Retropharyngeal Abscess: Diagnosis and Treatment Update

Total Page:16

File Type:pdf, Size:1020Kb

Retropharyngeal Abscess: Diagnosis and Treatment Update Infectious Disorders – Drug Targets, 2012, 12, 291-296 291 Retropharyngeal Abscess: Diagnosis and Treatment Update 1 2,3 Brian K. Reilly * and James S. Reilly 1Children’s National Medical Center, Washington, DC; USA; 2Chair, Department of Surgery, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; 3Professor of Otolaryngology and Pediatrics, Thomas Jefferson Univer- sity, Philadelphia, PA, USA Abstract: Retropharyngeal abscess is a deep neck space infection that may present in various subtle ways permitting po- tentially lethal complications to occur before appropriate diagnosis is made and expedient management undertaken. This article reviews in detail the pertinent anatomy, diagnostic pearls, and clinical recommendations to optimally manage these common infections in children. Keywords: Abscess, imaging, infection, neck, pediatric, retropharyngeal. OVERVIEW whether purulence is obtained intra-operatively [3]. Classic findings for abscess include large fluid with central A retropharyngeal abscess (RPA) is a deep neck space hypodensity, complete ring enhancement, and scalloping infection defined by its anatomical location within the deep Fig. (1). cervical tissue planes. RPA is located behind the pharyngeal mucosa and is contained anteriorly by the buccopharyngeal fascia (around the constrictor muscles) and laterally by the carotid sheath/parapharyngeal space. Superiorly, it may ex- tend to the skull base, and inferiorly, it can travel to the me- diastinum. This “potential” retropharyngeal space, which expands with infection, is occupied by a lymph-node basin [1] that serves as the common, final drainage pathway of the nasal cavity, paranasal sinuses, nasopharynx, oropharynx, hypopharynx, and larynx. Inadequately treated and virulent infections of these regions can cause suppuration of these nodes. Thus, retropharyngeal lymphadenitis with edema can progress to a cellulitis, which, if untreated, evolves to early abscess or phlegmon and then to abscess. The diagnosis of RPA is initially based upon clinical symptoms and signs on physical examination. What compli- cates this type of deep neck space abscess is the fact that there is rarely any reported visible or palpable external neck swelling. Torticollis, fever, and odynophagia represent a classic triad of symptoms. In addition, there are many pa- tients who have irritability with only subtle findings of head- ache, decreased oral intake, dysphagia, and limited neck mo- tion. As a result, a clinician’s suspicion of RPA is best cor- roborated with computed tomography (CT) imaging with contrast. A CT scan of the neck is helpful to differentiate between retropharyngeal cellulitis, phlegmon, and abscess as well as to localize the infection to facilitate surgical drainage. As such, CT imaging can help determine the next appropriate Fig (1). A 17-year-old boy with trismus, torticollis, and odynophagia. decision in management. The main controversy is in treat- On computed tomography, he was found to have a large retropharyn- ment of abscess with solely medical versus surgical and geal abscess causing narrowing of the airway and displacement of the medical therapy. Shefelbine et al., [2] argue that a CT scan carotid space laterally. Because of its large size, scalloped appear- will help determine what subset of RPA can be successfully ance, and proximity to great vessels, the patient was taken immedi- treated with antibiotics alone. Indeed, a CT scan is helpful as ately for surgical drainage via an intra-oral approach. a surgical roadmap; although, it does not always predict Although airway compromise remains a grave concern, early identification and treatment of a retropharyngeal *Address correspondence to this author at the National Children’s Medical Center, 111 Michigan Avenue, NW, Washington, DC 20010, USA; abscess lessens the rate of this complication. Regardless, Tel: 202-476-3659; Fax: 202-476-5038; E-mail: [email protected] airway monitoring in an intensive care unit (ICU) setting is 2212-3989/12 $58.00+.00 © 2012 Bentham Science Publishers 292 Infectious Disorders – Drug Targets, 2012, Vo l. 12, No. 4 Reilly and Reilly still prudent for large abscesses, young children, and for dren aged 2-6 years put this patient population at highest risk those with frank snoring/stertor; ICU care may be indicated for RPA. also after surgical drainage. In fact, Landler et al. found that the typical