Leaching Requirement for Soil Salinity Control: Steady-State Versus Transient Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Land Use Change, Modelling of Soil Salinity And
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA LAND USE CHANGE, MODELLING OF SOIL SALINITY AND HOUSEHOLDS’ DECISIONS UNDER CLIMATE CHANGE SCENARIOS IN THE COASTAL AGRICULTURAL AREA OF SENEGAL BY Sophie THIAM (BSc. Natural Sciences, MSc. Natural Resources Management and Sustainable Development) A Thesis submitted to the Department of Civil Engineering, College of Engineering in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Climate Change and Land Use June, 2019 DECLARATION I hereby declare that this submission is my own work towards the PhD in Climate Change and Land Use and that, to the best of my knowledge, it contains no material previously published by another person, nor material which has been accepted for the award of any other degree of the University, except where due acknowledgment has been made in the text. Sophie Thiam (PG7281816) Signature…………………Date………………... Certified by: Prof. Nicholas Kyei-Baffour Signature…………….…….Date……………… Department of Agricultural and Biosystems Engineering Kwame Nkrumah University of Science and Technology (Supervisor) Dr. François Matty Signature................................Date………… Institut des Sciences De l’Environnement University Cheikh Anta Diop of Dakar (Supervisor) Dr. Grace B.Villamor Signature………………….Date…………… Centre for Resilience Communities University of Idaho (Supervisor) Prof. Samuel Nii Odai Signature………………..Date………………. Head of Department of Civil Engineering i ABSTRACT Soil salinity remains one of the most severe environmental problems in the coastal agricultural areas in Senegal. It reduces crop yields thereby endangering smallholder farmers’ livelihood. To support effective land management, especially in coastal areas where impacts of climate change have induced soil salinity and food insecurity, this study investigated the patterns and impacts of soil salinity in a coastal agricultural landscape by developing an Agent-Based Model (ABM) for Djilor District, Fatick Region, Senegal. -
Salinity Management and Soil Amendments for Southwestern Pecan Orchards J.L
ARIZONA COOPERATIVE E TENSION College of Agriculture and Life Sciences AZ1411 Revised 10/11 SALINITY MANAGEMENT AND SOIL AMENDMENTS FOR SOUTHWESTERN PECAN ORCHARDS J.L. Walworth Introduction Managing salts in Southwestern pecan orchards can be a major 1.0 challenge for growers, due to limited soil permeability and/or 1219721972 low-quality irrigation water. However, effective, long-term salt 1319631963 management is essential for maintaining productivity of pecan 0.8 1219721972 orchards. The challenge is to effectively manage soil salinity and sodium (Na) in a cost-effective manner, using appropriate combinations of irrigation management, soil management, and 0.6 soil amendments. Formation of Soil Salinity 0.4 Many arid region soils naturally contain high concentrations of soluble salts, because soil weathering processes dependent 0.2 upon precipitation have not been sufficiently intense to leach RTD = -0.095 x ECe –1.09 salts out of soils. Irrigation water and fertilizers contain salts R = -0.89** that may contribute further to the problem. Poor soil drainage due to the presence of compacted layers (hardpans, plowpans, 0.0 caliche, and clay lenses), heavy clay texture, or sodium problems 0022446688 may prevent downward movement of water and salts, making implementation of soil salinity control measures difficult. ECe (dS/m) Adequate soil drainage, needed to allow leaching of water and salts below the root zone of the trees, is absolutely essential for Figure 1. Reduction in pecan relative trunk diameter with increasing soil effective management of soil salinity. salt concentrations. After Miyamoto, et al., Irrig. Sci. (1986) 7:83-95. The risk of soil salinity formation is always greater in fine- textured (heavy) soils than in coarse-textured soils. -
Pages 406 To
