Revealing Paleo-Groundwater and Interbasin Flow As Fundamental to Resource Sustainability on the Arid Altiplano-Puna Plateau Brendan J

Total Page:16

File Type:pdf, Size:1020Kb

Revealing Paleo-Groundwater and Interbasin Flow As Fundamental to Resource Sustainability on the Arid Altiplano-Puna Plateau Brendan J Revealing Paleo-Groundwater and Interbasin Flow as Fundamental to Resource Sustainability on the Arid Altiplano-Puna Plateau Brendan J. Moran1, David F. Boutt1, LeeAnn Munk2, Joshua Fisher3, Felicity Arengo4, Patricia Marconi5, Diego Frau6 1Univeristy of Massachusetts, Amherst; [email protected]. 2University of Alaska, Anchorage. 3Advanced Consortium on Cooperation, Conflict, and Complexity, Earth Institute, Columbia University, 4Center for Biodiversity and Conservation, American Museum of Natural History, 5Fundacion Yuchan, Salta, Argentina, 6Instituto Nacional de Limnologia/CONICET, Universidad del Litoral, Santa Fe, Argentina Motivation -& Objective Results Discussion Water resources on the arid high-Andean plateau are critical to sustaining both indigenous 25%~75% Range within 1.5IQR 25%~75% Range within 1.5IQR 18 5000 Median Line 87 86 Median Line Mean Right: δ O data vs 0.72200 0.72200 Mean Left: Sr/ Sr data from communities and fragile Ramsar World Heritage ecosystems yet accelerating demand for Outliers Tres Quebradas Inflow Puna Basement Rocks Outliers elevation of sampling. 4500 mineral resources and the effects of climate change have led to concerns about the 0.72000 0.72000 this work. Potential Lapse rate estimated for 4000 sustainability of these resources. Persistent and fundamental questions regarding the source 0.71800 0.71800 end-member signatures this region from 3500 and movement of groundwaters, which sustain most surface waters here make managing 0.71600 0.71600 indicted by dashed lines. Sr Sr Rohrmann et al., 2014. 3000 86 86 0.71400 0.71400 Right: O and H isotope Sr/ these resources particularly difficult. Sr/ 87 87 0.71200 0.71200 data from each basin, each Ellipses indicate waters 2500 Estimated Lapse rate We seek to address the following questions: Puna Ignimbrites & Ashes at similar elevation with (Rohrmann et al., 2014) 0.71000 0.71000 with different color/shape. 2000 H H -(‰) VSMOW Sample Elevation Elevation (mamsl) Sample 2 1. What is the nature of hydrogeologic connectivity within the plateau; between topographically δ 0.70800 0.70800 Local Evaporation Lines distinct signatures. Blue closed basins and between modern infiltration (<60 yrs.) and the paleo-groundwater system? SdA Brines 1500 0.70600 0.70600 indicate predicted arrows are potential 1000 Snow Thermal Spring Vega Stream Lagoon Brine 3000-3500 3500-4000 4000-4600 2. How connected are surface water bodies (wetlands, lakes, salt lakes and salars) on the Puna to the Spring -14.0 -13.0 -12.0 -11.0 -10.0 -9.0 -8.0 -7.0 -6.0 -5.0 -4.0 Elevation (mamsl) signature of source waters. connections with waters δ18O - VSMOW (‰) groundwater (aquifers) and what is distribution and magnitude of these connections? 69°0'0"W 68°0'0"W 67°0'0"W down-gradient. Rain Snow Hombre Muerto Caro Antofalla Grande/Diamante 3. What are the dynamic response times of surface and groundwaters to perturbations from climate δ18O - VSMOW (‰) Carachipampa N Carchipampa NE 3Q Los Aparejos Rio Chaschuil Rio Vilavil Hombre Muerto Caro Antofalla Grande/Diamante Carachipampa N Carachipampa NE 3Q Los Aparejos Rio Chaschuil Rio Vilavil change and groundwater extractions? 