patient was a There are two major treatment modalities of retropharyn- five-year-old male from an urban location admitted in a non- geal abscess: 1) conservative medical management with in- elective fashion via the emergency department [4]. travenous antibiotics, sometimes including steroids, and/or Children are much more prone to the development of this 2) prompt surgical drainage. Early stages of infection, gener- condition; although, some adolescents who have either a ally cellulitis or phlegmon, are managed with antibiot- compromised immunological system or who have never had ics/steroid regimens. Advanced or refractory disease leads to a prior adenotonsillectomy can be at risk. Older children are a larger or more serious RPA. True RPA abscesses, which less likely to develop a retropharyngeal abscess because the demonstrate scalloping and measure more than 2 cm in nodes of Rouvière (located in the retropharyngeal space) diameter, or which progress in the setting of antibiotics, typically begin to involute and regress beginning at four favor prompt surgical drainage. years of age; by the time the child is six years old, the retro- Regardless of the treatment modality chosen, an RPA pharyngeal nodes have substantially regressed. Specific geo- requires close monitoring and inpatient hospital care. Chil- graphic regions or ethnic races have never been shown to be dren with an RPA can be managed by the pediatric physi- predisposed to RPA. cians. In coordination with the otolaryngology surgeons, a decision of the benefits of operative intervention should be PRESENTATION/SYMPTOMS made daily. More severely ill patients benefit from infectious disease consultants, who can help select appropriate antibi- Major criteria for probable RPA include toxic appear- otic coverage, evaluate the sensitivity to the antimicrobial ance, airway distress, high grade fever (>101°F), drooling, agent, and determine the length of treatment. dysphagia, trismus, limited neck motion, head tilt or torticol- lis, and noisy breathing pattern including stertor. Patients with milder symptoms, suggestive of cellulitis, are non-toxic INCIDENCE in appearance, possess low grade fever (< 101°F), headache, Antitbiotics have reduced the incidence, morbidity, and irritability, and decreased oral intake. mortality of abscesses. Landler et al., performed the largest Symptoms that occur with an RPA are secondary to the national review in 2003, which showed seasonal variation in swelling of space. Neck stiffness is due to inflammation of admissions for RPA [4]. The highest percentage of admis- prevertebral muscles (i.e., longus colli). Odynophagia is sec- sions was in the spring (March, 10.7%) and lowest in the ondary to distension of the pharynx and hypopharynx. Chil- summer (August, 3.8%). Of the 1,321 national admissions dren usually present three days after developing symptoms, reviewed in this study database there were no deaths. The but can arrive between 24 hours to two weeks after the onset mean age of patients was 5.1 years. Approximately 37% of symptoms. were female and 63% were male. Additionally, a tracheal “rock maneuver” can be per- Kirse et al., showed that group A beta-hemolytic Strepto- formed on physical exam. This manipulation elicits pain coccus (GABS) has been found to be more often present in with movement of the larynx from side to side. Although this cultures during the late 1990s [5]. Because of the increased technique can help rule out RPA, when positive, this is a frequency with which children obtain CT scans, this diagno- relatively non-specific finding. When the RPA abscess is at sis, which was previously missed on exam or lateral neck X- the level of the oropharynx, a bulge of the pharyngeal wall rays, is more readily noted in the current practice of medi- can occasionally be noted with careful examination using a cine. tongue blade and headlight. Small palpable cervical adeno- phathy is common as well. COST Patients often have an antecedent history of pharyngitis, Although there are increased costs associated with failed tonsillitis, adenoiditis, otitis, and/or sinusitis. Although a or prolonged medical treatment, the mortality rate secondary large review by Kirse et al., [5] did not show antecedent to this condition has dramatically fallen to nearly zero in the trauma as the cause of any retopharyngeal abscess, this find- current era of antibiotic medicine. The length of stay of non- ing may be explained by the fact that many children are not surgical patients was on average 3.9 versus 4.8 days. likely to mention trauma. Certainly, children after adenoidec- Landler et al. examined admissions in 2003, and found tomy are at risk if the surgical site becomes infected secon- that less than half, or 563 (43%) patients underwent surgical darily Fig. (2). In addition, specific cases of trans-cervical drainage of their infection [4]. More importantly, the use of spinal surgery with fixation hardware placement or small CT scans and attendant surgical procedures reduces the po- mucosal excoriation from intubation could cause a small tential for spread of RPA. The average cost of treatment in injury
