Possibilities for Peaceful Nuclear Explosives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The United States Nuclear Weapon Program
/.i. - y _-. --_- -. : _ - . i - DOE/ES4005 (Draft) I _ __ _ _ _____-. 67521 - __ __-. -- -- .-- THE UNITED STATES NUCLEAR - %”WEAPQN PROGRA,hik ..I .La;*I* . , ASUMMARYHISTORY \ ;4 h : . ,‘f . March 1983 \ .;_ U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division -. DOE/ES4005 (Draft) THE UNITED STATES NUCLEAR WEAPON PROG.RAM: ASUMMARYHISTORY .' . c *. By: . Roger M. Anders Archivist With: Jack M. Hall Alice L. Buck Prentice C. Dean March 1983 ‘ .I \ . U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division Washington, D. C. 20585 ‘Thelkpaemlt of Energy OqanizationAct of 1977 b-mughttcgether for the first tim in one departxrmtrmst of the Federal GovenmTle?t’s - Programs-With these programs cam a score of organizational ‘ . ? entities,eachwithi+ccxmhistoryandtraditions,frmadozendepart- . .‘I w ’ mnts and independentagencies. The EIistoryDivision,- prepareda . seriesof paqhlets on The Institutional Originsof the De-t of v Eachpamphletexplainsthehistory,goals,and achievemzntsof a predecessoragency or a major prqrm of the -to=-TY* This parquet, which replacesF&ger M. Anders'previous booklet on "The Office of MilitaxxApplication," traces the histoe of the UrL+& Statesnuclearweapx prcgramfrmits inceptionduring World War II to the present. Nuclear weqons form the core of America's m&z defenses. Anders'history describes the truly fo&idable effortscf 5e Atanic Energy Cmmission, the F;nergy Rfzsearch and Develqmlt z4dmCstratian,andtheDep&m- to create adiverse a* sophistica~arsenzl ofnucleaz ~accctqli&mentsofL~se agenciesandtheirplants andlabc J zrsatedan "atanic shie2 WMchp- Psrrericatoday. r kger M. Anders is a trained historianworking in the Eistzq Divisbn. -
NUCLEAR WEAPONS EFFECTS Introduction: the Energy Characteristics and Output from Nuclear Weapons Differ Significantly from Conve
NUCLEAR WEAPONS EFFECTS Introduction: The energy characteristics and output from nuclear weapons differ significantly from conventional weapons. Nuclear detonations exhibit much higher temperature within the fireball and produce peak temperatures of several hundred million degrees and intense x-ray heating that results in air pressure pulses of several million atmospheres. Conventional chemical explosions result in much lower temperatures and release the bulk of their energy as air blast and shock waves. In an atmospheric detonation, such as was deployed in Japan, it is the blast and thermal component of the nuclear explosion that is the major factor in destruction and death, not nuclear radiation, as the public believes. The effective range of immediate harm to humans from nuclear radiation from the atmospheric explosion is much less than the effective range from blast and thermal heating. In order to limit the discussion of weapons effects to elementary terms, this discussion is based upon a single worst-case scenario. Probably the largest weapon that might be employed against a population would have a yield of less than one-megaton (or 1 million tons of TNT equivalent energy or simply 1 MT). However, a crude terrorist nuclear device would probably be in the range of a few thousand tons of TNT equivalent energy or a few KT). The discussion here is based upon a nuclear detonation of 1 MT. Yield: The destructive power of a nuclear weapon, when compared to the same amount of energy produced by TNT is defined as the ‘yield’ of the nuclear weapon. A 20-kiloton (KT) weapon, such as was detonated over Japan in World War II was equivalent in energy yield to 20,000 tons of TNT. -
The United States Nuclear Weapon Program: A
DOE/ES-0005 (Draft) 67521 wees ce eee ee ee THE UNITED STATES NUCLEAR WEAPON PROGRAM: | A SUMMARYHISTORY '<) March 1983 U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division DOE/ES-0005 (Draft) THE UNITED STATES NUCLEAR | WEAPON PROGRAM: A SUMMARY HISTORY © | « By: Roger M. Anders Archivist With: Jack M. Holl Alice L. Buck Prentice C. Dean March 1983 U.S. Department of Energy Assistant Secretary, Management and Administration Office of The Executive Secretariat History Division Washington, D.C. 20585 The Department of Energy Organization Act of 1977 brought together for the first time in one department most of the Federal Government's energy programs. With these programs came a score of organizational entities, each with its owm history and traditions, from a dozen depart- ‘ments and independent agencies. The History Division has prepared a series of pamphlets on The Institutional Origins of the Department of