Pages 406 To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Land Use Change, Modelling of Soil Salinity And
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA LAND USE CHANGE, MODELLING OF SOIL SALINITY AND HOUSEHOLDS’ DECISIONS UNDER CLIMATE CHANGE SCENARIOS IN THE COASTAL AGRICULTURAL AREA OF SENEGAL BY Sophie THIAM (BSc. Natural Sciences, MSc. Natural Resources Management and Sustainable Development) A Thesis submitted to the Department of Civil Engineering, College of Engineering in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Climate Change and Land Use June, 2019 DECLARATION I hereby declare that this submission is my own work towards the PhD in Climate Change and Land Use and that, to the best of my knowledge, it contains no material previously published by another person, nor material which has been accepted for the award of any other degree of the University, except where due acknowledgment has been made in the text. Sophie Thiam (PG7281816) Signature…………………Date………………... Certified by: Prof. Nicholas Kyei-Baffour Signature…………….…….Date……………… Department of Agricultural and Biosystems Engineering Kwame Nkrumah University of Science and Technology (Supervisor) Dr. François Matty Signature................................Date………… Institut des Sciences De l’Environnement University Cheikh Anta Diop of Dakar (Supervisor) Dr. Grace B.Villamor Signature………………….Date…………… Centre for Resilience Communities University of Idaho (Supervisor) Prof. Samuel Nii Odai Signature………………..Date………………. Head of Department of Civil Engineering i ABSTRACT Soil salinity remains one of the most severe environmental problems in the coastal agricultural areas in Senegal. It reduces crop yields thereby endangering smallholder farmers’ livelihood. To support effective land management, especially in coastal areas where impacts of climate change have induced soil salinity and food insecurity, this study investigated the patterns and impacts of soil salinity in a coastal agricultural landscape by developing an Agent-Based Model (ABM) for Djilor District, Fatick Region, Senegal. -
Salinity Management and Soil Amendments for Southwestern Pecan Orchards J.L
ARIZONA COOPERATIVE E TENSION College of Agriculture and Life Sciences AZ1411 Revised 10/11 SALINITY MANAGEMENT AND SOIL AMENDMENTS FOR SOUTHWESTERN PECAN ORCHARDS J.L. Walworth Introduction Managing salts in Southwestern pecan orchards can be a major 1.0 challenge for growers, due to limited soil permeability and/or 1219721972 low-quality irrigation water. However, effective, long-term salt 1319631963 management is essential for maintaining productivity of pecan 0.8 1219721972 orchards. The challenge is to effectively manage soil salinity and sodium (Na) in a cost-effective manner, using appropriate combinations of irrigation management, soil management, and 0.6 soil amendments. Formation of Soil Salinity 0.4 Many arid region soils naturally contain high concentrations of soluble salts, because soil weathering processes dependent 0.2 upon precipitation have not been sufficiently intense to leach RTD = -0.095 x ECe –1.09 salts out of soils. Irrigation water and fertilizers contain salts R = -0.89** that may contribute further to the problem. Poor soil drainage due to the presence of compacted layers (hardpans, plowpans, 0.0 caliche, and clay lenses), heavy clay texture, or sodium problems 0022446688 may prevent downward movement of water and salts, making implementation of soil salinity control measures difficult. ECe (dS/m) Adequate soil drainage, needed to allow leaching of water and salts below the root zone of the trees, is absolutely essential for Figure 1. Reduction in pecan relative trunk diameter with increasing soil effective management of soil salinity. salt concentrations. After Miyamoto, et al., Irrig. Sci. (1986) 7:83-95. The risk of soil salinity formation is always greater in fine- textured (heavy) soils than in coarse-textured soils. -
Problems of Salination of Land in Coastal Areas of India and Suitable Protection Measures