Recommended publications
  • Retropharyngeal Cellulitis in a 5-Week-Old Infant
    Retropharyngeal Cellulitis in a 5-Week-Old Infant Florence T. Bourgeois, MD*, and Michael W. Shannon, MD, MPH‡ ABSTRACT. An infant who presents with acute, unex- abnormalities. An abdominal radiograph was also unremarkable. plained crying requires a thorough examination to iden- Initial laboratory studies revealed a leukocyte count of 3900/mm3 tify the source of distress. We report the case of a 5-week- (12% band forms, 28% segmented neutrophils, 4% monocytes, 49% old infant who had sudden irritability and was found to lymphocytes, 1% eosinophils), a hematocrit of 37%, and a platelet count of 299 000/mm3. Urinalysis was negative. have retropharyngeal cellulitis caused by group B The infant continued to be extremely irritable and refused all Streptococcus. Pediatrics 2002;109(3). URL: http://www. feeds. He could be comforted intermittently, but any repositioning pediatrics.org/cgi/content/full/109/3/e51; group B Strepto- distressed him. Because of the sudden onset of the child’s symp- coccus, retropharyngeal cellulitis, infant, irritability. toms and his unwillingness to be moved, the question of acute injury was raised and a skeletal survey was performed. While obtaining the radiographs, it was noted that the child would calm ABBREVIATION. GBS, group B streptococcal. down when his neck was positioned in hyperextension. Lateral cervical spine films showed prominence of the prevertebral soft tissues, and a fluoroscopic assessment of the airway demonstrated rying is an infant’s principle form of commu- retropharyngeal soft tissue swelling, which persisted with the nication. Usually an infant’s source of distress neck in both flexed and extended positions. The remainder of the can be identified easily, and the child can be skeletal survey was negative.
    [Show full text]
  • Care Process Models Streptococcal Pharyngitis
    Care Process Model MONTH MARCH 20152019 DEVELOPMENTDIAGNOSIS AND AND MANAGEMENT DESIGN OF OF CareStreptococcal Process Models Pharyngitis 20192015 Update This care process model (CPM) was developed by Intermountain Healthcare’s Antibiotic Stewardship team, Medical Speciality Clinical Program,Community-Based Care, and Intermountain Pediatrics. Based on expert opinion and the Infectious Disease Society of America (IDSA) Clinical Practice Guidelines, it provides best-practice recommendations for diagnosis and management of group A streptococcal pharyngitis (strep) including the appropriate use of antibiotics. WHAT’S INSIDE? KEY POINTS ALGORITHM 1: DIAGNOSIS AND TREATMENT OF PEDIATRIC • Accurate diagnosis and appropriate treatment can prevent serious STREPTOCOCCAL PHARYNGITIS complications . When strep is present, appropriate antibiotics can prevent AGES 3 – 18 . 2 SHU acute rheumatic fever, peritonsillar abscess, and other invasive infections. ALGORITHM 2: DIAGNOSIS Treatment also decreases spread of infection and improves clinical AND TREATMENT OF ADULT symptoms and signs for the patient. STREPTOCOCCAL PHARYNGITIS . 4 • Differentiating between a patient with an active strep infection PHARYNGEAL CARRIERS . 6 and a patient who is a strep carrier with an active viral pharyngitis RESOURCES AND REFERENCES . 7 is challenging . Treating patients for active strep infection when they are only carriers can result in overuse of antibiotics. Approximately 20% of asymptomatic school-aged children may be strep carriers, and a throat culture during a viral illness may yield positive results, but not require antibiotic treatment. SHU Prescribing repeat antibiotics will not help these patients and can MEASUREMENT & GOALS contribute to antibiotic resistance. • Ensure appropriate use of throat • For adult patients, routine overnight cultures after a negative rapid culture for adult patients who meet high risk criteria strep test are unnecessary in usual circumstances because the risk for acute rheumatic fever is exceptionally low.