397 SOIL SALINITY CONTROL UNDER BARLEY CULTIVATION USING A LABORATORY DRY DRAINAGE MODEL Shahab Ansari 1,*, Behrouz Mostafazadeh-Fard 2, Jahangir Abedi Koupai3 Abstract The drainage of agricultural fields is carried out in order to control soil salinity and the water table. Conventional drainage methods such as lateral drainage and interceptor drains have been used for many years. These methods increase agriculture production; but they are expensive and often cause environmental contaminations. One of the inexpensive and more environmental friendly methods that can be used in arid and semi-arid regions to remove excess salts from irrigated lands to non- irrigated or fallow lands is dry drainage. In the dry drainage method, natural soil system and the evaporation of fallow land is used to control soil salinity and the water table of irrigated land. There are few studies about dry drainage concepts. it is also important to study soil salt changes over time because of salt movements from irrigated areas to non-irrigated areas especially under plant cultivation. In this study a laboratory model which is able to simulate dry drainage was used to investigate soil salts transport under barley cultivation. The model was studied during the barley growing season and for a constant water table. During the growing season soil salinities of irrigated and non-irrigated areas were measured at different time. The Results showed that dry drainage can control the soil salinity of an irrigated area. The excess salts leached from an irrigated area and accumulated in the non-irrigated area and the leaching rate changed over time. -
Problems of Salination of Land in Coastal Areas of India and Suitable Protection Measures
Government of India Ministry of Water Resources, River Development & Ganga Rejuvenation A report on Problems of Salination of Land in Coastal Areas of India and Suitable Protection Measures Hydrological Studies Organization Central Water Commission New Delhi July, 2017 'qffif ~ "1~~ cg'il'( ~ \jf"(>f 3mft1T Narendra Kumar \jf"(>f -«mur~' ;:rcft fctq;m 3tR 1'j1n WefOT q?II cl<l 3re2iM q;a:m ~0 315 ('G),~ '1cA ~ ~ tf~q, 1{ffit tf'(Chl '( 3TR. cfi. ~. ~ ~-110066 Chairman Government of India Central Water Commission & Ex-Officio Secretary to the Govt. of India Ministry of Water Resources, River Development and Ganga Rejuvenation Room No. 315 (S), Sewa Bhawan R. K. Puram, New Delhi-110066 FOREWORD Salinity is a significant challenge and poses risks to sustainable development of Coastal regions of India. If left unmanaged, salinity has serious implications for water quality, biodiversity, agricultural productivity, supply of water for critical human needs and industry and the longevity of infrastructure. The Coastal Salinity has become a persistent problem due to ingress of the sea water inland. This is the most significant environmental and economical challenge and needs immediate attention. The coastal areas are more susceptible as these are pockets of development in the country. Most of the trade happens in the coastal areas which lead to extensive migration in the coastal areas. This led to the depletion of the coastal fresh water resources. Digging more and more deeper wells has led to the ingress of sea water into the fresh water aquifers turning them saline. The rainfall patterns, water resources, geology/hydro-geology vary from region to region along the coastal belt. -
Landscape Irrigation Best Management Practices
IRRIGATION ASSOCIATION & AMERICAN SOCIETY OF IRRIGATION CONSULTANTS Landscape Irrigation Best Management Practices May 2014 Prepared by the Irrigation Association and American Society of Irrigation Consultants Chairman: John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Editor: Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Committee Contributors (in alphabetical order): James Barrett, FASIC, CID, CLIA, James Barrett Associates LLC, Roseland, New Jersey Melissa Baum‐Haley, PhD, Municipal Water District of Orange County, Fountain Valley, California Carol Colein, American Society of Irrigation Consultants, East Lansing, Michigan David D. Davis, FASIC, David D. Davis and Associates, Crestline, California Brent Q. Mecham, CAIS, CGIA, CIC, CID, CLIA, CLWM, Irrigation Association, Falls Church, Virginia John W. Ossa, CID, CLIA, Irrigation Essentials, Mill Valley, California Dennis Pittenger, Cooperative Extension, U.C. Riverside, Riverside, California Corbin Schneider, ASIC, RLA, CLIA, Verde Design, Inc., Santa Clara, California The Irrigation Association and the American Society of Irrigation Consultants have developed the Landscape Irrigation Best Management Practices for landscape and irrigation professionals and policy makers who must preserve and extend the water supply while protecting water quality. The BMPs will aid key stakeholders (policy makers, water purveyors, designers, installation and maintenance contractors, and consumers) to develop and implement appropriate -