25°0'0"S [1] Water Types 80 # Streams 87 86 Right: Piper diagram of ) Ca 80 Evaporation Mineral Precipitation - ! # Springs Left: Sr/ Sr v. 1/Sr Salar de ++ 60 # Lagoons + Mg Puna data collected in this study 60 # Groundwater + Cl Background Hombre Muerto -- 0.72200 Basement from water across the 1 Snow 440 Ca-SO4 69°0'0"W 68°0'0"W 67°0'0"W 66°0'0"W ! ++ High Elevation Basins Laguna Grande Spring ! 40 and available published SO 1 ! Low Elevation Basins study area. Signature Left: Regional map !!! Tres Quebradas 0.72000 Salar de Atacama 20 0"!!!! Laguna Grande Laguna ! 0!!!! brines Major Basins Hombre Muerto major streams #" 0! 20 # data. Data shapes identify NE Carachipampa * !!! Hombre Muerto of Altiplano Puna - ) " Carachipampa from major rock types ) # "! ! 0.71800 Caro " # ' #* Carachipampa ! Tres Quebradas El Penon Springs " ! # basin, colors are water brines Ca-HCO3 " ! (Meixner et al, 2019) in plateau, basins #) Na-Cl # 0.71600 Carachipampa Northern Carachipampa "" , #1# Carachipampa high Spring ! + Sr 24°0'0"S # type. Important water # # ,#, discussed in this ,+ elevation basins 86 this region and general + 0.71400 , -- 20 3 Sr/ group and evolutionary 20 Na 80 Na-HCO3 80 87 work, sample Salar de + ) Puna end-member mixing lines + K 40 SO 0.71200 - + CO + Rio ++ Ignimbrites Rio ) 40 3 pathways are labeled and 60 + 60 -- locations in this Antofalla 4 & Ashes noted. Major distinctions Mg 60 1 Aguas Los Patos HCO " 0.71000 ! 60 colored by basin. 40 ) 0 * # 40 work and location of - # in water-rock interactions Calientes ) ) 80 ' !# # " " ! " 0.70800 Salar de Cerro Galan * ' 80 # " !" 25°0'0"S " # 20 - ## #"#! ) " ) 20 profiles presented Depletion "##00 ! ## #,+ , #! Thermal waters along flow paths are Hombre Muerto #!!"!" ## " #) +,, ,0!0 #"#" !!!!!!,,,!"* ##), "! 0!!*! ! 1!!1!!!!!!!!!!!!!!!!$!!+!#,#)!,+ # 1 ")!!!!!! 0.70600 Laguna Caro 80 60 40 20 $ herein. 0 2 4 6 8 10 12 identifiable here. 20 40 - 60 80 Salar de ++ Cl 1/Sr (ppm) 26°0'0"S Antofagasta Ca Antofalla Below: Average precipitation region-wide 1998-2009 de la Sierra [3] Stream Spring Vega Lagoon from the TRMM satellite, reanalyzed by Bookhagen at % meq/kg Wet Period Wet Period 25%~75% 18 Range within 1.5IQR 26°0'0"S al., (in review). Data points are lc-excess filtered δ O -5 18 Median Line Antofagasta 0.6 Mean Laguna Grande Laguna Left: Time series of δ O 0.6 de la Sierra values from groundwater and spring waters. Outliers 69°0'0"W 68°0'0"W 67°0'0"W 66°0'0"W [4] Grande CarachiPampa El Penon in spring and stream Salar δ18O ‰ 0.5 0.5 Springs & Gw -6 (lc-excess filtered) Carachipampa waters. Color of line -13.9 - -10.9 23°0'0"S -10.89 - -9.4 El Penon Salar corresponds to basin (same 0.4 0.4 -9.39 - -8.1 27°0'0"S -8.09 - -6.7 SALLJ 18 -7 Tres Quebradas -6.69 - -4.8 mod as plot above) and arrows mod 0.3 Salar Limit of Interally -4.79 - -0.6 0.3 TRMM2b31 H, R H, R Groundwater 3 Drained Area Precipitation ? to map indicate location of 3 Major Fault Spring Systems mm/year Stream Major Drainges Lagoon -8 0.2 0.2 Salars 24°0'0"S Enrichment notable stream sites. Brine 500 250 0 Thermal water Lagoons Precipitation Watersheds Laguna Los Aparejos 012.5 25 50 75 100 Rio 28°0'0"S Kilometers 0.1 0.1 Vilavil -9 June 2011 June 2012 February 2018 February 2019 Tres Quebradas 0.0 0.0 Tothian interbasin flow regime 27°0'0"S 3Q to Cortaderas Date W E Spring Vega Stream Lagoon Brine 3000-3500 3500-4000 4000-4600 25°0'0"S Salar Left: 100000 [3] Elevation (mamsl) Left: Site map of study area. 10000 1000 (mg/l) Conceptualization - 100 R statistics from this Limit of Interally Topographic watersheds are Cl Above: mod of regional flow 10 Chaco Drained Area outlined in red. Important study by water type grouping and -4 from Toth (1963). 