Trees and Shrubs

Total Page:16

File Type:pdf, Size:1020Kb

Trees and Shrubs MOLETADIKGWA: COMMON TREES AND SHRUBS Acacia (Senegalia) ataxacantha 160 - flame thorn; vlamdoring Acacia (Senegalia) caffra 162 - common hook-thorn; gewone haakdoring Acacia (Vachellia) karroo 172- sweet-thorn; soetdoring Acacia (Vachellia) robusta 183 – broad-pod robust thorn; enkeldoring Albizia tanganyicensis 157- paperbark false-thorn; papierbasvalsdoring Aloe marlothii 29.5 - flat flowered aloe; mountain aloe; bergaalwyn Berchemia zeyheri 450 – red ivory, rooi-ivoor Brachylaena huillensis 727 – lowveld silver oak; laeveldvaalbos Brachylaena rotundata 730 - mountain silver-oak; bergvaalbos Burkea africana 197- red syringa; wild seringa; rooisering Calpurnia aurea 219 – wild laburnum; geelkeur Canthium suberosum 709.1 – corky turkey-berry; kurkbokdrol Carissa edulis 640.4 – climbing num-num; ranknoemnoem Cassinopsis ilicifolia 420 – lemonthorn; lemoentjiedoring Celtis africana 39 - white stinkwood; witstinkhout Clerodendrum glabrum (Volkameria glabra) 667 – tinderwood; tontelhout Combretum apiculatum 532 - red bushwillow; rooiboswilg Combretum hereroense 538 - russet bushwillow; kierieklapper Combretum moggii 542 - rock bushwillow; rotsboswilg Combretum molle 537- velvet bushwillow; fluweelboswilg Combretum nelsonii 540.2 - Waterberg bushwillow; Waterbergboswilg Combretum zeyheri 546 – large-fruited bushwillow; raasblaar Commiphora marlothii 278 - paperbark corkwood; papierbaskanniedood Croton gratissimus 328- lavender croton; laventelkoorsbessie Cussonia transvaalensis 564.3 – Waterberg cabbage tree; Waterbergkiepersol Dichrostachys cinerea 190 - sickle bush; sekelbos Diospyros lycioides 605 - monkey plum; bloubos Diospyros whyteana 611 - bladdernut; swartbas Diplorhynchus condylocarpon 643 - horn-pod tree; horingpeultjie Dombeya rotundifolia 471 - wild pear; bride of the Bushveld; drolpeer Elaeodendron transvaalense 416 – bushveld saffron; bosveldsaffraan Elephantorrhiza burkei 193 - sumach bean; breëpeulbasboontjie Englerophytum (Bequaertiodendron) magalismontanum 581- stemfruit; stamvrug Erythrina lysistemon 245 – coral tree; koralboom Euclea crispa 594 - blue guarri; bloughwarrie Euclea divinorum 595 – magic guarri; towerghwarrie Euclea natalensis 597 - Natal guarri, Natalghwarrie Euphorbia ingens 351 – common tree euphorbia, gewone naboom Faurea saligna 75 - Transvaal beech; boekenhout Ficus ingens 55– red-leaved fig; rooiblaarrotsvy Ficus thonningii 48 - common wild fig; gewone wildevy Gardenia volkensii 691 – Transvaal gardenia; kannetjieboom Grewia bicolor 458 - white raisin; witrosyntjie Grewia flava 459.1 – velvet raisin; fluweelrosyntjie Grewia flavescens 459.2 – soft-leaved sandpaper raisin; sagteblaarskurwerosyntjie Grewia monticola 462 – silver/grey raisin; vaalrosyntjie Grewia occidentalis 463 – cross-berry; kruisbessie Grewia rogersii 463.7 – Waterberg raisin; Waterbergrosyntjie Gymnosporia buxifolia 399 - common spike-thorn; gewone pendoring Gymnosporia polyacantha 402.3 – hedge spike-thorn; kraal pendoring Gymnosporia tenuispina 402.8 – bell spikethorn; klapperbos Heteropyxis natalensis 455 – weeping lavender tree; laventelboom Hexalobus monopetalus 106 – shakama plum; shakamapruim Kirkia wilmsii 269 - mountain syringa; wild pepper tree; bergsering Lannea discolor 362 - live-long tree; dikbas Maerua caffra 133– common bush-cherry; gewone witbos Maytenus albata – grey koko tree; gryskokaboom Mimusops zeyheri 585 - Transvaal red milkwood; moepel Mundulea sericea 226- silver bush; cork-bush; kurkbos Nuxia congesta 633 - common wild elder; gewone wildevlier Obetia tenax 70- mountain nettle; bergbrandnetel Ochna pulchra 483 – peeling plane; lekkerbreek Olea europaea subsp. africana 617 - wild olive; olienhout Ozoroa paniculosa 375 - common resin tree; bosveldharpuisboom Pachystigma triflorum (Vangueria triflora) 714.2 - Waterberg medlar; Waterbergmispel Pappea capensis 433 - jacket plum; doppruim Pavetta eylesii 717.1 - large-leaved bride’s bush; grootblaarbruidsbos Peltophorum africanum 215- weeping wattle; African-wattle; huilboom Protea caffra 87 - Highveld protea; common sugarbush; gewone suikerbos Protea welwitschii 98.2 - honey-scented or cluster-head protea; troshofiesuikerbos Pseudolachnostylis maprouneifolia 308 - kudu-berry; koedoebessie Pterocarpus rotundifolius 237– round-leaved bloodwood; dopperkiaat Rhoicissus revoilii 456.3 - bitter forest grape; bitterbosdruif Rhoicissus tridentata 456.6 - bushman’s grape; boesmansdruif Rothmannia capensis 693 - Cape gardenia; Kaapse katjiepiering Schotia brachypetala 202 - weeping boer-bean; huilboerboon Schrebera alata 612 – wild jasmine bush; wildejasmynbos Searsia (Rhus) keetii 384.5 – slender karee; skraalkaree Searsia (Rhus) leptodictya 387 - mountain karee; bergkaree Searsia (Rhus) pyroides 392 – common wild currant, gewone taaibos Searsia (Rhus) rigida – Waterberg currant; Waterbergtaaibos Searsia (Rhus) zeyheri 396.1 - blue currant; bloutaaibos Securidaca longipedunculata 303- violet tree; krinkhout Strychnos cocculoides 623 – corky monkey-orange; kurkbasklapper Strychnos madagascariensis 626 – black monkey-orange; swartklapper Strychnos pungens 628 - spine-leaved monkey-orange; stekelblaarklapper Strychnos usambarensis 631 - blue bitterberry; bloubitterbessie Tarchonanthus parvicapitulatus (T. camphoratus) 733.7 – small-head camphor-bush Terminalia brachystemma 548 – green cluster-leaf; groenvaalboom Terminalia sericea 551 - silver clusterleaf; vaalboom Tricalysia lanceolata 699 - jackal-coffee; jakkalskoffie Vangueria cyanescens 702.1 - bush medlar; bosmispel Vangueria parvifolia (Tapiphyllum parvifolium) 703 - mountain medlar; berg mispel Vitex pooara - Waterberg pooara-berry; Waterberg-poerabessie Vitex rehmannii 664 – pipe-stem fingerleaf tree; pypsteelvingerblaar Ximenia caffra 103 – sourplum; suurpruim Zanthoxylum capense 253 - small knobwood; kleinperdepram Ziziphus mucronata 447 – buffalo-thorn; blinkblaarwag-‘n-bietjie MOLETADIKGWA: SOME COMMON TREE USES Acacia caffra (162) - Common Hook-Thorn; Gewone Haakdoring Leaves and pods browsed by stock; various parts used medicinally Acacia karroo (172) - Sweet-Thorn; Soetdoring Tree browsed by game; bark used for tanning; yields strong rope, edible gum and seeds used as coffee substitute. Root used as medicine Albizia tanganyicensis (157) - Paperbark Albizia or False-thorn; Papierbasvalsdoring Young pods are toxic Aloe marlothii (29.5) - Flat Flowered Aloe; Mountain Aloe; Bergaalwyn Ash from the dried leaves is mixed with tobacco snuff. The leaves and sap are used medicinally Burkea africana (197) - Wild Syringa; Wildesering Dried and crushed bark used as fish poison; bark and root for tanning and for medicine. Red dye from root. Cassinopsis ilicifolia (420) - Lemon Thorn; Lemoentjiedoring Fruit eaten by birds. Commiphora marlothii (278) - Paperbark Corkwood; Papierbaskanniedood Fruitpulp edible and made into jam or jelly; root chewed for sweet juice. Croton gratissimus (328) - Lavender Croton; Lavender Fever-berry; Laventelkoorsbessie Plant browsed by game and stock; leaves aromatic and used as perfume by San; leaves and bark used medicinally Dichrostachys cinerea (190) - Sickle Bush Stock and game eat pods; bark yields fibre; wood for fence poles and firewood. Medicine from various parts of the tree. Elephantorrhiza burkei (193) - Sumach Bean; Basboontjie Roots are used medicinally; used for tanning leather Faurea saligna (75) - Boekenhout Excellent timber for furniture; bark used for tanning leather Ficus thonningii (48) - Common Wild Fig; Gewone wildevy Fibres from bark used in mat- making. Kirkia wilmsii (269) - Mountain Seringa; Bergsering Bark yields strong fibre. Lannea discolor (362) - Live-Long Tree; Dikbas Fruit is edible; bark used medicinally, for tanning, for twine and as a source of re d dye. Roots are split and used in basket making. Mundulea sericea (226) - Silver Bush; Cork Bush; Kurkbos Bark contains rotenone and is used as a fish poison; leaves browsed by game and stock; leaves, bark and roots used medicinally. Obetia tenax (70) - Mountain Nettle; Bergbrandnetel Bark yields a strong fibre; leaves are cooked as a green vegetable Ozoroa paniculosa (375) - Common Resin Tree; Gewone Harpuisboom Fruit used for dying leather; browsed by elephany and rhino. Pappea capensis (433) - Jacket Plum; Doppruim Fruit browsed by game and stock; used for jam. Seeds yield oil which is edible and is used medicinally and for soap-making. Bark used medicinally. Peltophorum africanum (215) - Weeping Wattle; Huilboom Browsed by game; wood for carving; bark and root for medicines. Protea caffra (87) - Highveld Protea Bark is used medicinally Pseudolachnostylis maprouneifolia (308) - Kudu-Berry; Koedoebessie Leaves and fruit eaten by antelope and elephant; bark, root and leaves used medicinally Schotia brachypetala (202) - Weeping Boerboon; Huilboerboon Leaves browsed by game; bark used medicinally and for tanning Searsia (Rhus) leptodictya (387) - Mountain Karee; Bergkaree Beer brewed from the fruit; various parts used for medicine. .
Recommended publications
  • Full Text Article
    wjpls, 2017, Vol. 3, Issue 8, 139-143 Research Article ISSN 2454-2229 Abdel et al. World Journal of Pharmaceutical World Journal and Life of Pharmaceutical Sciences and Life Sciences WJPLS www.wjpls.org SJIF Impact Factor: 4.223 ANTIFUNGAL ACETYLATED FLAVONOL FROM THE SUDANESE MATERIAL OF VANGUERIA MADAGASCARIENSIS RUBIACEAE Prof. Abdel Karim*1, M. Dalia1, A. Kamal, M. S.1 and Khalid M. S.2 1Sudan University of Science and Technology, Faculty of Science. 2International University of Africa, Faculty of Pharmacy. *Corresponding Author: Prof. Abdel Karim. M. Sudan University of Science and Technology, Faculty of Science. Article Received on 15/08/2017 Article Revised on 06/09/2017 Article Accepted on 27/09/2017 ABSTRACT The authors report on the isolation of a flavonol from the Sudanese material of Vangueria madagascariensis. The flavonoid was isolated from the ethanolicextract by column and thin layer chromatography. The structure was 1 elucidated by a combination of analytical tools (UV, IR, H NMR, MS). In cup plate agar diffusion assay, compound I and the chloroform fraction of Vangueria infausta were evaluated for their antimicrobial activity against six standard human pathogens (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger). The chloroform fraction did not show antibacterial activity, but it showed significant inhibitory activity against the fungi: Candida albicans and Aspergantillus niger. Compound I also showed antifungal activity. However, it did not reveal antibacterial activity. KEYWORDS: Vangueria madagascariensis, Isolation, Flavonol, Antimicrobial Activity, INTRODUCTION Different In vitro and in vivo studies revealed that some flavonoids exhibit antimicrobial potential[16-23] others Flavonoids are among the most ubiquitous group of plant exert anispasmodic activity.[24] Several flavonoids have secondary metabolites distributed in varios plants.