Design & Development of Automatic Soil Salinity Control System
International Journal of Latest Trends in Engineering and Technology (IJLTET) Design & Development of Automatic Soil Salinity Control System Praveen Kumar Department of Electronics and Communication Engineering MVN University, Palwal, Haryana, India Dr. S. K. Luthra Vice Chancellor MVN University, Palwal, Haryana India Dr. Rajeev Ratan Head of Department of Electronics and Communication Engineering MVN University, Palwal, Haryana India Abstract - The main objective of this project is to control soil salinity and improve soil fertility. The word salinity defines amount of salt present in water or soil which tends to decrease soil fertility through natural or human induced processes that results in the accumulation of dissolved salt in the soil water to an extent that inhibits plant growth and salinity is a severe environmental hazards that degrades the growth of many crops Spatial characterization of soil salinity is required for establishing salt control measurements in irrigated agriculture. For that, cost-effective, specific, rapid, and reliable methodologies for determining soil salinity in-situ and processing those data are required. Keywords: Microcontroller AT89S52, Soil Salinity, Salinity Sensor, salinity control I. INTRODUCTION Salinity means amount of salt in water and soil . soil salinity means unwanted amount of salt present in soil .As population is increasing so demands of food increasing ,soil salinity degrads quality of food availability in market. The accumulated salts include sodium , potassium, magnesium, calcium, chloride, sulphate, carbonate and bicarbonate. primary salinization involves salt accumulation through natural process due to high salt containment in ground water , whereas in secondary salinization is due to human interventions such as inappropriate irrigation procedure e.g with salt rich irrigation water. -
Benefits of Irrigation Management and Conservation
BENEFITS OF IRRIGATION MANAGEMENT AND CONSERVATION GARY L. HAWKINS UNIVERSITY OF GEORGIA WATER RESOURCE MANAGEMENT SPECIALIST ALL ABOUT IRRIGATION 7 MARCH 2O18 WATER CONSERVATION? • WHAT IS A DEFINITION? • USING LESS WATER? • SAVING THE WATER WE HAVE? • STORING WATER FOR LATER USE? • INCREASING WATER HOLDING CAPACITY OF SOIL? • INCREASING INFILTRATION? • REDUCING WASTING? WATER CONSERVATION BEING KNOWLEDGEABLE OF THE AVAILABLE WATER THAT WE HAVE TODAY AND TAKING ACTION TO PROTECT ALL SOURCES OF WATER IN ORDER THAT THERE IS PLENTY FOR USE BY EVERYONE, EVERYTHING AND AVAILABLE WHEN NEEDED THE MOST. HYDROLOGY PRINCIPLES • HYDROLOGY – THE GENERAL SCIENCE/STUDY OF WATER “THE SCIENCE THAT TREATS WATERS OF THE EARTH, THEIR OCCURRENCE, CIRCULATION, AND DISTRIBUTION, THEIR CHEMICAL AND PHYSICAL PROPERTIES, AND THEIR REACTION WITH THEIR ENVIRONMENT, INCLUDING THEIR RELATION TO LIVING THINGS” (PRESIDENTIAL SCIENCE AND POLICY COUNCIL, 1959). “THE SCIENCE THAT DEALS WITH THE PROCESSES GOVERNING THE DEPLETION AND REPLENISHMENT OF THE WATER RESOURCES OF THE LAND AREAS OF THE EARTH” (WISLER AND BRATER, HYDROLOGY, 1959, JOHN WILEY AND SONS) HYDROLOGIC CYCLE: Evaporation Interception Infiltration Precipitation Surface Runoff Evaporation Depression Storage Infiltration Evapotranspiration Soil moisture Maintain Infiltration storage dry-weather streamflow Ground water Return to reservoir ocean Infiltration ET Surface Streamflow Runoff generation Return to ocean Irrigation Losses INCREASING INFILTRATION? And - Thereby Reduce Runoff? VIRGINIA NRCS MOST POPULAR -
Global Experience on Irrigation Management Under Different Scenarios