Energy. Each pamphlet explains the history, goals, and achievements of @ predecessor agency or a major program of the Department of Energy. This pamphlet, which replaces Roger M. Anders' previous booklet cn "The Office of Military Application," traces the history of the United States nuclear weapon program from its inception during World War II to the present. Nuclear weapons form the core of America's modern defenses. anders! history describes the truly formidable efforts of «ne Atomic Energy Commission, the Energy Research and Develogment Administration, and the Departmr to create a diverse anc sophisticated arsenal of nuclear 2 accomplishments of these agencies and their plants and lak : created an “atomic shieic" which protects America today. -
Federal Register/Vol. 69, No. 162/Monday, August 23, 2004
Federal Register / Vol. 69, No. 162 / Monday, August 23, 2004 / Notices 51825 Format (PDF) on the Internet at the Energy, 1000 Independence Avenue, and oxidation process). Other following site: http://www.ed.gov/news/ SW., Washington, DC 20585; e-mail: corrections include: B&T Metals (OH) fedregister. [email protected]; toll free: (the DOE designation was in error and To use PDF you must have Adobe 1–877–447–9756; URL: http:// has been removed), Foote Mineral (PA) Acrobat Reader, which is available free www.eh.doe.gov/advocacy/. (the BE designation has been on the at this site. If you have questions about SUPPLEMENTARY INFORMATION: program’s Web site (noted below) since using PDF, call the U.S. Government inception, but was inadvertently Printing Office (GPO), toll free, at 1– Purpose missing from the Federal Register 888–293–6498; or in the Washington, The Energy Employees Occupational notice), Swenson Evaporator (is located DC, area at (202) 512–1530. Illness Compensation Program Act of in Harvey, not Chicago, IL) and C.H. 2000 (‘‘Act’’), Title 36 of Public Law Schnorr, PA (previously Schnoor). This Note: The official version of this document 106–398, establishes a program to is the document published in the Federal notice also deletes the listing for Ledoux Register. Free Internet access to the official provide compensation to individuals (NY) entirely because it was learned that edition of the Federal Register and the Code who developed illnesses as a result of no radioactivity was used at that of Federal Regulations is available on GPO their employment in nuclear weapons location. -
The Atomic Energy Commission
The Atomic Energy Commission By Alice Buck July 1983 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources Introduction Almost a year after World War II ended, Congress established the United States Atomic Energy Commission to foster and control the peacetime development of atomic science and technology. Reflecting America's postwar optimism, Congress declared that atomic energy should be employed not only in the Nation's defense, but also to promote world peace, improve the public welfare, and strengthen free competition in private enterprise. After long months of intensive debate among politicians, military planners and atomic scientists, President Harry S. Truman confirmed the civilian control of atomic energy by signing the Atomic Energy Act on August 1, 1946.(1) The provisions of the new Act bore the imprint of the American plan for international control presented to the United Nations Atomic Energy Commission two months earlier by U.S. Representative Bernard Baruch. Although the Baruch proposal for a multinational corporation to develop the peaceful uses of atomic energy failed to win the necessary Soviet support, the concept of combining development, production, and control in one agency found acceptance in the domestic legislation creating the United States Atomic Energy Commission.(2) Congress gave the new civilian Commission extraordinary power and independence to carry out its awesome responsibilities. Five Commissioners appointed by the President would exercise authority for the operation of the Commission, while a general manager, also appointed by the President, would serve as chief executive officer. To provide the Commission exceptional freedom in hiring scientists and professionals, Commission employees would be exempt from the Civil Service system. -
1. Energy and Power1