26°0'0"S -5 -6 elevation of sampling. basins, rivers and communities -7 -8 These flow O (‰) -9 18 18 δ O R in waters calculated from δ Left: are labeled; colors of basin -10 δ18O Low Elevation mod -11 High Elevation Pampa moisture regimes commonly -12 Pacific moisture 3 Rio labels correspond to data across -13 H. Statistics are from three regions 5,000 5,000 develop long, Watershed Streams Chaschuil boundary 27°0'0"S [2] 18 2 this work. Transects presented Springs of comparable size. The Great Basin δ O, δ H Samples 4,750 4,750 interbasin flow Salars Laguna Chaco ? Major Dissolved Ions Samples Laguna Lakes and Central Plains data are below are numbered. 3H percent Los Aparejos 4,500 4,500 Negra Vega paths in arid 87 86 3 3Q Salar groundwaters. Data extracted from Sr/ Sr H, Rmod modern content of water shown 4,250 4,250 mountainous areas. 015 30 60 90 120 Kilometers 0.70786 - 0.70866 50.1 - 59% 87 86 ? Avg. = 0.23 NWIS dataset and this study as relative circle size; Sr/ Sr 4,000 4,000 Laguna Los Avg. = 0.21 0.70866 - 0.71076 40.1 - 50% Avg. = 0.14 (including Salar de Atacama region) Aparejos data shown on color scale. Blue 3,750 3,750 28°0'0"S 0.71076 - 0.71373 30.1 - 40% from Moran et al., 2019. R in arrows show major modern flow 3,500 3,500 mod Conceptual Framework Elevation (mamsl) 0.71373 - 0.71749 20.1 - 30% Rio 3,250 Chaschuil 3,250 precipitation value used is from (a) N paths, green hollow arrows are 0.71749 - 0.72057 10.1 - 20% Left: Conceptual NE major interbasin or 3,000 3,000 Great Basin, USA Central Plains, USA Altiplano-Puna Plateau Lindsey et al., 2014 model of the SE 0 - 10% S 2,750 paleo-groundwater flow path. 2,750 Plateau 0 10 20 30 40 50 60 22°30'0"S 0.60 δ18O hydrogeologic flow Major Fault 010 20 40 60 80 N Major Drainges Salars Lagoons Watersheds Distance (km) Systems 3 Kilometers H, Rmod: 0% 10% 20% 30% 40% 50% Snowmelt regime of the Salar de 0.50 Carchi Pampa to Cerro Galan Atacama (SdA) basin Carachi Pampa to Hombre Muerto N S NE Northern Plateau NW Salar de Atacama to Laguna Blanca SE S 0.40 Rain 100000 23°0'0"S Hyper-arid to [2] Rio Los Patos from Moran et al., [1] δ18O 100000 the west.
Recommended publications
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Full-Text PDF (Final Published Version)
    Pritchard, M. E., de Silva, S. L., Michelfelder, G., Zandt, G., McNutt, S. R., Gottsmann, J., West, M. E., Blundy, J., Christensen, D. H., Finnegan, N. J., Minaya, E., Sparks, R. S. J., Sunagua, M., Unsworth, M. J., Alvizuri, C., Comeau, M. J., del Potro, R., Díaz, D., Diez, M., ... Ward, K. M. (2018). Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes. Geosphere, 14(3), 954-982. https://doi.org/10.1130/GES01578.1 Publisher's PDF, also known as Version of record License (if available): CC BY-NC Link to published version (if available): 10.1130/GES01578.1 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Geo Science World at https://doi.org/10.1130/GES01578.1 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Research Paper THEMED ISSUE: PLUTONS: Investigating the Relationship between Pluton Growth and Volcanism in the Central Andes GEOSPHERE Synthesis: PLUTONS: Investigating the relationship between pluton growth and volcanism in the Central Andes GEOSPHERE; v. 14, no. 3 M.E. Pritchard1,2, S.L. de Silva3, G. Michelfelder4, G. Zandt5, S.R. McNutt6, J. Gottsmann2, M.E. West7, J. Blundy2, D.H.