DOI: 10.1515/jwld-2017-0011 © Polish Academy of Sciences (PAN), Committee on Agronomic Sciences JOURNAL OF WATER AND LAND DEVELOPMENT Section of Land Reclamation and Environmental Engineering in Agriculture, 2017 2017, No. 32 (I–III): 95–102 © Institute of Technology and Life Sciences (ITP), 2017 PL ISSN 1429–7426 Available (PDF): http://www.itp.edu.pl/wydawnictwo/journal; http://www.degruyter.com/view/j/jwld Received 30.10.2016 Reviewed 01.12.2016 Accepted 06.12.2016 A – study design Global experience on irrigation management B – data collection C – statistical analysis D – data interpretation under different scenarios E – manuscript preparation F – literature search Mohammad VALIPOUR ABCDEF Islamic Azad University, Kermanshah Branch, Young Researchers and Elite Club, Imam Khomeini Campus, Farhikhtegan Bld. Shahid Jafari St., Kermanshah, Iran; e-mail: [email protected] For citation: Valipour M. 2017. Global experience on irrigation management under different scenarios. Journal of Water and Land Development. No. 32 p. 95–102. DOI: 10.1515/jwld-2017-0011. Abstract This study aims to assess global experience on agricultural water management under different scenarios. The results showed that trend of permanent crops to cultivated area, human development index (HDI), irrigation wa- ter requirement, and percent of total cultivated area drained is increasing and trend of rural population to total population, total economically active population in agriculture to total economically active population, value added to gross domestic production (GDP) by agriculture, and the difference between national rainfall index (NRI) and irrigation water requirement is decreasing. The estimating of area equipped for irrigation in 2035 and 2060 were studied acc. -
RI DEM/Agriculture Best Management Practices Irrigation
Rhode Island Department of Environmental Management/Division of Agriculture Best Management Practices Irrigation Management Irrigation Systems Irrigation practices are widely used by fruit growers, nursery, green house and vegetable growers alike. Chemigation, the practice of applying fertilizers and or pesticides to crops through irrigation systems, is also used by some farmers. Chemigation can allow nutrients and pesticides to be timed according to crop needs rather than physical application constraints, but ease of application may lead to overuse. Plant nutrients applied through chemigation must only be used within accordance of an approved pest and pesticide management plan. This should incorporate the principles of Integrated Pest Management (IPM). With irrigation, there is a potential for movement of pollutants such as sediments, organic solids, pesticides, metals, micro organisms, salts and nutrients from the land into ground and surface water. Minimizing the discharge of pollutants while reducing water waste and improving water use efficiency are the goals of irrigation management. Setting up an irrigation management plan will help to address irrigation scheduling practices, efficient application, proper utilization of tail-water, drainage and runoff, and backflow prevention. Determining and controlling the rate, amount and timing of irrigation water in a planned and efficient manner is essential for water conservation. Careful irrigation management can minimize leaching and reduce the potential for pesticide and nutrient contamination of groundwater and decrease runoff, erosion, and transport of nutrients and pesticides to surface water. An irrigation system may be portable, or it may be established on the land to be irrigated. System components may include wells, a storage reservoir, a conveyance system, a sprinkler or trickle system, suitable pumps and a recycle storage pond to capture irrigation water down slope of the operation. -
Evaluation of Subsurface Drainage Techniques Used for Dryland Salinity
EVALUATION OF SUBSURFACE DRAINAGE TECHNIQUES USED FOR DRYLAND SALINITY CONTROL A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment ofthe Requirements for the Degree ofMaster ofScience in the Division ofEnvironmental Engineering University ofSaskatchewan Saskatoon By Warren Douglas Helgason Fall 2000 © Copyright Warren Douglas Helgason, 2000. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment ofthe requirements for a Postgraduate degree from the University ofSaskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree permission for copYing ofthis thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head ofthe Department or the Dean ofthe College in which my thesis work was done. It is understood that any coPYing or publication or use ofthis thesis or parts thereoffor financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which be made ofany material in my thesis. Requests for permission to copy or to make other use ofmaterial in this thesis in whole or in part should be addressed to: Chair ofthe Division ofEnvironmental Engineering University ofSaskatchewan Saskatoon, Saskatchewan, sm 5A9 1 DATA ACKNOWLEDGEMENTS AND RESTRICTIONS All raw data used in this study dated prior to 1997 were collected by the staffat Agriculture and Agri-Food Canada's Semiarid Prairie Agricultural Research Centre (SPARC) in Swift Current, Saskatchewan. -
