Electroweak Baryogenesis in the LHC
Total Page:16
File Type:pdf, Size:1020Kb
ElectroweakElectroweak BaryogenesisBaryogenesis inin thethe LHCLHC eraera SeanSean TulinTulin (Caltech)(Caltech) In collaboration with: Michael Ramsey-Musolf Bjorn Gabrecht Dan Chung Shin’ichiro Ando Christopher Lee Stefano Profumo Vincenzo Cirigliano SummarySummary ofof thisthis talktalk 1.1. ReviewReview thethe basicbasic picturepicture ofof electroweakelectroweak baryogenesisbaryogenesis (EWB)(EWB) 2.2. EWBEWB doesndoesn’’tt workwork inin thethe StandardStandard ModelModel 3.3. EWBEWB inin thethe MSSMMSSM isis almostalmost ruledruled outout —— likelylikely toto bebe excludedexcluded atat LHCLHC andand nextnext gengen EDMEDM searchessearches 4.4. WhatWhat next?next? NextNext--toto--minimalminimal supersymmetricsupersymmetric standardstandard modelmodel (It(It maymay bebe ugly/messy,ugly/messy, butbut atat leastleast itsits testable.)testable.) SupersymmetrySupersymmetry isis supersuper--great!great! The minimal supersymmetric standard model (MSSM): + + WhatWhat isis electroweakelectroweak baryogenesisbaryogenesis andand howhow doesdoes itit work?work? ElectroweakElectroweak BaryogenesisBaryogenesis PicturePicture PDG We want to explain Dunkley et al [WMAP5] 95% C.L. based on dynamics during the electroweak phase transition. Sakharov conditions: 1. Baryon number violation Electroweak sphalerons 2. C- and CP-violation complex phases 3. Departure from 1st order phase thermal equilibrium transition ElectroweakElectroweak BaryogenesisBaryogenesis PicturePicture First order electroweak phase transition during the early universe Higgs potential V( ) T > Tc T = Tc High T: EW symmetry restored from thermal corrections to Higgs potential T =0 Low T: EW symmetry broken At critical temp Tc, degenerate minima. Just below Tc, quantum tunneling from to bubble nucleation! ElectroweakElectroweak BaryogenesisBaryogenesis PicturePicture Cohen, Kaplan, Nelson, 1992-1994; Huet, Nelson, 1996 Three Steps: 1. Nucleation and expansion of moving bubbles of broken EW symmetry bubble 2. CP-violating interactions at wall 2. CP-violating interactions at bubble wall induces charge density, diffusing outside bubble 3. Sphalerons convert LH CP asymmetry into B asymmetry diffusion electroweak sphaleron Quark number density ElectroweakElectroweak BaryogenesisBaryogenesis PicturePicture Cohen, Kaplan, Nelson, 1992-1994; Huet, Nelson, 1996 Three Steps: 1. Nucleation and expansion of moving bubbles of broken EW symmetry bubble 2. CP-violating interactions at wall 2. CP-violating interactions at bubble wall induces charge density, diffusing outside bubble 4. Baryon asymmetry captured by expanding3. Sphalerons bubble convert LH CP asymmetry into B asymmetry diffusion electroweak sphaleron Quark number density RequirementsRequirements forfor electroweakelectroweak baryogenesisbaryogenesis toto workwork Given a model of electroweak symmetry breaking (e.g. the standard model), what is required? Two requirements: 1. A strong first-order electroweak phase transition 2. Sufficient CP-violation to explain observed nB Not satisfied in the SM May be satisfied in the MSSM, but only in one, small, very special region of parameter space electroweakelectroweak baryogenesisbaryogenesis requirementsrequirements Requirement #1: a strong 1st-order phase transition Need EW sphalerons to be quenched after electroweak symmetry breaking, or else have wash out of nB electroweakelectroweak baryogenesisbaryogenesis requirementsrequirements Quark number density Wash out (i.e. what we don’t want to happen) Wash out If EW sphalerons still Quark number density active after symmetry breaking electroweakelectroweak baryogenesisbaryogenesis requirementsrequirements Requirement #1: a strong 1st-order phase transition Need EW sphalerons to be quenched after electroweak symmetry breaking, or else have wash out of nB Weak sphaleron rate: Broken EW symmetry Unbroken EW symmetry electroweakelectroweak baryogenesisbaryogenesis requirementsrequirements Requirement #1: a strong 1st-order phase transition Higgs potential T > T c T = T V( ) c Calculate finite T T =0 effective potential No wash-out of nB requires StandardStandard ModelModel electroweakelectroweak baryogenesisbaryogenesis Requirement #1: a strong 1st-order phase transition In the SM, for mh > 114 GeV A strong, first-order EW phase transition does not occur in the SM MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Requirement #1: a strong 1st-order phase transition Need new light bosons with large coupling to Higgs: top squarks! MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Requirement #1: a strong 1st-order phase transition Carena, Nardini, Quiros, Wagner, 2008 LH stop m=500 TeV LH stop m=8000 TeV Parameter space consistent with 1. Experimental searches for stop/Higgs 