Recrystallization and Identification of an Unknown Solid

Total Page:16

File Type:pdf, Size:1020Kb

Recrystallization and Identification of an Unknown Solid Experiment 1: Recrystallization and Identification of an Unknown Solid I. Recrystallization Procedure: You will be given an unknown solid compound to purify by recrystallization using water as the recrystallizing solvent. The unknown will either be benzamide or 2- ethoxybenzamide and will contain a water-soluble organic impurity and a black carbon insoluble impurity. Note that the melting point ranges of benzamide and 2- ethoxybenzamide are quite close, so good technique will be required to distinguish between them. O O NH NH2 2 OCH2CH3 benzamide 2-ethoxybenzamide Pertinent information about the chemicals you are using: Reagents MW (g/mol) MP (ºC) BP (ºC) Density Benzamide 128-130 2-ethoxybenzamide 132-134 Water 18 0 100 1 Throughout this experiment, clean all glassware and equipment before using it. To clean it, wash with soap and water, rinse with water, and shake as much water as possible from it. If soap and water does not completely clean it (i.e. there is still some visible residue in it), wash with a little acetone then with water. The residue is likely organic material that the acetone will remove. This cleaning technique can be used in this experiment because water is being used as the solvent; a trace of water in the glassware will do no harm. Recrystallization of a Solid Compound: Dissolving the Solid: 1. Place a clean 250-mL Erlenmeyer flask containing approximately 100-mL water and 3- 4 boiling stones on a hot plate set to about 6; this will be used as your source of hot water when dissolving your compound for the experiment. If necessary, decrease the hot plate setting a little once the water is boiling. • Do we have to dry all the glassware when we clean it? Because we are going to put water into it, this flask does not have to be dry. A few more drops of water won’t make any difference. In this and other experimental procedures in our organic chemistry courses, the following distinction should be noted regarding glassware and other apparatus. “Clean” means to wash with soap and water and then with plain water, followed by a gentle shaking to remove as much water as possible. “Clean, dry” means to clean as mentioned above in the previous sentence, followed by rinsing with a couple “squirts” of acetone to remove the water, followed by drying on the laboratory dryer. 2. Record the identification number of your unknown compound in your notebook. Weigh approximately 1 gram of the unknown compound using a weighing boat and place it in a 125-mL Erlenmeyer flask containing 3-4 boiling stones. Record the precise mass of your compound in your notebook. Observe what the unknown looks like, prior to recrystallization. • How accurately do I have to make the measurements of weight and volume in all experiments? If a volume is specified, such as “5 mL”, this may be measured with a graduated cylinder – that is, the volume is somewhat approximate. On the other hand, if you were asked to add 5.0 mL, you must measure it more accurately and the use of a syringe or other calibrated device would be required. In this experiment, the exact mass of the compound used is not critical (hence the instruction “about 1 gram”) but you must weigh and record precisely (to 3 decimal places) how much you used. In other experiments the exact mass will be more critical and will be reflected in instructions such as “weigh out 1.00 g of compound X”. The mass of a compound that is required (i.e. 1-2 grams) means you must weigh it and get as close to the specified amount as possible. A weighing boat, or a piece of weighing paper is placed on the balance and then the balance is zeroed (this is also called “taring”). The weighing boat is then removed and some compound is placed on the paper and the paper is then placed on the balance again to see how much has been added. This process is repeated until the correct mass has been reached. In most cases, we try to avoid weighing compounds directly on the balance. Students very often “miss” the weighing paper and get organic compounds on the balance pan, which degrades the balance itself. It’s less messy to not weigh on the balance directly, especially when you are new to using balances. When weighing liquids, it is preferable to use a disposable glass vial or a small flask instead of a weighing paper or boat. Care must be taken to keep chemicals from getting on the balance and any spills must be cleaned up immediately. Last comment – You must always know how much of each component you are using, so make sure to record this data. This is necessary so that work can be duplicated and so you can calculate the theoretical yield of your product in a reaction. 