Government of India Ministry of Water Resources, River Development & Ganga Rejuvenation A report on Problems of Salination of Land in Coastal Areas of India and Suitable Protection Measures Hydrological Studies Organization Central Water Commission New Delhi July, 2017 'qffif ~ "1~~ cg'il'( ~ \jf"(>f 3mft1T Narendra Kumar \jf"(>f -«mur~' ;:rcft fctq;m 3tR 1'j1n WefOT q?II cl<l 3re2iM q;a:m ~0 315 ('G),~ '1cA ~ ~ tf~q, 1{ffit tf'(Chl '( 3TR. cfi. ~. ~ ~-110066 Chairman Government of India Central Water Commission & Ex-Officio Secretary to the Govt. of India Ministry of Water Resources, River Development and Ganga Rejuvenation Room No. 315 (S), Sewa Bhawan R. K. Puram, New Delhi-110066 FOREWORD Salinity is a significant challenge and poses risks to sustainable development of Coastal regions of India. If left unmanaged, salinity has serious implications for water quality, biodiversity, agricultural productivity, supply of water for critical human needs and industry and the longevity of infrastructure. The Coastal Salinity has become a persistent problem due to ingress of the sea water inland. This is the most significant environmental and economical challenge and needs immediate attention. The coastal areas are more susceptible as these are pockets of development in the country. Most of the trade happens in the coastal areas which lead to extensive migration in the coastal areas. This led to the depletion of the coastal fresh water resources. Digging more and more deeper wells has led to the ingress of sea water into the fresh water aquifers turning them saline. The rainfall patterns, water resources, geology/hydro-geology vary from region to region along the coastal belt. -
Drainage Water Management R
doi:10.2489/jswc.67.6.167A RESEARCH INTRODUCTION Drainage water management R. Wayne Skaggs, Norman R. Fausey, and Robert O. Evans his article introduces a series of the most productive in the world. Drainage needed. Drainage water management, or papers that report results of field ditches or subsurface drains (tile or plastic controlled drainage, emerged as an effec- T studies to determine the effec- drain tubing) are used to remove excess tive practice for reducing losses of N in tiveness of drainage water management water and lower water tables, improve traf- drainage waters in the 1970s and 1980s. (DWM) on conserving drainage water ficability so that field operations can be The practice is inherently based on the and reducing losses of nitrogen (N) to sur- done in a timely manner, prevent water fact that the same drainage intensity is face waters. The series is focused on the logging, and increase yields. Drainage is not required all the time. It is possible to performance of the DWM (also called also needed to manage soil salinity in irri- dramatically reduce drainage rates during controlled drainage [CD]) practice in the gated arid and semiarid croplands. some parts of the year, such as the winter US Midwest, where N leached from mil- Drainage has been used to enhance crop months, without negatively affecting crop lions of acres of cropland contributes to production since the time of the Roman production. Drainage water management surface water quality problems on both Empire, and probably earlier (Luthin may also be used after the crop is planted local and national scales. -
Design & Development of Automatic Soil Salinity Control System
International Journal of Latest Trends in Engineering and Technology (IJLTET) Design & Development of Automatic Soil Salinity Control System Praveen Kumar Department of Electronics and Communication Engineering MVN University, Palwal, Haryana, India Dr. S. K. Luthra Vice Chancellor MVN University, Palwal, Haryana India Dr. Rajeev Ratan Head of Department of Electronics and Communication Engineering MVN University, Palwal, Haryana India Abstract - The main objective of this project is to control soil salinity and improve soil fertility. The word salinity defines amount of salt present in water or soil which tends to decrease soil fertility through natural or human induced processes that results in the accumulation of dissolved salt in the soil water to an extent that inhibits plant growth and salinity is a severe environmental hazards that degrades the growth of many crops Spatial characterization of soil salinity is required for establishing salt control measurements in irrigated agriculture. For that, cost-effective, specific, rapid, and reliable methodologies for determining soil salinity in-situ and processing those data are required. Keywords: Microcontroller AT89S52, Soil Salinity, Salinity Sensor, salinity control I. INTRODUCTION Salinity means amount of salt in water and soil . soil salinity means unwanted amount of salt present in soil .As population is increasing so demands of food increasing ,soil salinity degrads quality of food availability in market. The accumulated salts include sodium , potassium, magnesium, calcium, chloride, sulphate, carbonate and bicarbonate. primary salinization involves salt accumulation through natural process due to high salt containment in ground water , whereas in secondary salinization is due to human interventions such as inappropriate irrigation procedure e.g with salt rich irrigation water. -
