Basic Sailing Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sail Trimming Guide for the Beneteau 37 September 2008
INTERNATIONAL DESIGN AND TECHNICAL OFFICE Sail Trimming Guide for the Beneteau 37 September 2008 © Neil Pryde Sails International 1681 Barnum Avenue Stratford, CONN 06614 Phone: 203-375-2626 • Fax: 203-375-2627 Email: [email protected] Web: www.neilprydesails.com All material herein Copyright 2007-2008 Neil Pryde Sails International All Rights Reserved HEADSAIL OVERVIEW: The Beneteau 37 built in the USA and supplied with Neil Pryde Sails is equipped with a 105% non-overlapping headsail that is 337sf / 31.3m2 in area and is fitted to a Profurl C320 furling unit. The following features are built into this headsail: • The genoa sheets in front of the spreaders and shrouds for optimal sheeting angle and upwind performance • The size is optimized to sheet correctly to the factory track when fully deployed and when reefed. • Reef ‘buffer’ patches are fitted at both head and tack, which are designed to distribute the loads on the sail when reefed. • Reefing marks located on the starboard side of the tack buffer patch provide a visual mark for setting up pre-determined reefing locations. These are located 508mm/1’-8” and 1040mm / 3’-5” aft of the tack. • A telltale ‘window’ at the leading edge of the sail located about 14% of the luff length above the tack of the sail and is designed to allow the helmsperson to easily see the wind flowing around the leading edge of the sail when sailing upwind and close-hauled. The tell-tales are red and green, so that one can quickly identify the leeward and weather telltales. -
SAFETY PRACTICES a BASIC GUIDE Adopted January 2002 Amended October 2014
INTERSCHOLASTIC SAILING ASSOCIATION SAFETY PRACTICES A BASIC GUIDE Adopted January 2002 Amended October 2014 Special thanks to our sister organization, the Intercollegiate Sailing Association of North America, for allowing us to use this Safety Guide, modeled after their own. TABLE OF CONTENTS General Safety Practices ..................................................... 1 Personal Equipment ............................................................ 2 Personal Training ................................................................ 4 Capsizes ............................................................................... 4 Safety Boats ........................................................................ 5 Safety Boat Crew Training ................................................... 6 Head Injury Awareness ....................................................... 9 References .......................................................................... 9 Foreword: Interscholastic (high school) sailing requires competitors to be safety conscious. It is our obligation to maintain the positive safety record that Interscholastic Sailing Association has enjoyed over the past 85 years. This is a BASIC GUIDE for Member Schools and District Associations to follow in regard to SAFETY PRACTICES during regattas, and instructional and recreational sailing. George H. Griswold As amended by Bill Campbell for ISSA 1. GENERAL SAFETY PRACTICES You sail because you enjoy it. In order to enhance and guarantee your enjoyment, there are a number of general -
GLIDING and SAIL-PLANING a Beginner's Handbook
GLIDING AND SAIL-PLANING A Beginner's Handbook by F. STAMER Principal of the Rhon-Rositten Gesellschaft Flying School and A. LIPPISCH Principal of the Rhon-Rositten Gesellschaft Technical School Translated by G. E. STARTUP and FRANCES KINNEAR With 84 illustrations. 5s. net. f ttom % JBttfltttg p GLIDING AND SAIL-PLANING GLIDING AND SAIL-PLANING A Beginner's Handbook by F. STAMER Principal of the Rhon-Rositten Gesellschaft Flying School and A. LIPPISCH Principal of the Rhon-Rositten Gesellschaft Technical'School authorized translation by G. E. STARTUP and FRANCES KINNEAR WITH 84 ILLUSTRATIONS AND DIAGRAMS LONDON JOHN LANE THE BODLEY HEAD LTD, English edition first published in 1930 PRINTED IN GREAT BRITAIN BY THE BOWERING PRESS, PLYMOUTH Foreword THE motorless AIRPLANE, i.e. the GLIDER or SAIL PLANE, is steadily growing in popularity, and is, in the truest sense of the word, the flying sport of youth. This book represents the collective results of the writers' experiments since 1921 in motorless flight, and particularly in gliding, related in a way most likely to be useful to others. In flying, more than in anything, every experience and triumph individually won by hard endeavour should be triumph and experience won for all. Its aim is to state as clearly as possible all the beginner ought to know of Gliding and Gliding Machines. Hie theories it contains are explained in such a manner as to be easily under stood. The finest airmen are often hopelessly bad mathematicians and Flying as a Sport should, as far as possible, be made easy for everybody. FRITZ STAMER and ALEXANDER LIPPISCH. -