3. Using a 2 mL Pasteur pipette (which can suck up about 2 mL using a standard rubber bulb, when the bulb is entirely deflated), add about 10-mL of boiling hot water to the flask with the unknown solid and place the flask containing the sample on the hot plate. Using a Pasteur pipette, add hot water in small portions until the unknown solid just dissolves; use a minimum of hot water. Make sure the solution maintains boiling during the addition of these additional portions of water. Remember, the unknown contains traces of black carbon that will NOT dissolve. Add only enough hot water to dissolve the whiter crystalline solid. Then add 2-3 milliliters extra to prevent premature crystallization during the hot gravity filtration. • The water isn’t boiling but it is warm – can I get started now? Recrystallization involves the use of hot solvents, in this case water is the solvent. The hotter the solvent, the more soluble your compound will be in the solvent. So, the hotter the solvent, the less solvent you need to dissolve the compound. You must have a saturated solution in order to get back a maximum amount of crystals from your process. The more solvent, the less saturated. Keep the water boiling hot the entire time and leave the Erlenmeyer flasks on the hot plate. Some students tend to remove them and set them on the bench top, not realizing that they are now cooling off! The extra water added at the end, to prevent premature crystallization, is important for the hot gravity filtration step. You will be using a piece of filter paper – a DRY piece of filter paper. If you pour a saturated solution through the dry filter paper, the filter paper will absorb some of your water and your solution will become super-saturated! This could lead to premature crystal formation in the powder funnel of your filtration set-up. Filter the Insoluble Impurities using the hot, gravity filtration technique. 1. In a clean 125 mL Erlenmeyer flask place 5 mL of distilled water, and place a plastic powder funnel in the top with an appropriate-sized piece of “fluted” filter paper. Stand the assembled apparatus on the hotplate and wait until the water in this flask is boiling. Pre-wet the filter paper with a few milliliters of water (only 2-3 mL). • Why gravity filtration with fluted filter paper? Gravity filtration using filter paper is required to remove the finely divided charcoal impurity in your sample. Other types of filtration (such as vacuum) would result in the product being contaminated with the charcoal, resulting in the formation of grayish- colored crystals. Fluted filter paper (as opposed to the “cone”) is commonly used because it provides more surface area through which the solvent can flow, allowing the filtration to occur quicker. • Why do we heat the funnel/filter paper prior to gravity filtration? Hot gravity filtrations prevent premature crystallization of the product in the funnel. It is important that the entire apparatus be hot to avoid this – the steam generated by the boiling water will warm the flask, the funnel and the filter paper. The small amount of hot water already present in the filtration flask will not prevent the compound from recrystallizing on cooling (or lower the percent recovery) significantly. • I’m filtering a solution with water in it – why do I need to wet the filter paper? Pre-wetting the filter paper will help prevent premature crystallization from occurring. It will help keep the saturation level of your solution uniform, as the filter paper won’t be removing any of your solvent. 2. Pour the solution containing your dissolved unknown through the filter, allowing the liquid to drain into the Erlenmeyer flask. Do not overfill the funnel - if the entire solution does not fit, place the flask back on the hotplate and add the remaining solution to the filter in portions. Remember to keep the solution hot the entire time. Crystallizing and Isolating the Compound: 1. Once all the solution has filtered, allow the filtrate to cool by removing the flask from the hotplate and placing it on the benchtop for at least 5 minutes. Then place the flask in a 400 mL beaker of ice and water (called an “ice-water bath”) until the solution has reached ice-bath temperature and crystallization is complete. 2. While the flask is cooling in the ice-water bath, prepare a clean filter flask fitted with a rubber cone adapter and a clean Büchner funnel fitted with the appropriately sized filter paper for use in the next step. Attach the vacuum hose (heavy walled tubing attached to the vacuum control) and clamp the flask to ensure it does not tip over.