    [Show full text]
  • Redalyc.Geochemistry, U-Pb SHRIMP Zircon Dating and Hf Isotopes of The
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Poma, Stella; Zappettini, Eduardo O.; Quenardelle, Sonia; Santos, João O.; Koukharsky, Magdalena; Belousova, Elena; McNaughton, Neil Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Andean Geology, vol. 41, núm. 2, mayo, 2014, pp. 267-292 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173931252001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (2): 267-292. May, 2014 Andean Geology doi: 10.5027/andgeoV41n2-a01 formerly Revista Geológica de Chile www.andeangeology.cl Geochemistry, U-Pb SHRIMP zircon dating and Hf isotopes of the Gondwanan magmatism in NW Argentina: petrogenesis and geodynamic implications Stella Poma1, Eduardo O. Zappettini 2, Sonia Quenardelle 1, João O. Santos 3, † Magdalena Koukharsky 1, Elena Belousova 4, Neil McNaughton 3 1 Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA-CONICET), Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Pabellón II-Ciudad Universitaria, Intendente Güiraldes 2160, C1428 EGA, Argentina. [email protected]; [email protected] 2 Servicio Geológico Minero Argentino (SEGEMAR), Avda. General Paz 5445, edificio 25, San Martín B1650WAB, Argentina. [email protected] 3 University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia.
    [Show full text]
  • Unraveling the Peruvian Phase of the Central Andes: Stratigraphy, Sedimentology and Geochronology of the Salar De Atacama Basin (22°30-23°S), Northern Chile
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/271538622 Unraveling the Peruvian Phase of the Central Andes: Stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30-23°S), northern Chile Article in Basin Research · March 2015 DOI: 10.1111/bre.12114 CITATIONS READS 5 127 4 authors: Sebastián Bascuñán Cesar Arriagada University of Chile University of Chile 4 PUBLICATIONS 5 CITATIONS 90 PUBLICATIONS 664 CITATIONS SEE PROFILE SEE PROFILE Jacobus Philippus Le Roux Katja Deckart University of Chile University of Chile 141 PUBLICATIONS 1,668 CITATIONS 28 PUBLICATIONS 610 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Jacobus Philippus Le Roux letting you access and read them immediately. Retrieved on: 09 August 2016 EAGE Basin Research (2015) 1–28, doi: 10.1111/bre.12114 Unraveling the Peruvian Phase of the Central Andes: stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30–23°S), northern Chile Sebastia´ n Bascun˜ a´ n,* Ce´ sar Arriagada,* Jacobus Le Roux*,† and Katja Deckart* *Departamento de Geologıa, Universidad de Chile, Santiago, Chile †Centro de Excelencia en Geotermia de los Andes (CEGA), Universidad de Chile, Santiago, Chile ABSTRACT The Salar de Atacama Basin holds important information regarding the tectonic activity, sedimen- tary environments and their variations in northern Chile during Cretaceous times. About 4000 m of high-resolution stratigraphic columns of the Tonel, Purilactis and Barros Arana Formations reveal braided fluvial and alluvial facies, typical of arid to semi-arid environments, interrupted by scarce intervals with evaporitic, aeolian and lacustrine sedimentation, displaying an overall coarsening- upward trend.
    [Show full text]
  • Sr–Pb Isotopes Signature of Lascar Volcano (Chile): Insight Into Contamination of Arc Magmas Ascending Through a Thick Continental Crust N
    Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera To cite this version: N. Sainlot, I. Vlastélic, F. Nauret, S. Moune, F. Aguilera. Sr–Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust. Journal of South American Earth Sciences, Elsevier, 2020, 101, pp.102599. 10.1016/j.jsames.2020.102599. hal-03004128 HAL Id: hal-03004128 https://hal.uca.fr/hal-03004128 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright Manuscript File Sr-Pb isotopes signature of Lascar volcano (Chile): Insight into contamination of arc magmas ascending through a thick continental crust 1N. Sainlot, 1I. Vlastélic, 1F. Nauret, 1,2 S. Moune, 3,4,5 F. Aguilera 1 Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France 2 Observatoire volcanologique et sismologique de la Guadeloupe, Institut de Physique du Globe, Sorbonne Paris-Cité, CNRS UMR 7154, Université Paris Diderot, Paris, France 3 Núcleo de Investigación en Riesgo Volcánico - Ckelar Volcanes, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 4 Departamento de Ciencias Geológicas, Universidad Católica del Norte, Avenida Angamos 0610, Antofagasta, Chile 5 Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Av.