1. Energy and Power1 © John Dawson At the end of the Cretaceous period, the golden age of dinosaurs, an asteroid or comet about 10 miles in diameter headed directly towards the Earth with a velocity of about 20 miles per second, over ten times faster than our speediest bullets. Many such large objects may have come close to the Earth, but this was the one that finally hit. It hardly noticed the air as it plunged through the atmosphere in a fraction of a second, momentarily leaving a trail of vacuum behind it. It hit the Earth with such force that it and the rock near it were suddenly heated to a temperature of over a million degrees Centigrade, several hundred times hotter than the surface of the sun. Asteroid, rock, and water (if it hit in the ocean) were instantly vaporized. The energy released in the explosion was greater than that of a hundred million megatons of TNT, 100 teratons, more than ten thousand times greater than the total U.S. and Soviet nuclear arsenals. Before a minute had passed, the expanding crater was 60 miles across and 20 miles deep. It would soon grow even larger. Hot vaporized material from the impact had already blasted its way out through most of the atmosphere to an altitude of 15 miles. Material that a moment earlier had been glowing plasma was beginning to cool and condense into dust and rock that would be spread worldwide. Few people are surprised by the fact that an asteroid, the size of Mt. Everest, could do a lot of damage when it hits the Earth. -
A History of the Atomic Energy Commission
DoE/Es-ooo3/l 410896 . A HISTORY OF THE ATOhtlC ENERGY COMMISSION by: Alice L. Buck July 19= U.S. Depa~ment of Energy - Assistant Secreta~, Management and Administration Otilce of The Executive Secretariat History Division Washington, D. C.20W5 . To W, B. McCOOI, Secretaw to the Commission, a dedicated public official whose imaginative leadership and foresight in administering the Office of the Secretary; whose initiative in establishing and supporting within his staff a history program for the preparation of an official history of the Commission; and whose skill in developing a highly sucessful manage- ment program for bringing outstanding young men and women into the federal service, all contributed to making the Executive Secretariat a model for administering complex and technical programs. ovA Department of Ener~ Washington, D.C. 20585 The Department of Energy Organization Act of 1977 brought together for the first time in one department most of the Federal Government’s energv programs. ~fi?iththese ~roarams. came a score of organizational entltiesl each with its own history and traditions, from a dozen departments and independent aqencies. The Historv Division has prepared a series of pamphlets on The Institutional Origins of the Department of Energy. Fach pamphlet explains the history, qoals, and achievements of a predecessor aqencv of the Department of Energy. One purpose of the series is to provide a handv reference work which traces the organizational antecedents of the major programs and offices of the Department. In several instances the search for materials has resulted in the preservation of valuable historical records that otherwise might have been lost or destroyed. -
Conflict of Interest Disclosure Statement for Members of the Advisory Board on Radiation and Worker Health the Advisory Board On
Conflict of Interest Disclosure Statement for Members of the Advisory Board on Radiation and Worker Health The Advisory Board on Radiation and Worker Health (Board) is very concerned with maintaining the transparency of the compensation program created by the Energy Employees Occupational Illness Compensation Program Act of 2000 (EEOICPA). In an effort to foster a fully open and honest environment for claimants and in order to allay any concerns within the stakeholder community regarding perceived or actual conflicts of interest for Board members, the Board releases the following information for its Members: Board Member’s Name: Loretta R. Valerio Job Title and Current Employer: Ombudsman The Office of Nuclear Worker’s Advocacy for the State of New Mexico Albuquerque, NM Biographical Information: Ms. Valerio has served as an Ombudsman assisting New Mexico claimants under the Energy Employees Occupational Illness Compensation Program Act (EEOICPA) since 2007. Appointed by Governor Bill Richardson, Ms. Valerio has intervened to expedite and improve the claims adjudication for hundreds of EEOICPA claimants. Ms. Valerio was appointed to this position after seven years of contractor work as a local caseworker and outreach staff for the U.S. Department of Labor administering EEOICPA. Earlier in her career, Ms. Valerio was a contractor employee at Los Alamos National Laboratory, one of the major Department of Energy nuclear weapons sites, where she was involved in the administration of safety related operations, training and communications at -
Hydronuclear Testing Or a Comprehensive Test Ban?