Evaluation of Subsurface Drainage Techniques Used for Dryland Salinity
EVALUATION OF SUBSURFACE DRAINAGE TECHNIQUES USED FOR DRYLAND SALINITY CONTROL A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment ofthe Requirements for the Degree ofMaster ofScience in the Division ofEnvironmental Engineering University ofSaskatchewan Saskatoon By Warren Douglas Helgason Fall 2000 © Copyright Warren Douglas Helgason, 2000. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment ofthe requirements for a Postgraduate degree from the University ofSaskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree permission for copYing ofthis thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head ofthe Department or the Dean ofthe College in which my thesis work was done. It is understood that any coPYing or publication or use ofthis thesis or parts thereoffor financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which be made ofany material in my thesis. Requests for permission to copy or to make other use ofmaterial in this thesis in whole or in part should be addressed to: Chair ofthe Division ofEnvironmental Engineering University ofSaskatchewan Saskatoon, Saskatchewan, sm 5A9 1 DATA ACKNOWLEDGEMENTS AND RESTRICTIONS All raw data used in this study dated prior to 1997 were collected by the staffat Agriculture and Agri-Food Canada's Semiarid Prairie Agricultural Research Centre (SPARC) in Swift Current, Saskatchewan. -
Concentrated Alkaline Recharge Pools for Acid Seep Abatement: Principles, Design,Construction and Performance1
CONCENTRATED ALKALINE RECHARGE POOLS FOR ACID SEEP ABATEMENT: PRINCIPLES, DESIGN,CONSTRUCTION AND PERFORMANCE1 Jack R. Nawrot', Pat S. Conley2, and James E. Sandusky' Abstract: Concentrated alkaline recharge pools have been constructed above previously soil covered acid gob at the Peabody Will Scarlet Mine to abate acid seeps. Preliminary monitoring results (1989-1994) from a concentrated alkaline recharge pool demonstration project in the Pit 4 area have documented a 45 to 90 % reduction in acidity in the principal recharge pool groundwater zone. A 23 % reduction in acidity has occurred in the primary seep located downslope from the alkaline recharge pools. The initial improvements in water quality are seen as a positive indication that groundwater acidity will decrease further and amelioration of the acid seep will continue. Additional Key Words: acid seeps, mine refuse, acid mine drainage, alkaline recharge. Introduction Covering acid producing coal refuse with 4-ft of soil cover does not preclude pyrite oxidation under the soil cover. When pyrite oxidation does occur overlying soil covers may become acidified and acid seeps may be generated following several seasons of rainfall infiltration and flushing cycles. Burial of potentially acid producing coal waste in a zone of fluctuating groundwater elevations is conducive to chronic acid seep generation when. the upslope groundwater chemistry has insufficient alkalinity to neutralize downslope acid groundwater pools generated by the buried refuse. Soil covering after limestone is applied in sufficient quantities to overcome the potential acidity · of refuse, or limestone amendment and direct seeding are effective reclamation techniques that enhance long-term vegetation success and establish a favorable acid-base balance (Warburton et al. -
Information Sources on Land Drainage
- Educational Low-Priced Books Scheme, British Council: Book Coupons Programme; and British Council: Resale Scheme. Contact your local British Council representative; - Head, Information and Documentation, Swedish Agency for Research Cooperation with Developing Countries; - Third World Academy of Science, Donation Programme; - CTA. 26.4 Information Sources on Land Drainage 26.4.1 Tertiary Literature Tertiary literature gives information on abstract journals, journals, addresses of institutions, dictionaries, etc. It may have titles such as Sources of Information on .... An example is: Naber, G. Drainage : An Annotated Guide to Books and Journals Wageningen, ILRI, 1984.37 p. Gives an overview of sources of information, abstract journals, journals, bibliographies, directories, dictionaries, and books. Several titles are illustrated by their front cover. 