The International Flying Dutchman Class Book
THE INTERNATIONAL FLYING DUTCHMAN CLASS BOOK www.sailfd.org 1 2 Preface and acknowledgements for the “FLYING DUTCHMAN CLASS BOOK” by Alberto Barenghi, IFDCO President The Class Book is a basic and elegant instrument to show and testify the FD history, the Class life and all the people who have contributed to the development and the promotion of the “ultimate sailing dinghy”. Its contents show the development, charm and beauty of FD sailing; with a review of events, trophies, results and the role past champions . Included are the IFDCO Foundation Rules and its byelaws which describe how the structure of the Class operate . Moreover, 2002 was the 50th Anniversary of the FD birth: 50 years of technical deve- lopment, success and fame all over the world and of Class life is a particular event. This new edition of the Class Book is a good chance to celebrate the jubilee, to represent the FD evolution and the future prospects in the third millennium. The Class Book intends to charm and induce us to know and to be involved in the Class life. Please, let me assent to remember and to express my admiration for Conrad Gulcher: if we sail, love FD and enjoyed for more than 50 years, it is because Conrad conceived such a wonderful dinghy and realized his dream, launching FD in 1952. Conrad, looked to the future with an excellent far-sightedness, conceived a “high-perfor- mance dinghy”, which still represents a model of technologic development, fashionable 3 water-line, low minimum hull weight and performance . Conrad ‘s approach to a continuing development of FD, with regard to materials, fitting and rigging evolution, was basic for the FD success. -
J/22 Sailing MANUAL
J/22 Sailing MANUAL UCI SAILING PROGRAM Written by: Joyce Ibbetson Robert Koll Mary Thornton David Camerini Illustrations by: Sally Valarine and Knowlton Shore Copyright 2013 All Rights Reserved UCI J/22 Sailing Manual 2 Table of Contents 1. Introduction to the J/22 ......................................................... 3 How to use this manual ..................................................................... Background Information .................................................................... Getting to Know Your Boat ................................................................ Preparation and Rigging ..................................................................... 2. Sailing Well .......................................................................... 17 Points of Sail ....................................................................................... Skipper Responsibility ........................................................................ Basics of Sail Trim ............................................................................... Sailing Maneuvers .............................................................................. Sail Shape ........................................................................................... Understanding the Wind.................................................................... Weather and Lee Helm ...................................................................... Heavy Weather Sailing ...................................................................... -
What's in a Name?
Neil Pryde Sails International 354 Woodmont Road #18 Milford, CT 06460 203-874-6984 [email protected] Adjusting and Trimming Your Roller Furling Headsail A layman’s guide to getting the most from your headsail By Bob Pattison Most contemporary mid-size sailboats built in North America over the last twenty years have been, by and large, masthead sloops with one or two sets of spreaders and fly a headsail that is between 140% and 155% in size. Generally these headsails are set flying on roller furling gear. With this in mind, here’s an easy and straightforward approach to trimming roller furling headsails and setting them up for quick and precise reefing. )LUVW7KLQJV)LUVW+DO\DUG7HQVLRQ)LUVW7KLQJV)LUVW+DO\DUG7HQVLRQ Luff tension is used to remove wrinkles from the luff of the genoa, so that the sail is smooth from to tack to head along the luff. Increasing the What’s in a Name? luff tension beyond this amount will affect the overall shape of the sail Headsail size percentages refer to length of by inducing stretch along the luff, which will pull the draft (shape) of the the “luff perpendicular’ or L.P. This is an imaginary line that runs from the clew of the sail forward for a better shape in heavier wind conditions. Don’t do it (!), sail and intersects the luff at a right angle, as you will more than likely, furl the sail as the wind strength increases the length of which is relative to the “J” negating the need for additional luff tension. -
The Physics of Sqiling Bryond