    [Show full text]
  • Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, SM
    Originally published as: Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, S.M., Sandvol, E., Alonso, R.N., Coira, B., Brown, L., Kind, R., Comte, D. (2013): Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. ‐ Tectonophysics, 586, 65‐83 DOI: 10.1016/j.tecto.2012.11.016 *Manuscript Click here to download Manuscript: Bianchi-etal.doc Click here to view linked References Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions 1 2 3 M. Bianchi 1, B. Heit 1,*, A. Jakovlev 2, X. Yuan 1, S. M. Kay 3, E. Sandvol 4, R. N. Alonso 5, B. 4 5 6 Coira 6, R. Kind 1,7 7 8 9 1 Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany 10 11 12 13 2 Institute of Geology, SB RAS, Novosibirsk, Russia 14 15 16 3 Cornell University, EAS, Snee Hall, Ithaca, NY, 14850. 17 18 19 4 Department of Geological Sciences, University of Missouri, Columbia MO 65211 20 21 22 23 5 Universidad Nacional de Salta, Buenos Aires 177, 4400-Salta, Argentina 24 25 26 6 CONICET, Instituto de Geología y Minería, Universidad Nacional de Jujuy, Avda. Bolivia 1661, 27 28 29 4600-San Salvador de Jujuy, Argentina 30 31 32 7 Freie Universität Berlin, Maltesserstr. 74-100, 12227 Berlin, Germany 33 34 35 36 * Corresponding author, [email protected]. 37 38 39 40 41 42 43 ABSTRACT 44 45 46 An array of 74 seismological stations was deployed in the Argentine Puna and adjacent regions for 47 48 a period of two years.
    [Show full text]
  • Tracing a Major Crustal Domain Boundary Based on the Geochemistry of Minor Volcanic Centres in Southern Peru
    7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), Extended Abstracts: 298-301 Tracing a major crustal domain boundary based on the geochemistry of minor volcanic centres in southern Peru Mirian Mamani1, Gerhard Wörner2, & Jean-Claude Thouret3 1 Georg-August University, Goldschmidstr. 1, 37077 Göttingen, Germany ([email protected], [email protected]) 2 Université Blaise Pascal, Clermont Ferrand, France ([email protected]) KEYWORDS : minor volcanic centres, crust, tectonic erosion, Central Andes, isotopes Introduction Geochemical studies of Tertiary to Recent magmatism in the Central Volcanic Zone have mainly focused on large stratovolcanoes. This is because mafic minor volcanic centres and related flows that formed during a single eruption are relatively rare and occur in locally clusters (e.g. Andagua/Humbo fields in S. Peru, Delacour et al., 2007; Negrillar field in N. Chile, Deruelle 1982) or in the back arc region (Davidson and de Silva, 1992). These studies showed that the "monogenetic" lavas are high-K calc-alkaline and their major, trace, and rare elements, as well as Sr-, Nd- and Pb- isotopes data display a range comparable to those of the Central Volcanic Zone composite volcanoes (Delacour et al., 2007). It has been argued that the eruptive products of these minor centers bypass the large magma chamber systems below Andean stratovolcanoes and thus may represent magmas that were derived from a deeper level in the crust (Davidson and de Silva, 1992; Ruprecht and Wörner, 2007). This study represents a continuation of our work to understand the regional variation in erupted magma composition in the Central Andes (Mamani et al., 2008; Wörner et al., 1992).
    [Show full text]
  • Lithospheric Delamination Beneath the Southern Puna Plateau Resolved by Local Earthquake Tomography
    Confidential manuscript submitted to replace this text with name of AGU journal Lithospheric delamination beneath the southern Puna plateau resolved by local earthquake tomography Jing Chen1,2, Sofia-Katerina Kufner2,3, Xiaohui Yuan2, Benjamin Heit2, Hao Wu1, Dinghui Yang1, Bernd Schurr2, and Suzanne Kay4 1Tsinghua University, Beijing, China. 2Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany. 3British Antarctica Survey, Cambridge, UK. 4Cornell University, Ithaca, USA Corresponding author: Jing Chen ([email protected]) Key Points: • A local earthquake tomography is performed in the southern Puna plateau and adjacent region • A high mantle Vp anomaly beneath Cerro Galan provides evidence for lithospheric delamination • A low Vp zone is observed beneath Ojos del Salado, reflecting the melt supplied by slab dehydration reaction at two depths This paper has been submitted for publication in Journal of Geophysical Research: Solid Earth. Confidential manuscript submitted to replace this text with name of AGU journal Abstract We present a local earthquake tomography to illuminate the crustal and uppermost mantle structure beneath the southern Puna plateau and to test the delamination hypothesis. Vp and Vp/Vs ratios were obtained using travel time variations recorded by 75 temporary seismic stations between 2007 and 2009. In the upper crust, prominent low Vp anomalies are found beneath the main volcanic centers, indicating the presence of magma and melt beneath the southern Puna plateau. In the lowlands to the southeast of the Puna plateau, below the Sierras Pampeanas, a high Vp body is observed in the crust. Beneath the Moho at around 90 km depth, a strong high Vp anomaly is detected just west of the giant backarc Cerro Galan Ignimbrite caldera with the robustness of this feature being confirmed by multiple synthetic tests.