26.4.2 Abstract Journals Abstract journals list titles of publications with an abstract of their contents. Examples are: - Soils and Fertilizers Published twelve times a year by CABI. Subscription price U.S. $680/year. - Irrigation and Drainage Abstracts Published five times a year by CABI. Subscription price U.S. $160/year. - Bibliography of Irrigation, Drainage and Flood Control Published once a year by the International Commission on Irrigation and Drainage/ICID, India. 26.4.3 Databases The book Online Databases in the Medical and Life Sciences, published by Elsevier, lists various interesting databases and their products. The following databases cover the field of tropical agriculture. Although not entirely concerned with land drainage, they will be of interest to land drainage engineers. They are also available on compact disc: - AGRICOLA, produced by the U.S. Department of Agriculture, National Agricultural Library; 1072 - AGRIS, International Information System for the Agricultural Sciences and Technology, produced by AGRIS Coordinating Centre, FAO; - CAB Abstracts, produced by CAB International, available online in DIALOG, DIMDI, and ESA. -
Salinity Management for Sustainable Irrigation Integratingscience, Environment, and Economics Public Disclosure Authorized Public Disclosure Authorized
ENVIRONMENTALLY AND SOCIALLY SUSTAINABLE DEVELOPMENT 1~~U) Rural Development Work in progresS 20842 for public discussion August 2000 Public Disclosure Authorized Salinity Management for Sustainable Irrigation IntegratingScience, Environment, and Economics Public Disclosure Authorized Public Disclosure Authorized f~~~~~~~~~~~~~~~~~~~~~~~~~~i:2 Public Disclosure Authorized Daniel Hillel wit/ an appendix by E. Feinerman ENVIRONMENTALLY AND SOCIALLY SUSTAINABLE DEVELOPMENT Rural Development Salinity Management for Sustainable Irrigation IntegratingScience, Enzvronment, and Economics DanielHillel withan appendixby E. Feinerman The WorldBank Washington,D.C. Copyright (©2000 The International Bank for Reconstruction and Development/THE WORLD BANK 1818 H Street, N.W. Washington, D.C. 20433, U.S.A. All rights reserved Manufactured in the United States of America First printing August 2000 12340403020100 This report has been prepared by the staff of the World Bank. The judgments expressed do not necessarily reflect the views of the Board of Executive Directors or of the govermnents they represent. The World Bank does not guarantee the accuracy of the data included in this publication and accepts no responsibility for any consequence of their use. The boundaries, colors, denominations, and other in- formation shown on any map in this volume do not imply on the part of the World Bank Group any judg- ment on the legal status of any territory or the endorsement or acceptance of such boundaries. The material in this publication is copyrighted. The World Bank encourages dissemination of its work and will normally grant permission promptly. Permission to photocopy items for internal or personal use, for the internal or personal use of specific clients, or for educational classroom use, is granted by the World Bank, provided that the appropriate fee is paid directly to Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, U.S.A., telephone 978-750-8400, fax 978-750-4470. -
Modeling Subsurface Drainage to Control Water-Tables in Selected Agricultural Lands in South Africa
Institute of Water and Energy Sciences (Including Climate Change) MODELING SUBSURFACE DRAINAGE TO CONTROL WATER-TABLES IN SELECTED AGRICULTURAL LANDS IN SOUTH AFRICA Cuthbert Taguta Date: 05/09/2017 Master in Water, Policy track President: Prof. Masinde Wanyama Supervisor: Dr. Aidan Senzanje External Examiner: Dr. Kumar Navneet Internal Examiner: Prof. Sidi Mohammed Chabane Sari Academic Year: 2016-2017 Modeling Subsurface Drainage in South Africa Declaration DECLARATION I Taguta Cuthbert, hereby declare that this thesis represents my personal work, realized to the best of my knowledge. I also declare that all information, material and results from other works presented here, have been fully cited and referenced in accordance with the academic rules and ethics. Signature: Student: Date: 05 September 2017 i Modeling Subsurface Drainage in South Africa Dedication DEDICATION To the Taguta Family, Where Would I be Without You? Continue to Shine! My son Tawananyasha and new daughter Shalom, may you grow to heights greater than mine! ii Modeling Subsurface Drainage