Recommended publications
  • Standard Operating Procedure SEA05 Laboratory Analysis-Version
    Gulf Coast Network National Park Service Inventory and Monitoring Division Standard Operating Procedure SEA05 Laboratory Analysis—Version 1.0 Please cite this as: Meiman, J. 2019. Laboratory Analysis—Version 1.0. Gulf Coast Network Standard Operating Procedure NPS/GULN/SOP—SEA05. Gulf Coast Network, Lafayette, Louisiana. Summary This standard operating procedure (SOP) for laboratory analysis of total suspended solids (TSS) is adopted verbatim from USEPA Method 160.2. Revision Log Revision Date Author Changes Made Reason for Change New Version # METHOD #: 160.2 Approved for NPDES (Issued 1971) TITLE: Residue, Non-Filterable (Gravimetric, Dried at 103–105°C) ANALYTE: Residue, Non-Filterable INSTRUMENTATION: Drying Oven STORET No. 00530 1. Scope and Application a. This method is applicable to drinking, surface, and saline waters, domestic and industrial wastes. b. The practical range of the determination is 4 mg / L to 20,000 mg / L. 2. Summary of Method a. A well-mixed sample is filtered through a glass fiber filter, and the residue retained on the filter is dried to constant weight at 103-105°C. b. The filtrate from this method may be used for Residue, Filterable. 3. Definitions a. Residue, non-filterable, is defined as those solids which are retained by a glass fiber filter and dried to constant weight at 103-105°C. 4. Sample Handling and Preservation a. Non-representative particulates such as leaves, sticks, fish, and lumps of fecal matter should be excluded from the sample if it is determined that their inclusion is not desired in the final result. b. Preservation of the sample is not practical; analysis should begin as soon as possible.
    [Show full text]
  • SILICA, CRYSTALLINE in Coal Mine Dust, by IR 7603
    SILICA, CRYSTALLINE in coal mine dust, by IR 7603 SiO2 MW: 60.08 CAS: 14808-60-7 RTECS: VV7330000 METHOD: 7603, Issue 2 EVALUATION: UNRATED Issue 1: 15 May 1989 Issue 2: 15 August 1994 quartz (respirable): 3 OSHA : 10 mg/m /(%SiO2 + 2) PROPERTIES: solid; crystalline transformations: quartz NIOSH: 0.05 mg/m3 (suspect carcinogen) to tridymite @ 867 °C: tridymite to ACGIH: 0.1 mg/m3 crystobalite @ 1470 °C; a-quartz to b-quartz @ 573 °C SYNONYMS: free crystalline silica; silicon dioxide SAMPLING MEASUREMENT SAMPLER: CYCLONE + PREWEIGHED FILTER TECHNIQUE: INFRARED SPECTROPHOTOMETRY (IR) (10-mm cyclone, nylon, or Higgins-Dewell (HD), and PVC filter, 37-mm, 5-µm) ANALYTE: quartz FLOW RATE: HD cyclone: 2.2 L/min WEIGH: dust cassette nylon cyclone: 1.7 L/min ASH: muffle furnace or RF plasma asher VOL-MIN: 300 L @ 0.1 mg/m 3 -MAX: 1000 L REDEPOSIT: 0.45-µm acrylic copolymer membrane filter SHIPMENT: routine IR: scan, 1000 to 650 cm -1, absorbance mode SAMPLE STABILITY: stable with blank filter in reference beam BLANKS: 2 to 10 field blanks per set CALIBRATION: standard suspension of quartz in 2-propanol BULK SAMPLE: required for OSHA standard calculations; area respirable or settled dust RANGE: 30 to 250 µg quartz per sample [1] ESTIMATED LOD: 10 µg quartz per sample [1] ACCURACY PRECISION (S r): 0.098 @ 100 to 500 µg per sample RANGE STUDIED: 25 to 160 µg/sample [1] (varies with sample matrix) [1] (2 mg quartz/m 3 atmosphere) BIAS: unknown ˆ OVERALL PRECISION (S rT): 0.13 to 0.22 (varies with sample loading and matrix) ACCURACY: ±25.6 to 43.4% APPLICABILITY: The working range is 0.03 to 2 mg/m 3 for a 1000-L sample.