    [Show full text]
  • Tectonic Evolution of the Andes of Ecuador, Peru, Bolivia and Northern
    CORDANI, LJ.G./ MILANI, E.J. I THOMAZ flLHO. A.ICAMPOS. D.A. TECTON IeEVOLUTION OF SOUTH AMERICA. P. 481·559 j RIO DE JANEIRO, 2000 TECTONIC EVOLUTION OF THE ANDES OF ECUADOR, PERU, BOLIVIA E. Jaillard, G. Herail, T. Monfret, E. Dfaz-Martfnez, P. Baby, A, Lavenu, and J.F. Dumont This chapterwasprepared underthe co-ordination chainisvery narrow. Thehighest average altitudeisreached ofE.[aillard. Together withG.Herail andT. Monfret,hewrote between 15°5 and 23°S, where the Altiplano ofBolivia and the Introduction. Enrique Dfaz-Martinez prepared the southernPerureaches anearly 4000 mofaverage elevation, section on the Pre-Andean evolution ofthe Central Andes. andcorresponds tothewidest partofthechain. TheAndean Again Iaillard, onthe Pre-orogenic evolution ofthe North­ Chain is usually highly asymmetric, witha steep western Central Andes. E.[aillard, P. Baby, G. Herail.A, Lavenu, and slope. and a large and complex eastern side. In Peru,the J.E Dumont wrote the texton theorogenic evolution of the distance between the trench and the hydrographic divide North-Central Andes, And, finally, [aillard dosed the variesfrom 240 to }OO km.whereas. the distancebetween manuscript with theconclusions. thehydrographic divide and the200m contourlineranges between 280 km(5°N) and about1000 kIn (Lima Transect, 8·S - 12°5). In northern Chile and Argentina (23·5),these distances become 300 krn and 500 km, respectively. Tn INTRODUCTION: southern Peru,as littleas 240 km separates the Coropuna THE PRESENT-DAY NORTH-CENTRAL Volcano (6425 m) from the Chile-Peru Trench (- 6865 m). This, together with the western location of the Andes ANDES (jON - 23°5) _ relative to theSouth American Con tinent,explains whythe riversflowing toward the Pacific Ocean do not exceed 300 TheAndean Chain isthemajormorphological feature of kmlong, whereas thoseflowing to theAtlantic Ocean reach theSouth American Continent.
    [Show full text]
  • Ascensos a Las Cimas De Los Volcanes Rosado, Mellado Y Socompa Caipis
    Cuadernos Universitarios. Publicaciones Académicas de la Universidad Católica de Salta, vol. 5, 2012: 259-270 A la Sombra del Socompa: Ascensos a las Cimas de los volcanes Rosado, Mellado y Socompa Caipis María Constanza Ceruti1 Resumen En este trabajo se ofrecen los resultados de las observaciones realizadas desde el ámbito de la arqueología de alta montaña en las cimas de tres cerros situados en las inmediaciones del volcán Socompa, en la puna de Salta. Los ascensos efectuados personalmente por la autora permitie- ron constatar ausencia de indicadores de utilización ritual prehispánica en las cumbres de los cerros Rosado y Mellado; en tanto que en las cimas del macizo volcánico de Socompa Caipis se documentaron indicadores de ascensiones tradicionales y subactuales. Las ascensiones aquí referidas a las máximas alturas de los cerros Rosado (5.48 m) y Mellado (5.317 m) constituyen las primeras instancias de exploración científica de dichas cumbres. Por su parte, las observa- ciones en las cimas del Socompa Caipis (5.156 m) contribuyen a aclarar el panorama de la utilización ritual de las montañas que rodean al majestuoso Socompa, volcán de más de seis mil metros de altura, el cual había sido ascendido y explorado por esta investigadora con anterioridad. Palabras clave: arqueología - montaña - documentación - cumbres - Inca Introducción El Socompa es un volcán formado por una única cumbre de más de seis mil metros, de la El volcán Socompa se encuentra ubicado a que se desprenden varios filos, bastante abrup- 24° 23’ Latitud sur y a 68° 14’ Longitud este, tos, que descienden hasta la base. El cráter se aproximadamente a 8 km al noreste de la esta- encuentra ubicado al noroeste de la montaña, ción homónima del ferrocarril, en el Departa- en territorio chileno, en tanto que la cumbre mento Los Andes de la provincia de Salta.