    [Show full text]
  • Mantke, Peitz, Surgical Ultrasound -- Index
    419 Index A esophageal 218 Anorchidism 376 gallbladder 165 Aorta 364–366 A-mode imaging 97 gastric 220 abdominal aneurysm (AAA) AAA (abdominal aortic aneurysm) metastasis 142 20–21, 364, 366 20–21, 364, 366 pancreatic 149, 225 dissection 364, 366 Abdominal wall Adenofibroma, breast 263 perforation 366 abscess 300–301 Adenoma pseudoaneurysm 364 diagnostic evaluation 297 adrenal 214 Aortic rupture 20 hematoma 73, 300, 305 colorectal 231, 232 Aplasia, muscular 272 rectus sheath 297–300 duodenal papilla 229, 231 Appendicitis 1–4 hernia 300, 302–304 gallbladder 165 consequences for surgical indications for sonography 297 hepatic 54, 58, 141 treatment 2 seroma 298, 300, 305 multiple 141 sonographic criteria 1 trauma 297–300 parathyroid 213 Archiving 418 Abortion, tubal 30 renal 241 Arteriosclerosis 346, 348 Abscess thyroid 202–203 carotid artery 335, 337, 338 abdominal wall 300–301 Adenomyomatosis 8, 164, 165 plaque 337, 338, 345, 367, 370 causes 301 Adrenal glands 214–216 Arteriovenous (AV) malformation amebic 138 adenoma 214 139, 293, 326–329 breast 264 carcinoma 214 Artery chest wall 173, 178 cyst 214 carotid 334–339 diverticular 120, 123 hematoma 214 aneurysm 338 drainage 85–88, 93 hemorrhage 214 arteriosclerosis 335 hepatic 6, 138, 398 hyperplasia 214 plaque characteristics inflammatory bowel disease limpoma/myelipoma 214 337, 338, 345 116, 119 metastases 214 bifurcation 334, 337 intramural 5 sonographic criteria 214 bulb 339 lung 183, 186, 190 tuberculosis 214 dissection 338, 339, 346 pancreatic 11 Advanced dynamic flow (ADF) sonographic
    [Show full text]
  • Retropharyngeal Abscess Complicated
    RETROPHARYNGEAL ABSCESS COMPLICATED Ortega Coronel María Fernanda, Dr. Calvopiña José Dr. Mena Glennª ª Departamento de Radiología e Imagen del Hospital Eugenio Espejo Quito Ecuador _________________________________ Revista de la Federación Ecuatoriana de Sociedades de Radiología, Ecuador 2011 N° 4, Pag, 9 -11. ABSTRACT It is a concise review of retropharyngeal abscess, we report a case of long and torpid evolution with multiple subtreatments that masked the symptoms for a long time, increasing the risk of provoking severe morbidity and complications. the cervical spine, presence of air or INTRODUCTION foreign body in soft tissue. CT is useful for Retropharyngeal abscess is defined by the diagnosis of early-stage infections while infection between the posterior pharyngeal allows differentiation between cellulitis wall and the prevertebral fascia, it is an and abscess, is also useful in defining the uncommon condition, most common in vascular structures and their relationship children by extension of oropharyngeal to the infectious process defines exactly infections 1, in adults is caused by trauma like that space or spaces are involve. 7 MRI after ingestion of foreing bodies that has a higher resolution than CT and is able damage the esophagus or the trachea, to evaluate the retropharyngeal space with tracheal intubation and less frequently a series of sequences, including diffusion. untimely tooth infections.2 Many studies But this test is not used routinely for the have shown that most of these abscesses diagnosis of this condition,
    [Show full text]
  • Clinical Excellence Series Volume VI an Evidence-Based Approach to Infectious Disease