    [Show full text]
  • SILICA, CRYSTALLINE, by XRD (Filter Redeposition) 7500
    SILICA, CRYSTALLINE, by XRD (filter redeposition) 7500 SiO2 MW: 60.08 CAS: 14808-60-7 (quartz) RTECS: VV7330000 (quartz) 14464-46-1 (cristobalite) VV7325000 (cristobalite) 15468-32-3 (tridymite) VV7335000 (tridymite) METHOD: 7500, Issue 4 EVALUATION: FULL Issue 1: 15 August 1990 Issue 4: 15 March 2003 3 3 OSHA : quartz (respirable) 10 mg/m /(%SiO2+2); PROPERTIES: solid; d 2.65 g/cm @ 0 °C; crystalline cristobalite and tridymite (respirable) ½ the above transformations: quartz to tridymite NIOSH: 0.05 mg/m3; carcinogen @ 867 °C; tridymite to cristobalite ACGIH: quartz (respirable) 0.1 mg/m3 @ 1470 °C; "-quartz to ß-quartz cristobalite (respirable) 0.05 mg/m3 @ 573 °C tridymite (respirable) 0.05 mg/m3 SYNONYMS: free crystalline silica; silicon dioxide SAMPLING MEASUREMENT SAMPLER: CYCLONE + FILTER TECHNIQUE: X-RAY POWDER DIFFRACTION (10-mm nylon cyclone, Higgins- Dewell (HD) cyclone, or aluminum ANALYTE: Crystalline SiO2 cyclone + 5-:m PVC membrane) *see sampling section ASH: Muffle furnace or RF plasma asher or dissolve in tetrahydrofuran FLOW RATE: Nylon cyclone: 1.7 L/min; HD cyclone: 2.2 L/min; REDEPOSIT: On 0.45-:m Ag membrane filter aluminum cyclone: 2.5 L/min XRD: Cu target X-ray tube, graphite VOL-MIN: 400 L monochromator -MAX: 1000 L Optimize for intensity; 1° slit Slow step scan, 0.02°/10 sec SHIPMENT: Routine Integrated intensity with background subtraction SAMPLE STABILITY: Stable CALIBRATION: :NIST SRM 1878a quartz, NIST SRM 1879a cristobalite, USGS 210-75-0043 BLANKS: 2 to 10 per set (see step 13.g.) tridymite suspensions in 2-propanol. BULK SAMPLE: High-volume or settled dust; to RANGE: 0.02 to 2 mg SiO2 per sample [2] identify interferences ESTIMATED LOD: 0.005 mg SiO2 per sample [2] ACCURACY þ PRECISION ( r): 0.08 @ 0.05 to 0.2 mg per sample [1] RANGE STUDIED: 25 to 2500 :g/m3 [1] (800-L sample) BIAS: None known Ö : OVERALL PRECISION ( rT): 0.09 (50 to 200 g) [1] ACCURACY: ± 18% APPLICABILITY: The working range is 0.025 to 2.5 mg/m3 for an 800-L air sample.
    [Show full text]
  • Edna PROTOCOL SAMPLE COLLECTION
    eDNA PROTOCOL SAMPLE COLLECTION Caren Goldberg and Katherine Strickler, Washington State University September 2014 Adapted from Protocol Version 04/12/2012 (D.S. Pilliod, R.S. Arkle, and M.B. Laramie) USGS Snake River Field Station MATERIALS 1. Cellulose nitrate disposable filter funnels or other field-tested, disposable filter funnels 2. Vacuum flask (1L) 3. Silicone tubing 4. Vacuum hand pump (from auto parts store) 5. Rubber stopper with hole for funnel stem 6. Latex or nitrile gloves (non-powdered) 7. Forceps (filter forceps if possible) 8. High quality, o-ring screw cap 2mL tubes (e.g., Sarstedt brand) with 1mL 100% molecular-grade ethanol (not denatured) 9. Ethanol-proof laboratory pen (do not use a regular Sharpie marker) 10. 50 mL tubes of 30 mL 1) 50% household bleach solution 2) distilled water in a holder (a foam drink holder [koozie] works well) 11. Polypropylene grab bottles and cooler (for off-site filtering) or Whirl-Pak® bags (for on- site filtering) 12. Water, bleach, scrub brush, and tubs (for decontaminating between sites) 2 3 5 1 4 2 Figure 1. Filter funnel (1), vacuum flask (2), silicone tubing (3), vacuum pump (4), and rubber stopper (5). 9 7 10 8 6 1 Figure 2. Latex or nitrile gloves (6), forceps (7), 2 mL tubes with 1 mL ethanol (8), ethanol-proof lab marker (9), and 2 50 mL tubes with 50% household bleach solution distilled water (10). 3 11a 11b Figure 3. Polypropylene grab bottles (11a) and Whirl-Pak® bag (11b). 12a 12d 12b 12c Figure 4. Water (12a), bleach (12b), scrub brushes (12c), and tubs (12d) for decontaminating boots and equipment between sites.