Irrigation Management in Colorado: Survey Data and Findings By
Irrigation Management in Colorado: Survey Data and Findings by W. Marshall Frasier, Reagan M. Waskom, Dana L. Hoag, and Troy A. Bauder* Technical Report from the Agricultural Experiment Station, Colorado State University, April 1999. Frasier is Assistant Professor, Department of Agricultural and Resource Economics; Waskom is Extension Water Quality Specialist, Department of Soil and Crop Sciences; Hoag is Professor, Department of Agricultural and Resource Economics; and Bauder is Assistant Extension Specialist, Department of Soil and Crop Sciences; all Colorado State University, Fort Collins. Acknowledgements Funding for this study was provided by the Water Center at Colorado State University, Colorado State University Cooperative Extension, Colorado State University Agricultural Experiment Station, and the Colorado Department of Agriculture. We thank the advisory committee who helped define the scope and nature of the survey instrument. We are also indebted to the farmer review panel who helped design the survey instrument and provided useful comments on the wording and presentation of questions in the survey. Special thanks are extended to Kristy Ring for her tireless hours of entering data and generating countless tables of summary information. Thanks also to Chuck Hudson and Lance Fretwell of the Colorado Agricultural Statistics Service for their work in identifying the sample and generating the mailing list for the survey. Israel Broner, Don Lybecker, and Danny Smith provided review and editorial comments of this report. Finally, we express gratitude and appreciation to the hundreds of producers in Colorado who donated their valuable time to respond to the survey. i TABLE OF CONTENTS ACKNOWLEDGEMENTS .............................................................................................. i TABLE OF CONTENTS ................................................................................................. ii EXECUTIVE SUMMARY ............................................................................................ -
Dissertation Simulating the Fate And
DISSERTATION SIMULATING THE FATE AND TRANSPORT OF SALINITY SPECIES IN A SEMI- ARID AGRICULTURAL GROUNDWATER SYSTEM: MODEL DEVELOPMENT AND APPLICATION Submitted by Saman Tavakoli Kivi Department of Civil and Environmental Engineering In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2018 Doctoral Committee: Advisor: Ryan T. Bailey Co-Advisor: Timothy K. Gates Michael J. Ronayne Aditi Bhaskar Copyright by Saman Tavakoli Kivi 2018 All Rights Reserved ABSTRACT SIMULATING THE FATE AND TRANSPORT OF SALINITY SPECIES IN A SEMI- ARID AGRICULTURAL GROUNDWATER SYSTEM: MODEL DEVELOPMENT AND APPLICATION Many irrigated agricultural areas worldwide suffer from salinization of soil, groundwater, and nearby river systems. Increased salinity concentrations, which can lead to decreased crop yield, are due principally to the presence of salt minerals and high rates of evapotranspiration. High groundwater salt loading to nearby river systems also affects downstream areas when saline river water is diverted for additional uses. Irrigation-induced salinity is the principal water quality problem in the semi-arid region of the western United States due to the extensive background quantities of salt in rocks and soils. Due to the importance of the problem and the complex hydro-chemical processes involved in salinity fate and transport, a physically-based spatially-distributed numerical model is needed to assess soil and groundwater salinity at the regional scale. Although several salinity transport models have been developed in recent decades, these models focus on salt species at the small scale (i.e. soil profile or field), and no attempts thus far have been made at simulating the fate, storage, and transport of individual interacting salt ions at the regional scale within a river basin.