    Clinical Excellence Series n Volume VI An Evidence-Based Approach To Infectious Disease Inside The Young Febrile Child: Evidence-Based Diagnostic And Therapeutic Strategies Pharyngitis In The ED: Diagnostic Challenges And Management Dilemmas HIV-Related Illnesses: The Challenge Of Emergency Department Management Antibiotics In The ED: How To Avoid The Common Mistake Of Treating Not Wisely, But Too Well Brought to you exclusively by the publisher of: An Evidence-Based Approach To Infectious Disease CEO: Robert Williford President & Publisher: Stephanie Ivy Associate Editor & CME Director: Jennifer Pai • Associate Editor: Dorothy Whisenhunt Director of Member Services: Liz Alvarez • Marketing & Customer Service Coordinator: Robin Williford Direct all questions to EB Medicine: 1-800-249-5770 • Fax: 1-770-500-1316 • Non-U.S. subscribers, call: 1-678-366-7933 EB Medicine • 5550 Triangle Pkwy Ste 150 • Norcross, GA 30092 E-mail: [email protected] • Web Site: www.ebmedicine.net The Emergency Medicine Practice Clinical Excellence Series, Volume Volume VI: An Evidence-Based Approach To Infectious Disease is published by EB Practice, LLC, d.b.a. EB Medicine, 5550 Triangle Pkwy Ste 150, Norcross, GA 30092. Opinions expressed are not necessarily those of this publication. Mention of products or services does not constitute endorsement. This publication is intended as a general guide and is intended to supplement, rather than substitute, professional judgment. It covers a highly technical and complex subject and should not be used for making specific medical decisions. The materials contained herein are not intended to establish policy, procedure, or standard of care. Emergency Medicine Practice, The Emergency Medicine Practice Clinical Excellence Series, and An Evidence-Based Approach To Infectious Disease are trademarks of EB Practice, LLC, d.b.a.
    [Show full text]
  • Clinical Dilemma on Retropharyngeal Cellulitis and Croup Retrofaringeal
    Case Report/ Olgu Sunumu Ege Journal of Medicine /Ege Tıp Dergisi 48(1):49-52,2009. Clinical dilemma on retropharyngeal cellulitis and croup Retrofaringeal yumu şak doku enfeksiyonları ile krup arasındaki klinik ikilem Saz E U Erdemir G Ozen S Aydo ğdu S Department of Pediatrics Division of Emergency Medicine Ege University School of Medicine, Bornova ,Izmir-Turkey Summary We report a case of retropharyngeal cellulitis which exactly mimics the croup symptoms. The case reported was an 19-month-old male. He was brought to the emergency department with a chief complaint of stridor and his mother denied any fever, trauma, upper respiratory or gastrointestinal complaints. He was alert, drooling, and became agitated when approached. He was intermittently stridulous, especially when placed supine, although he was not hoarse at rest. His neck was not hyperextended in the “sniffing” position . He had moderate substernal, intercostal, and supraclavicular retractions an nasal flaring. Đn addition, mild expiratory wheezing was appreciated upon auscultation. Examination of the neck revealed some anterior and posterior lymphadenopathy. Both lateral neck radiograph and computed axial tomograpy revealed that the present case has retropharyngeal widening and possible abscess. Based on these findings direct larygoscopy and aspiration was performed and diagnosed as cellulitis. Since the symptoms have improved with intravenous metronidazol and ceftriaxone he was discharged from the hospital. Key Words: Retropharyngeal cellulitis, children Özet Bu olgu, laringotrakeit klinik belirtilerini birebir taklit edip yanılsamalara neden olan retrofaringeal yumu şak doku enfeksiyonlarının ciddiyetini vurgulamak amacıyla sunulmu ştur. Olgu acil servise stridor ve hırıltılı solunum yakınmaları ile getirildi. Fizik bakısında alt, üst interkostal retraksiyonları saptanan ve burun kanadı solunumu olması nedeni ile ilk planda krup sendromu olarak dü şünülen bir olguydu.