    [Show full text]
  • Laboratory Filtration Principles and Chemical Compatibility Chart Filtration Simplified
    Laboratory filtration Principles and chemical compatibility chart Filtration simplified Basic filtration concepts and terms Selecting a filter with the appropriate properties can help you achieve accurate results and reach discovery faster. But with so many types of filters to choose from, how can you be sure you’re making the right choice? GE Healthcare Life Sciences, maker of Whatman™ brand filtration products, has assembled this compilation of basic filtration concepts and terms to clarify the various options available to you and speed up your selection process. Ash content Hydrophilic Determined by ignition of the cellulose filter at 900°C Because hydrophilic filters possess an affinity for water in air. Minimizing ash content is essential in gravimetric and can be wetted with virtually any liquid, they are applications and also a useful measure of the level of typically used for aqueous solutions and compatible general purity. organic solvents. Chemical compatibility Hydrophobic It is very important to ensure that the structure of the These types of filters repel water, and are thus best suited filter media will not be impaired by exposure to certain for filtering organic solvents as well as for venting and chemicals. In addition, exposure to these chemicals gas filtration applications. should not cause the filter to shed fibers or particles, or add extractables. Length of exposure time, temperature, Liquid flow rate (including Herzberg method) concentration and applied pressure can all affect Under practical filtration conditions, the liquid flow rate compatibility. GE Healthcare has provided chemical will depend on a number of factors, many of which will compatibility charts to aid your filter selection.
    [Show full text]
  • Environmental DNA Sampling Protocol—Filtering Water to Capture DNA from Aquatic Organisms
    Prepared in cooperation with Washington State University Environmental DNA Sampling Protocol—Filtering Water to Capture DNA from Aquatic Organisms Chapter 13 of Section A, Biological Science Book 2, Collection of Environmental Data Techniques and Methods 2–A13 U.S. Department of the Interior U.S. Geological Survey Cover: Okanogan River, British Columbia, Canada, 2012. Insets from top to bottom: Juvenile rainbow trout from Ratz Creek, Alaska, 2009. (C)2009 ADF&G, Division of Sport Fish. Used with permission. Collecting eDNA sample from Boise River, Boise, Idaho, 2011. USGS Technician Kevin Glueckert collects eDNA sample from Boise River, Boise, Idaho, 2014. Preserving folded eDNA sample in ethanol vial-filled vial, 2012. Photographs by Matthew B. Laramie, U.S. Geological Survey, unless otherwise noted. Environmental DNA Sampling Protocol— Filtering Water to Capture DNA from Aquatic Organisms By Matthew B. Laramie, David S. Pilliod, Caren S. Goldberg, and Katherine M. Strickler Chapter 13 of Section A, Biological Science Book 2, Collection of Environmental Data Prepared in cooperation with Washington State University Techniques and Methods 2–A13 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/.
    [Show full text]
  • Chemistry Lab Kit Instructions
    CHEMISTRY LAB KIT INSTRUCTIONS Not suitable for children under 10 years. For use under WARNING! adult supervision. Contains some chemicals which present a hazard to health. Read the instructions before use, follow them and keep them for reference. Do not allow chemicals to come into contact with any part of the body, particularly mouth and eyes. Keep small children and animals away from experiments. Keep the experimental set out of reach of children under 10 years old. Eye protection for supervising adults is not included. MADE IN CHINA P38-CM001-81001003 CONTENTS : 2 Test Tubes with Stoppers 1 Cleaning Brush 1 Test Tube Holder 2 Glass Tubing 1 Rubber Tubing 1 Spirit Lamp 1 Beaker(0-100ml) 1 Stirring Rod 1 Measuring Spoon 6 Filter Papers 8 Universal Indicator Paper 1 Goggles 2 Cork Stoppers with hole 1 Funnel 2 Cork Stoppers 1 Instruction Book 1 Scoop 1 Dropping Pipette 1 Test Tube Rack The Safety Rules Read these instructions before use, follow them and keep them for reference. Keep young children, animals and those not wearing eye protection away from the experimental area. Always wear eye protection. Store this experimental set out of reach of children under 10 years of age. Clean all equipment after use. Make sure that all containers are fully closed and properly stored after use. Ensure that all empty containers are disposed of properly; Wash hands after carrying out experiments. DO NOT use any equipment which has not been supplied with the set or recommended in the instructions for use. DO NOT eat or drink in the experimental area.