The physics of sqiling BryonD. Anderson Sqilsond keels,like oirplone wings, exploit Bernoulli's principle. Aerodynomicond hydrodynomicinsighis help designeri creqte fosterioilboots. BryonAnderson is on experimentolnucleor physicist ond,choirmon of the physicsdeportment ot KentSlote University in Kent,Ohio. He is olsoon ovocotionolsoilor who lecfuresond wrifesobout the intersectionbehyeen physics ond soiling. In addition to the recreational pleasure sailing af- side and lower on the downwind side. fords, it involves some interesting physics.Sailing starts with For downwind sailing, with the sail oriented perpen- the force of the wind on the sails.Analyzing that interaction dicular to the wind directiory the pressure increase on the up- yields some results not commonly known to non-sailors. It wind side is greater than the pressure decrease on the down- turns ou! for example, that downwind is not the fastestdi- wind side. As one turns the boat more and more into the rection for sailing. And there are aerodynamic issues.Sails direction from which the wind is coming, those differences and keels work by providing "lift" from the fluid passing reverse, so that with the wind perpendicular to the motion of around them. So optimizing keel and wing shapesinvolves the boat, the pressure decrease on the downwind side is wing theory. greater than the pressure increase on the upwind side. For a The resistance experienced by a moving sailboat in- boat sailing almost directly into the wind, the pressure de- cludes the effects of waves, eddiei, and turb-ulencein the crease on the downwind side is much greater than the in- water, and of the vortices produced in air by the sails.To re- crease on the upwind side. -
The Prediction of Porpoising Inception for Modern Planing Craft
UNCLASSIFIED AD NUMBER ADB240994 NEW LIMITATION CHANGE TO Approved for public release, distribution unlimited FROM Distribution: DTIC users only. AUTHORITY per document cover THIS PAGE IS UNCLASSIFIED A TRIDENT SCHOLAR PROJECT REPORT NO. 254 THE PREDICTION OF PORPOISING INCEPTION FOR MODERN PLANING CRAFT UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND This document has been approved for public release and sale; its distribution is unlimited. REPORT DOCUMENTATION PAGE Form Approved I 0MBO no. 0704-0188 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS The prediction of porpoising inception for modern planing craft 6. AUTHOR(S) Tullio Celano, III 7. PERFORMING ORGANIZATIONS NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER USNA U.S. Naval Academy, Annapolis, MD Trident report; no. 254 (1998) 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES Accepted by the U.S. Trident Scholar Committee 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12n. DISTRIBUTION CODE This document has been approved for public release; its distribution is UNLIMITED. 13. ABSTRACT (Maximum 200 woras) The purpose of this project was to study porpoising, one of the most common forms of dynamic instability found in planing boats. In descriptive terms, it is a coupled oscillation in pitch and heave that occurs in relatively calm water. These oscillations can be divergent in amplitude, leading to loss of control, injury to occupants or damage to the craft. The mechanics of porpoising have been studied sporadically from theoretical and experimental perspectives for many years. -
420 Tuning Hints
420 Tuning suggestions College of Charleston 2012 Boat Setup on land: 1) Before sailing check that your shroud pin/ring dings are taped and secure, your tiller extension universal is solid, there’s no wiggle in your pintles and your hiking straps knots secure. 2) Tie your main halyard to the head of your main with a figure eight through the headboard grommet and then a half hitch back around the halyard. (see picture) 3) Hoist your jib and tension the rig tightly by placing a foot on the bow and pulling on the head stay while your team mate tensions the jib halyard. Don’t be afraid to over tension at this point as you’ll double check and most likely reset the tension once on the water. It’s easier to loosen once sailing than to tighten it! 4) Hoist your main and tension the halyard tightly. Use the 2:1 purchase to sock it up tight to the top of the mast. Again, it’s much easier to set it up tight on the dock than to rehoist once sailing! Set up on the water, before the start: 1) Trim your sails and head upwind. 2) Watch/study your leeward shroud as it is your guide to proper rig tension (through jib halyard tension). 3) Ideally the leeward shroud will just start to slacken to the point a slight wiggle (not more than ½”) is visible when the main is sheeted to maximum trim for the breeze/conditions at that time. Note: The advantage of using the “leeward shroud wiggle” is that you can gauge the amount of tension based on a given condition. -
For Session B Set One of the Two Buoys to Wind- Ward to Facilitate an Easy Beat and a Broad Reach Return Between Them