    [Show full text]
  • Medically Treated Deep Neck Abscess Presenting with Occipital Headache and Meningism
    J Headache Pain (2008) 9:47–50 DOI 10.1007/s10194-008-0005-2 BRIEF REPORT Medically treated deep neck abscess presenting with occipital headache and meningism Bon D. Ku Æ Key Chung Park Æ Sung Sang Yoon Received: 7 October 2007 / Accepted: 27 November 2007 / Published online: 9 February 2008 Ó Springer-Verlag 2008 Abstract We report a 45-year-old man who presented with Introduction fever, acute occipital headache, and neck stiffness. He denied immunocompromised state such as diabetes, cancer Widespread deep neck abscess is an uncommon clinical or AIDS. Lumbar puncture showed normal cerebrospinal condition in healthy adults [1]. The main symptoms of fluid findings in spite of laboratory parameters indicating deep neck infection are fever and nuchal pain with motion inflammatory reaction. Magnetic resonance imaging of neck limitation due to soft neck tissue swelling but occipital demonstrated wide spread enhancing mass of the deep neck throbbing headache with meningism is not a common space, leading to the final diagnosis of deep neck abscess. A symptom [2]. This type of meningism makes it difficult to long course of appropriate antibiotic administration finally diagnose retropharyngeal and deep neck abscess [2, 3]. resolved the inflammation and resulted in a good clinical When infection of the retropharyngeal and deep neck space outcome without surgical drainage. We postulated that deep occurs, usually urgent surgical and antibiotic therapy is neck abscess is an important differential diagnosis in a required [1]. We describe a case of retropharyngeal and patient with meningism and medical treatment may be deep neck abscess, which extended anterior to the carotid available for immunocompetent deep neck abscess.
    [Show full text]
  • Common Pediatric Pulmonary Issues
    Common Pediatric Pulmonary Issues Chris Woleben MD, FAAP Associate Dean, Student Affairs VCU School of Medicine Assistant Professor, Emergency Medicine and Pediatrics Objectives • Learn common causes of upper and lower airway disease in the pediatric population • Learn basic management skills for common pediatric pulmonary problems Upper Airway Disease • Extrathoracic structures • Pharynx, larynx, trachea • Stridor • Externally audible sound produced by turbulent flow through narrowed airway • Signifies partial airway obstruction • May be acute or chronic Remember Physics? Poiseuille’s Law Acute Stridor • Febrile • Laryngotracheitis (croup) • Retropharyngeal abscess • Epiglottitis • Bacterial tracheitis • Afebrile • Foreign body • Caustic or thermal airway injury • Angioedema Croup - Epidemiology • Usually 6 to 36 months old • Males > Females (3:2) • Fall / Winter predilection • Common causes: • Parainfluenza • RSV • Adenovirus • Influenza Croup - Pathophysiology • Begins with URI symptoms and fever • Infection spreads from nasopharynx to larynx and trachea • Subglottic mucosal swelling and secretions lead to narrowed airway • Development of barky, “seal-like” cough with inspiratory stridor • Symptoms worse at night Croup - Management • Keep child as calm as possible, usually sitting in parent’s lap • Humidified saline via nebulizer • Steroids (Dexamethasone 0.6 mg/kg) • Oral and IM route both acceptable • Racemic Epinephrine • <10kg: 0.25 mg via nebulizer • >10kg: 0.5 mg via nebulizer Croup – Management • Must observe for 4 hours after
    [Show full text]
  • Retropharyngeal Abscess: Three Unusual Cases