    [Show full text]
  • Practical Guide EDEXCEL
    Practical Guide EDEXCEL This guide includes details about the core practicals for A-level chemistry. It also contains information about other experiments that often occur in A-level examinations. You may be asked to describe these experiments in details or be asked about reasons for doing individual steps. You may be asked about other unfamiliar experiments but these will be using the skills and techniques that are described in the following experiments. Safety and hazards Irritant - dilute acid and alkalis- wear googles Hazardous substances in low Corrosive- stronger acids and alkalis wear goggles concentrations or amounts will Flammable – keep away from naked flames not pose the same risks as the Toxic – wear gloves- avoid skin contact- wash hands after use pure substance. Oxidising- Keep away from flammable / easily oxidised materials Measuring gas volumes Make sure you don’t leave gaps in Using a gas syringe your diagram where gas could Gas syringes can be used for a variety of escape experiments where the volume of a gas is measured, possibly to work out moles of gas or to follow reaction rates. Potential errors in using a gas syringe •gas escapes before bung inserted If drawing a gas syringe make sure •syringe sticks you draw it with some • some gases like carbon dioxide or sulphur dioxide are measurement markings on the soluble in water so the true amount of gas is not barrel to show measurements can measured. be made. The volume of a gas depends on pressure Alternatively gas volumes can be and temperature so when recording volume measured ‘over water’ with an up-turned it is important to note down the measuring cylinder in a trough of water temperature and pressure of the room.
    [Show full text]
  • Volumetric Flask
    Chemical Analysis Solution (Consumables) Nobel Laboratory Sdn. Bhd. Contents Beaker ............................................ pg. 01 Flask ............................................ pg. 02 Disk ............................................ pg. 05 Tube ............................................ pg. 07 Bottle ............................................ pg. 09 Funnel ............................................ pg. 11 Measure ............................................ pg. 13 Plastic Product ............................................ pg. 17 Rubber Product ............................................ pg. 27 Metalwares ............................................ pg. 31 Laboratory Accessories ............................................ pg. 34 Glassware Our glassware are made of high quality borosilicate glass, with competitive price and good quality. Beaker Low Type Beaker Description Specication Low Type Beaker 5-10000ml High Type Beaker Description Specication High Type Beaker 50-2000ml Conical Beaker Description Specication Conical Beaker 125-800ml Beaker with Handle Description Specication Beaker with Handle 100-1000ml 01 Flask Flat Bottom Flask Description Specication Flat Bottom Flask 5-20000ml Flat Bottom Flask (Ground Neck) 100-1000ml, Joint 14, 19, 24, 29, 40, 50 Round Bottom Flask Description Specication Round Bottom Flask 5-20000ml Round Bottom Flask (Ground Neck) 10-10000ml, Joint 14, 19, 24, 29, 40, 50 Kjeldahl Flask Description Specication Kjeldahl Flask 250-1000ml 02 Conical / Erlenmeyer Flask Description Specication
    [Show full text]
  • Membrane Filtration (Simultaneous Detection) for Detection Of: Total Coliforms, E
    EPA Approved* Method 10029 Coliforms: Membrane Filtration (simultaneous detection) For detection of: total coliforms, E. coli Media: m-ColiBlue24® Broth Sample Type: potable water, nonpotable water, wastewater Simultaneous Total Coliform and E. coli Screening Hach’s new m-ColiBlue24®** Broth allows for the simultaneous detection of total coliform bacteria and Escherichia coli (E. coli) within 24 hours. An enzymatic indicator in the medium causes non-fecal total coliform colonies grown on the m-ColiBlue24 medium to be red, while the E. coli (fecal coliform) colonies are blue. The selectivity of the enzymatic indicator eliminates the need for confirmation. The low false positive and false negative rates allow for the detection of at least 95% of all E. coli. m-ColiBlue24 Broth enhances the growth rate of coliform