecology Introduction 85 Lecture 1: Soil Biology and Ecology 87 Demonstration 1: Organic Matter Decomposition in Litter Bags Instructor’s Demonstration Outline 101 Step-by-Step Instructions for Students 103 Demonstration 2: Soil Respiration Instructor’s Demonstration Outline 105 Step-by-Step Instructions for Students 107 Demonstration 3: Assessing Earthworm Populations as Indicators of Soil Quality Instructor’s Demonstration Outline 111 Step-by-Step Instructions for Students 113 Demonstration 4: Soil Arthropods Instructor’s Demonstration Outline 115 Assessment Questions and Key 117 Resources 119 Appendices 1. Major Organic Components of Typical Decomposer 121 Food Sources 2. Litter Bag Data Sheet 122 3. Litter Bag Data Sheet Example 123 4. Soil Respiration Data Sheet 124 5. Earthworm Data Sheet 125 6. Arthropod Data Sheet 126 Part 2 – 84 | Unit 2.3 Soil Biology & Ecology Introduction: Soil Biology & Ecology UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURE (1 LECTURE, 1.5 HOURS) biological properties and ecosystem The lecture covers the basic biology and ecosystem pro- processes of agricultural soils. cesses of soils, focusing on ways to improve soil quality for organic farming and gardening systems. The lecture reviews the constituents of soils > DEMONSTRATION 1: ORGANIC MATTER DECOMPOSITION and the physical characteristics and soil (1.5 HOURS) ecosystem processes that can be managed to In Demonstration 1, students will learn how to assess the improve soil quality. Demonstrations and capacity of different soils to decompose organic matter. exercises introduce students to techniques Discussion questions ask students to reflect on what envi- used to assess the biological properties of ronmental and management factors might have influenced soils.