    Journal of Otolaryngology-ENT Research Case Report Open Access Retropharyngeal abscess: three unusual cases Abstract Volume 5 Issue 3 - 2016 Introduction: Deep neck space abscess generally cure with medical treatment and needs Osman Halit Çam,2 Numan Kökten,1 Adem hospitalization with parenteral antibiotic use. Retropharyngeal space is one of the deep neck Kılıçaslan,3 Fatih Mehmet Hanege,4 Lokman spaces and abscess of this space is rarely encountered. Retropharyngeal abscess may cause Uzun,1 Muhammet Tekin1 mortality due to airway obstruction or extension to the danger space. 1Department of ENT Goztepe Training and Research Hospital Cases: Three unusual adult male patients were evaluated with retropharyngeal abscess. Istanbul Medeniyet University, Turkey 2 The common condition for all of them was the existence of poor social status and comorbid Department of ENT, Turkey 3Department of ENT, Mu? State Hospital, Turkey diseases. 4Department of ENT Giresun Private Ada Hospital, Turkey Conclusion: Extended abscess may show spontaneous drainage and can cause respiratory arrest due to purulent aspiration. In adult patients underlying factors must be controlled and Correspondence: Osman Halit Cam, Unalan Mahallesi Sarnıc surgical intervention should be evaluated as a step of the treatment. Sokak, New City Istanbul No: 3/A2/19, Uskudar-ISTANBUL, Turkey, Tel +90 505 701 84 70, Email Keywords: retropharyngeal abscess, spontaneous drainage, airway obstruction, diabetes mellitus, aspiration pneumonia, epidural abscess, jugular venous thrombosis Received: September 28, 2016 | Published: December 30, 2016 Introduction magnetic resonance imaging (MRI) planned with retropharyngeal abscess diagnosis (Figure 3). Due to spontaneous drainage surgical Retropharyngeal abscess is an emergency situation that originates intervention was not considered.
    [Show full text]
  • SCIENTIFIC SECTION Review Article
    SCIENTIFIC SECTION Review Article E.L. ATTIA, MD, FRCS[C] Halitosis K.G. MARSHALL, MD, FRCP[C], CCFP Bad breath, halitosis, is an unpleasant problem most cells and other debris causes an unpleasant odour, people try to avoid. Physicians seem particularly adept which quickly disappears after the usual oral toilet and at avoiding halitosis by referring patients with this the resumption of normal salivary flow. problem to a dentist. However, halitosis may be a Food symptom of a serious disease. Even if a serious disorder is not present, the cause of bad breath can The metabolism of certain foods and beverages usually be determined and appropriate therapy given. produces volatile fatty acids or other malodorous sub- In this article the causes of halitosis and suggestions stances that are excreted through the lungs. The most for treatment are outlined. common examples are alcohol, garlic, onions and pas- La mauvaise haleine est un ph6nombne d6plaisant que trami. Studies in the 1930s and 1940s showed that if la plupart des gens cherchent A Aviter. Les m6decins garlic were introduced into the peritoneal cavity or semblent les plus aptes a Aviter ce probl6me en rubbed into the soles of the feet it still produced an rbf6rant chez un dentiste les patients avec de la unpleasant odour on the breath.23 It was also found that mauvaise haleine. Toutefois, la mauvaise haleine peut if onion or garlic were swallowed without being chewed Otre un sympt6me d'une s6rieuse maladie. MAme si il the odour would still be detected on the breath.4 n'existe pas un s6rieux d6sordre, la cause probable de Smoking la mauvaise haleine peut habituellement Otre d6termi- nbe et une th6rapie appropri6e donn6e.