bacteria and optimizes the recovery of stressed or injured organisms. Special inhibitors in the medium efficiently minimize the growth of non-coliform bacteria. Convenient Packaging Hach’s m-ColiBlue24 Broth comes in ready-to-use PourRite™ Ampules; no need to measure, mix, or autoclave. The ampules have a large, unrestrictive opening that allows the medium to pour easily. Simply break the top off the ampule, using the Hach ampule breaker, and pour the medium onto an absorbent pad in a petri dish. Each ampule contains enough selective medium for one test. Medium in PourRite ampules has a shelf life of one year. Ampules are shipped with a Certificate of Analysis and have an expiration date printed on the label. m-ColiBlue24 Broth is also available in plastic ampules and 100 mL bottles. Specifications Incubation: 24 hours at 35 ± 0.5 °C Sensitivity: 1 CFU/100 mL Selectivity: Detects total coliforms and E.
    [Show full text]
  • Experiment 5
    Experiment Aspirin Synthesis 5 Aspirin is the common name for the compound acetylsalicylic acid, widely used as a fever reducer and as a pain killer. Salicylic acid, whose name comes from Salix, the willow family of plants, was derived from willow bark extracts. In folk medicine, willow bark teas were used as headache remedies and other tonics. Nowadays, salicylic acid is administered in the form of aspirin which is less irritating to the stomach than salicylic acid. To prepare aspirin, salicylic acid is reacted with an excess of acetic anhydride. A small amount of a strong acid is used as a catalyst which speeds up the reaction. In this experiment, phosphoric acid will be used as the catalyst. The excess acetic acid will be quenched with the addition of water. The aspirin product is not very soluble in water so the aspirin product will precipitate when water is added. The synthesis reaction of aspirin is shown below: H3PO4 102 g/ mol 138 g/mol d = 1.08 g/mL 180 g/mol Since acetic acid is very soluble in water, it is easily separated from the aspirin product. The aspirin isolated in this step is the “crude product”. A “purified product” can be obtained through recrystallization of the crude product in hot ethanol. In this experiment, the crude product will be the desired product. The percent yield of the crude product will be determined for this reaction. The purity of the product will also be analyzed. The product will be analyzed by three different methods: melting point, titration, and spectroscopic assay.
    [Show full text]
  • Released Or Absorbed) During a Chemical Reaction
    DAT GENERAL CHEMISTRY LAB INFORMATION Basic Techniques Calorimetry Calorimetry is used to measure the change in heat (released or absorbed) during a chemical reaction. In chemistry labs, the setup for calorimetry generally consists of a Styrofoam cup with a sealed lid and hole for thermometer to measure the change in temperature during the reaction. Centrifugation Centrifugation is used to separate solids and liquids in heterogeneous mixtures. Successful separation results in the solid portion (pellet) at the bottom of the centrifuge tube and the liquid portion (supernatant) above it. When using a centrifuge, it is important that it remains balanced at all times – any tube being spun should have one of equal volume placed in the opposite slot. Quantitative Transfer Proper quantitative transfer methods ensure that the entire quantity of a substance has been transferred (for example, if an experiment requires that 5g of a powder are transferred into a beaker, it is easy for small amounts of the powder to be lost during transfer or left behind on the transfer medium – this can affect accuracy of results). When transferring powders, the mass should first be measured on creased weighing paper. Next, the weighing paper should carefully be folded and tipped into its destination (e.g. a beaker). A spatula should then be tapped against the paper to dislodge any remaining powder. Finally, the paper should be rinsed into the beaker to ensure full transfer of the powder. When transferring a liquid, after it is poured into its destination, the sides of the vessel it was poured from should be rinsed with solvent and continue to be poured into the destination to ensure that all of the liquid has been transferred.
    [Show full text]