2. No spontaneous breaking of SU(3)color 3. Strong 1st order EW phase transition MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Cost of this parameter window: Carena, Nardini, Quiros, Wagner, 2008 1. Large hierarchy in MSSM spectrum RH stop < 125 GeV, All other squarks and charginos, neutralinos sleptons very heavy m < 300 GeV (m > 6.5 TeV) 2. The EW vacuum is metastable EW vacuum Color-breaking (CB) vacuum Universe nucleates to EW vacuum ? before CB vacuum ling ne tun We are safe from decay through quantum tunneling MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Light RH stop at the LHC Observation of direct decay difficult: Missing energy + low energy QCD MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Light RH stop at the LHC Menon, Morrissey Indirect detection: Light RH stop modifies Higgs production and decay rates 2 Constructive: σ enhanced for light RH stop 2 BR( ) Destructive: BR suppressed for light RH stop MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Light RH stop at the LHC Menon, Morrissey Indirect detection: Light RH stop modifies Higgs production and decay rates Total rate: gg -> h -> γγ X BR( ) 10-20% uncertainty on rate with 300 fb-1 Zeppenfeld 2002 electroweakelectroweak baryogenesisbaryogenesis requirementsrequirements Requirement #2: sufficient CP-violation Need to have “sufficient” CP-violation to produce the observed baryon asymmetry 1. Take Veff and solve for “bubble solutions”: the space-time dependent Higgs vev during phase transition 2. Derive and solve Boltzmann equations for dynamics of particles in presence of bubbles 3. Calculate total # left-handed quarks and leptons General rule of thumb: CP-violating phases in a sector whose particles have large couplings to Higgs bosons BoltzmannBoltzmann equationsequations CP-violating source CP-violating scattering of particles with Riotto, 1998 bubble wall. Lee et al, 2004 Particles with largest couplings to Higgs Carena et al Particles with largest couplings to Higgs 2000, 2002 give largest source S. Cline et al, 2001 Received most theoretical effort, but Konstandin et al 2005, 2006 much discrepency BoltzmannBoltzmann equationsequations Diffusion Number density diffuses outside the bubble (Also diffuses inside the bubble, but gets quickly washed out) Cohen, et al. 1996 Joyce, et al. BoltzmannBoltzmann equationsequations Interactions Particles interact with one another Scattering, absorption, decay, etc. Huet & Nelson, 1996 Joyce et al. Lee et al, 2006 BoltzmannBoltzmann equationsequations Interactions Fast interactions: ΓX is large, enforces chemical equilibrium: Slow interactions: ΓX is small, can neglect from Boltzmann equations (Bjorn Garbrecht’s talk tomorrow) BoltzmannBoltzmann equationsequations inin MSSMMSSM Lee et al, 2006 Same phase gives rise to EDMs MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Requirement #2: sufficient CP-violation Different EDMs are complementary in general For electroweak baryogenesis, electron EDM is most important Pospelov, Ritz, 2006 Can observed nB be generated by and be consistent with EDM searches? Yes, but just barely. MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Requirement #2: sufficient CP-violation Need to make as large as possible. Need |μ|~M2, mA light. φμ needed for observed n B “Irreducible” 2-loop EDM Lee et al, 2006 MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Requirement #2: sufficient CP-violation Need to make as large as possible. Need |μ|~M2, mA light. φμ needed for observed n B |φμ|| >> 1/401/40 Chung et al, 2008 “Irreducible” 2-loop EDM Lee et al, 2006 Caveat: φμ ~ O(1) allowed if mA >> TeV. Still, Irr. 2-loop EDM with lightest Higgs will rule out this scenario for O(10) improvement in eEDM. Carena, Nardini, Quiros, Wagner, 2008 MSSMMSSM electroweakelectroweak baryogenesisbaryogenesis Future eEDM measurements can rule out EWB in the MSSM (even for our “optimistic” nB estimates) MSSMMSSM baryogenesisbaryogenesis conclusionsconclusions StillStill viable,viable, butbut onlyonly withinwithin veryvery specificspecific regionregion ofof parameterparameter space.space. 1.Lightest Higgs and RH stop masses: m < 125 GeV 2.Non-zero eEDM within factor 10 of current limit ElectroweakElectroweak baryogenesisbaryogenesis beyondbeyond thethe MSSMMSSM Suppose we have SUSY at the LHC, but MSSM baryogenesis ruled out. What next? Consider electroweak baryogenesis in extensions of the MSSM. NextNext--toto--minimalminimal supersymmetricsupersymmetric standardstandard modelmodel MSSM + gauge singlet field + + + NextNext--toto--minimalminimal supersymmetricsupersymmetric standardstandard modelmodel • Why consider an extra singlet? 1. Solution to the μ problem in the MSSM EW symmetry breaking: Higgs } potential NextNext--toto--minimalminimal supersymmetricsupersymmetric standardstandard