in South Africa Abstract ABSTRACT Like many other arid parts of the world, South Africa is experiencing irrigation-induced drainage problems in the form of waterlogging and soil salinization, like other agricultural parts of the world. Poor drainage in the plant root zone results in reduced land productivity, stunted plant growth and reduced yields. Consequentially, this hinders production of essential food and fiber. Meanwhile, conventional approaches to design of subsurface drainage systems involves costly and time-consuming in-situ physical monitoring and iterative optimization. Although drainage simulation models have indicated potential applicability after numerous studies around the world, little work has been done on testing reliability of such models in designing subsurface drainage systems in South Africa’s agricultural lands. -
Assessing US Farm Drainage
Assessing U.S. Farm Drainage: WORLD Can GIS Lead to Better Estimates of Subsurface RESOURCES Drainage Extent? INSTITUTE ZACHARY SUGG SUMMary Extensive agricultural subsurface tile drainage in the Midwestern U.S. has important implications for nutrient pollution in surface water, notably the “dead zone” in the Gulf of Mexico. However, drainage data limitations have constrained efforts to effectively factor tile drainage into regional economic and environmental impact studies. Improved drainage data would be a valuable addition to future modeling applications. In light of this need, a methodology incorporating a geographic information system (GIS) analysis based on soil and land cover maps was implemented to create a set of county-level tile drainage extent estimates. • For several leading agricultural drainage states, maps of soil drainage characteristics were created and overlaid with row crops. Areas with row crops and poorly drained soils were calculated, disaggregated to the county level, and reduced by a percentage based on published estimates to approximate subsurface drainage. Results for eight highly-drained Midwest states were compared to previous estimates. A range of tile drainage estimates were compiled, along with a final best-guess county- level database of tile drained area. • This represents just one set of methods, and without sufficient data for verification it may be difficult to judge its effectiveness compared to others. By demonstrating one method, we hope to encourage further exploration of the use of GIS for predicting and assessing farm drainage. More importantly, we aim to further the dialogue regarding the relationship between drainage and water quality in the U.S. and highlight the need for improved measurement of this key agricultural practice. -
Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions
water Article Risk Assessment of Soil Salinization Due to Tomato Cultivation in Mediterranean Climate Conditions Angela Libutti * , Anna Rita Bernadette Cammerino and Massimo Monteleone Department of Science of Agriculture, Food and Environment, University of Foggia, 71122 Foggia, Italy; [email protected] (A.R.B.C.); [email protected] (M.M.) * Correspondence: [email protected]; Tel.: +39-0881-589128 Received: 11 September 2018; Accepted: 20 October 2018; Published: 23 October 2018 Abstract: The Mediterranean climate is marked by arid climate conditions in summer; therefore, crop irrigation is crucial to sustain plant growth and productivity in this season. If groundwater is utilized for irrigation, an impressive water pumping system is needed to satisfy crop water requirements at catchment scale. Consequently, irrigation water quality gets worse, specifically considering groundwater salinization near the coastal areas due to seawater intrusion, as well as triggering soil salinization. With reference to an agricultural coastal area in the Mediterranean basin (southern Italy), close to the Adriatic Sea, an assessment of soil salinization risk due to processing tomato cultivation was carried out. A simulation model was first arranged, then validated, and finally applied to perform a water and salt balance along a representative soil profile on a daily basis. In this regard, long-term weather data and physical soil characteristics of the considered area (both taken from international databases) were utilized in applying the model, as well as considering three salinity levels of irrigation water. Based on the climatic analysis performed and the model outputs, the probability of soil salinity came out very high, such as to seriously threaten tomato yield.