    [Show full text]
  • A Re-Appraisal of the Stratigraphy and Volcanology of the Cerro Galán Volcanic System, NW Argentina
    Bull Volcanol (2011) 73:1427–1454 DOI 10.1007/s00445-011-0459-y RESEARCH ARTICLE A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina Chris B. Folkes & Heather M. Wright & Raymond A. F. Cas & Shanaka L. de Silva & Chiara Lesti & Jose G. Viramonte Received: 15 February 2009 /Accepted: 31 January 2011 /Published online: 6 May 2011 # Springer-Verlag 2011 Abstract From detailed fieldwork and biotite 40Ar/39Ar the Toconquis Group (the Pitas and Vega Ignimbrites). dating correlated with paleomagnetic analyses of lithic clasts, Toconquis Group Ignimbrites (~5.60–4.51 Ma biotite ages) we present a revision of the stratigraphy, areal extent and have been discovered to the southwest and north of the volume estimates of ignimbrites in the Cerro Galán volcanic caldera, increasing their spatial extents from previous complex. We find evidence for nine distinct outflow estimates. Previously thought to be contemporaneous, we ignimbrites, including two newly identified ignimbrites in distinguish the Real Grande Ignimbrite (4.68±0.07 Ma biotite age) from the Cueva Negra Ignimbrite (3.77± Editorial responsibility: K. Cashman 0.08 Ma biotite age). The form and collapse processes of This paper constitutes part of a special issue: the Cerro Galán caldera are also reassessed. Based on re- interpretation of the margins of the caldera, we find evidence Cas RAF, Cashman K (eds) The Cerro Galan Ignimbrite and Caldera: for a fault-bounded trapdoor collapse hinged along a regional characteristics and origins of a very large volume ignimbrite and its N-S fault on the eastern side of the caldera and accommo- magma system.
    [Show full text]
  • Magmatic Processes by U-Th Disequilibria Method
    Magmatic processes by U-Th disequilibria method. Comparison of two Andean systems: El Misti Volcano (S. Peru) and Taapaca Volcanic Center (N. Chile). Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultäten der Georg-August-Universität zu Göttingen vorgelegt von Aneta Kiebala aus Rzeszów (Polen) Göttingen 2008 D 7 Referent: Prof. Dr. G. Wörner Korreferent: Prof. Dr. B. Hansen Tag der mündlichen Prüfung: 03.04.2008 2 Abstract El MistiVolcano (South Peru) and Taapaca Volcanic Complex (North Chile) both located in the Central Andean Volcanic Zone in South America have been studied in order to place constrains on the evolution of their distinct magmatic systems. Althought both volcanic ceneters are located in similar general geological settings (CVZ) they show very contrasting magmatic evolution. El Misti volcano is a single stratocone (<112ka, Thouret et al., 2001), which erupted magmas ranging between 58 and 68wt% SiO2. By contrast Taapaca is a long- lived dome cluster (1.27 Ma to Holocene, Wörner et al., 2004a; Clavero et al., 2004), which erupted magmas ranging between 60 and 71wt% SiO2. However the majority (69%) of samples fall into the narrow range of 63 to 67wt% SiO2. The radiogenic Sr-isotopic compositions are slightly higher for El Misti (0.7075-7078) than for Taapaca (0.7063-7067). Pb isotopic compositions are different, most likely reflecting the composition of assimilated continental crust (e.g. 206Pb/204Pb=17.68-17.84 for El Misti and 18.10 for Taapaca (Mamani et al., 2004)). The two studied volcanic systems are very different in their U-Th disequilibria measured by TIMS.
    [Show full text]