Hydronuclear Testing or a Comprehensive Test Ban? Natural Resources Defense Council, Inc. 1350 New York Avenue, NW, Suite 300 Washington, D.C. 20005 Tele: (202) 783-7800 Fax: (202) 783-5917 Hydronuclear tests--tests of nuclear weapons at yields less than about two kilograms of TNT equivalent--are useful for the assessment of new designs and the safety of existing designs. Hydronuclear tests can serve a useful role in the development of the full spectrum of unboosted fission weapons, including first generation nuclear weapons of the implosion type with yields in the 10 to 30 kiloton range, more sophisticated designs with yields up to about a megaton, and advanced micro-nuclear weapons with yields of 5 to 500 tons. Since hydronuclear tests do not generate sufficient yield to create the conditions for fusion of deuterium and tritium in the core, such tests do not provide a reliable means if extrapolating the performance of new "boosted" fission weapons and thermonuclear primaries, or advanced thermonuclear secondaries. In negotiating the Comprehensive Test Ban Treaty (CTBT) the current strategy of the U.S. Government is not to define in the treaty what constitutes a nuclear test. If this strategy is successful and the treaty is ratified, the U.S. Government will interpret the CTBT to permit hydronuclear testing if such a test is conducted by any other country. A program of hydronuclear testing by any of the weapon states will encourage the others to conduct similar tests, with the results of undermining the purpose of the treaty. If hydronuclear tests are permitted under a CTB, the nuclear test sites of declared nuclear powers may be maintained, in part, to facilitate the conduct of hydronuclear tests. -
THE EFFECTS of NUCLEAR WEAPONS John A
THE EFFECTS OF NUCLEAR WEAPONS John A. Auxier, PhD. CHP Auxier & Associates, Inc. Knoxville, TN 37932 The vast majority of what is known about the effects of nuclear weapons in an occupied urban environment was learned at Hiroshima and Nagasaki. This information has been supplemented by that gathered at numerous nuclear weapons tests. For the purposes at hand, the effects of “nominal” weapons of 20 kilotons of TNT equivalent (KT), or less, will be given, while large “sophisticated” and thermonuclear weapons will be included only briefly. However, many people will want to supplement the materials provided today with a study of Sam Glasstone’s Effects of Nuclear Weapons. The 1962 edition has more materials on the effects of small weapons than most others. For consideration by terrorists we assume that they do not have access to large, high yield devices but may get the materials to assemble a “home made” bomb. However, for any nuclear device, the following materials should be helpful. Table 1 shows the distribution of fission energy for uranium-235, but for our purposes here we can assume that the numbers apply generally to other uranium isotopes and plutonium. Of course, after a very long time, all the fission energy appears as heat. Table 1. Distribution of Fission Energy in units of MeV Kinetic energy of fission fragments 165±5 Instantaneous gamma-ray energy 7±1 Kinetic energy of fission neutrons 5±0.5 Beta particles from fission products 7±1 Gamma rays from fission products 6±1 Neutrinos from fission products 10 Total energy per fission 200±6 Table 2 shows the comparison of fission energy, per mass, with the energy of TNT. -
The Effects Nuclear Weapons
The Effects of Nuclear Weapons Compiled and edited by Samuel Glasstone and Philip J. Dolan Third Edition Prepared and published by the UNITED STATES DEPARTMENT OF DEFENSE and the ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION .~~ -'!l -:8 ~ ~ ~" ,,-" .,,~ ..0 1977 ,-..,." . J!'or sale by the Superintendent of Documents, U.S. Government Printing OlBce Washln~ton. D.C. 20402 '" ; I ib',c I PREFACE When "The Effects of Atomic Weapons" was published in 1950, the explosive energy yields of the fission bombs available at that time were equivalent to some thousands of tons (i.e., kilotons) of TNT. With the development of thermonuclear (fusion) weapons, having energy yields in the range of millions of tons (i.e., megatons) of TNT, a new presentation, entitled "The Effects of Nuclear Weap- ons," was issued in 1957. A completely revised edition was published in 1962 and this was reprinted with a few changes early in 1964. Since the last version of "The Effects of Nuclear Weapons" was prepared, much new information has become available concerning nuclear weapons effects. This has come in part from the series of atmospheric tests, including several at very high altitudes, conducted in the Pacific Ocean area in 1962. In addition, laboratory studies, theoretical calculations, and computer simulations have provided a better understanding of the various effects. Within the limits imposed by security re- quirements, the new information has been incorporated in the present edition. In particular, attention may be called to a new chapter on the electromagnetic pulse. We should emphasize, as has been done in the earlier editions, that numerical values given in this book are not-and cannot be-exact. -
Plutonium Storage Safety Issues at Department of Energy Facilities
DOE/DP-0123T Assessment of Plutonium Storage Safety Issues at Department of Energy Facilities January 1994 U.S. Department of Energy Assistant Secretary for Defense Programs Washington, DC 20585 DISTRIBUTION OF THIS DOCUMENTS UNLIMITED DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi• bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer• ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom• mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products, images are produced from the best available original document. TABLE OF CONTENTS Page Summary iv I. Introduction 1 n. Material Properties Relevant to Storage 3 n. A. Metal, Oxides, and Oxidation 3 E.B. Reactions Involving Water 5 H.C. Hydride 7 H.D. Plastics and Other Organic Materials in Storage 7 II.E. Carbides and Nitride 8 H.F. Pyrophoricity 8 H.G. Particle Size 10 HI. Current Storage Practices 12 m. A. Containers 12 III.B. Metal Storage 12 m.C.