    [Show full text]
  • Chronic Cough- Whoop It
    3/3/2016 Chronic Cough- Whoop it Cassaundra Hefner PULMONARY ANATOMY DNP, FNP-BC FryeCare Lung Center Upper Airway Nasopharynx Oropharynx Laryngopharynx Lower Larynx Trachea Bronchi Bronchopulmonary segments Terminal bronchioles Acinus (alveolar regions) Upper and Lower Airway are lined with cilia which propel mucus and trapped bacteria toward the oropharynx Cough COUGH ACTION Protective reflex that keeps throat clear allowing for mucocilliary clearance of airway secretion Intrathoracic process of air from a vigorous cough through nearly closed vocal cords can approach 300mmHG, the velocities tear off mucus from the airway walls. The velocity can be up to 500mph 4 Cough/Sputum Defense mechanism to prevent aspiration- cough center stimulated- cough begins with deep inspiration to 50 % vital capacity- maximum expiratory flow increases coil - decreasing airway resistance- glottis opens wide and takes in large amount of air - glottis then rapidly closes - abdominal and intercostal muscles contract- increases intrapleural pressure - the glottis reopens- explosive release of air the tracheobronchial tree narrows rips the mucous off the walls = sputum 1 3/3/2016 Chronic Cough Defined (AACP, 2016) Effects of cough that prompts visit Talierco & Umur, 2014 Acute Sub-acute Chronic Fatigue 57% Cough Cough 3-8 Unexplained chronic less than weeks cough(UCC) Insomnia 45% 3 weeks Excessive perspiration 42% Cough lasting greater Incontinence 39% than 8 weeks in 15 yo or older MSK pain 45% Cough lasting greater Inguinal herniation than 4 weeks in Dysrhythmias those under the Headaches age of 15 Quality of life questionnaires are recommended for adolescents and children (CQLQ) Work loss Data Institute (NCG) (2016) Cough Referral to Pulmonology 80%-90% chronic cough Most common symptom for PCP visits in the U.S.
    [Show full text]
  • Thieme: Ear, Nose, and Throat Diseases
    445 Subject Index Page numbers in italics denote figures and those in bold denote tables A adenomas, salivarygland 428 –430, anosmia 125,136 abscesses 429, 432 anotia 49, 49 brain see under brain pleomorphic see pleomorphic anterior rhinoscopy129 –131, 131 cervical soft tissue 388 adenoma antibiotic(s) epidural 188, 188 adhesive otitis 76, 76 aminoglycoside 95–96 nasal septal 199–200 aerosol inhalation 158 ototoxic 95–96 oral floor 256, 260, 260 aerotitis 87 resistance 440 orbital 186,187,187 age-related hearing loss 17 rhinosinusitis management 160 peritonsillar 270,270–272, 271 agnosia, acoustic 104 topical 144 retropharyngeal 273, 273 agranulocytosis 265 upper respiratory/digestive tract subdural 188,188–189 AIDS (acquired immune deficiency diseases 159 subperiosteal 66, 66, 186,187 syndrome) 251,251–252 antiseptics, topical 144 achalasia 362,371 aids, hearing 106, 106,107,107 antrostomy175, 176 cricopharyngeal 371–372 air conduction 28 anulus fibrosus 4, 5,69 acid burns airflow, nasal 126,126–127 aperiodic vibration 15, 15 esophageal 362,365–366 alae, nasal, anomalies 215, 217 aphasia 340–342, 341, 343 oral/pharyngeal 277–278 alkali burns aphthae 252 acinic cell tumors, salivary432 esophageal 362,365–366 articulation disorder 336 acoustic agnosia 104 oral/pharyngeal 277–278 arytenoidectomy, partial 305, 307 acoustic end organ see cochlea allergens, ear 54, 54 ataxia 20 acoustic neuroma 92,92,93, 94 allergic glossitis 256–257 atresia acoustic rhinomanometry136 allergic rhinitis 150–151, 151 choanal 211–212 acoustic trauma, acute 88 allergic
    [Show full text]