For session B set one of the two buoys to wind- ward to facilitate an easy beat and a broad reach return between them. Draw the circle on the white board to demon- strate the wind direction, the no sail zone, the need to sail to windward, and the sail set to the wind, and leeway. Explain that the boat will slip sideways when sail- ing to windward resulting in the straight line beat to the buoy being some- times unattainable. If there are windshifts a tack may therefore be necessary. In session B the instruc- tor is constantly reinforc- ing the concept that to windward the sail is set, the course adjusted to suit the wind direction. 7. Beating Continued… 7. We say pushing it back on course, as the boat will always be try- ing to point up into the wind and you hold a course by pushing down- wind on the joystick. This is the correct balance for a sailing boat and called "WEATHER HELM" - the boat wants to turn up into the weather. "LEE HELM" is when it wants to turn downwind. Reefing 1. Reeng is reducing the power generated by the sail. 2. Reeng is often necessary in strong winds and on our boats it is accomplished by pulling a cord which rotates the mast, rolling up the sail like a blind. 3. To reef, the port side (left side) reeng line is pulled with the left hand and is jammed in the clamcleat positioned on the console by your left knee. 4. The rst turn of the mast attens the sail which greatly reduces its power with little reduction in area. -
UCLA Marina Aquatic Center)
WINDSURFING I MANUAL www.recreation.ucla.edu/mac Windsurfing 2 INTRODUCTION www.recreation.ucla.edu/mac Windsurfing 3 We would like to share with you the physical and mental challenge of windsurfing, the exhilaration of weather, equipment and windsurfing with friends. GOALS Our beginning classes are designed for the complete novice with gentle wind, shallow water, equipment appropriate for beginners and lots of personal feedback. This may not challenge those who have windsurfed before, but it is an opportunity to correct improper technique before it becomes habitual. You can also arrange a brief private lesson, demonstrate your skill, rent our equipment and join our quest for wind and water. In Windsurfing I you will: • Have fun sailing in a light breeze (4-7 mph) • Learn to rig beginner equipment, uphaul, get underway, tack and care for equipment • Qualify to rent beginning equipment by bearing to a point upwind, returning on a run, tacking and jibing at will and passing a written test on sailing theory, right of way, parts of the rig, and basic safety considerations. You will probably benefit from additional time on the water before you tackle the more challenging conditions in our Windsurfing II class. One way to practice the skills you learn in beginning classes is to rent equipment from the dock on a thursday or friday. You will get more from Windsurfing II class if the basics have become automatic. When your arms start to get tired before the rest of you does, you will be ready (and motivated) to learn how to use a harness! In Windsurfing II you will: • Have fun trying out intermediate equipment. -
A CFD Study on the Performance of High Speed Planing Hulls
Grand Valley State University ScholarWorks@GVSU Masters Theses Graduate Research and Creative Practice 12-2019 A CFD Study on the Performance of High Speed Planing Hulls Mowgli J. Crosby Grand Valley State University Follow this and additional works at: https://scholarworks.gvsu.edu/theses Part of the Computational Engineering Commons, and the Dynamics and Dynamical Systems Commons ScholarWorks Citation Crosby, Mowgli J., "A CFD Study on the Performance of High Speed Planing Hulls" (2019). Masters Theses. 966. https://scholarworks.gvsu.edu/theses/966 This Thesis is brought to you for free and open access by the Graduate Research and Creative Practice at ScholarWorks@GVSU. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@GVSU. For more information, please contact [email protected]. A CFD Study on the Performance of High Speed Planing Hulls Mowgli J. Crosby A Thesis Submitted to the Graduate Faculty of GRAND VALLEY STATE UNIVERSITY In Partial Fulfillment of the Requirements For the Degree of Master of Science in Mechanical Engineering School of Engineering December 2019 Acknowledgments I would like to take this opportunity to thank committee for their continued support throughout this project and especially thank my thesis committee chair, Dr. Mokhtar, for his continued support. It would not have been possible without his guidance. I would also like to thank Dr. Fleischmann for her assistance with the scale model testing, constant enthusiasm, and general interest in the topic. In addition, I would like to thank Dr. Reffeor for her valuable suggestion and critiques. Finally, I would like to thank Grand Valley State University for giving me the opportunity to pursue further education and for providing me with all of the resourced needed to complete my research.