    [Show full text]
  • Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta Africana)In a Woodland Savanna
    Hindawi Publishing Corporation International Journal of Ecology Volume 2013, Article ID 769587, 10 pages http://dx.doi.org/10.1155/2013/769587 Research Article Seasonal Selection Preferences for Woody Plants by Breeding Herds of African Elephants (Loxodonta africana)in a Woodland Savanna J. J. Viljoen,1 H. C. Reynecke,1 M. D. Panagos,1 W. R. Langbauer Jr.,2 and A. Ganswindt3,4 1 Department of Nature Conservation, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa 2 ButtonwoodParkZoo,NewBedford,MA02740,USA 3 Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa 4 Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa Correspondence should be addressed to J. J. Viljoen; [email protected] Received 19 November 2012; Revised 25 February 2013; Accepted 25 February 2013 Academic Editor: Bruce Leopold Copyright © 2013 J. J. Viljoen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To evaluate dynamics of elephant herbivory, we assessed seasonal preferences for woody plants by African elephant breeding herds in the southeastern part of Kruger National Park (KNP) between 2002 and 2005. Breeding herds had access to a variety of woody plants, and, of the 98 woody plant species that were recorded in the elephant’s feeding areas, 63 species were utilized by observed animals. Data were recorded at 948 circular feeding sites (radius 5 m) during wet and dry seasons. Seasonal preference was measured by comparing selection of woody species in proportion to their estimated availability and then ranked according to the Manly alpha () index of preference.
    [Show full text]
  • Phytochemical Constituents of Combretum Loefl. (Combretaceae)
    Send Orders for Reprints to [email protected] 38 Pharmaceutical Crops, 2013, 4, 38-59 Open Access Phytochemical Constituents of Combretum Loefl. (Combretaceae) Amadou Dawe1,*, Saotoing Pierre2, David Emery Tsala2 and Solomon Habtemariam3 1Department of Chemistry, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Maroua, Cameroon, 2Department of Earth and Life Sciences, Higher Teachers’ Training College, University of Maroua, P.O.Box 55 Ma- roua, Cameroon, 3Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich, Cen- tral Avenue, Chatham-Maritime, Kent ME4 4TB, UK Abstract: Combretum is the largest and most widespread genus of Combretaceae. The genus comprises approximately 250 species distributed throughout the tropical regions mainly in Africa and Asia. With increasing chemical and pharma- cological investigations, Combretum has shown its potential as a source of various secondary metabolites. Combretum ex- tracts or isolates have shown in vitro bioactivitities such as antibacterial, antifungal, antihyperglycemic, cytotoxicity against various human tumor cell lines, anti-inflammatory, anti-snake, antimalarial and antioxidant effects. In vivo studies through various animal models have also shown promising results. However, chemical constituents and bioactivities of most species of this highly diversified genus have not been investigated. The molecular mechanism of bioactivities of Combretum isolates remains elusive. This review focuses on the chemistry of 261 compounds isolated and identified from 31 species of Combretum. The phytochemicals of interest are non-essential oil compounds belonging to the various struc- tural groups such as terpenoids, flavonoids, phenanthrenes and stilbenoids. Keywords: Combretum, phytochemistry, pharmacology, terpenoids, polyphenolic compounds, antibacterial activity, antifungal activity. INTRODUCTION is sometimes persistant, and especially in climbers it forms a hooked wooded spine when the leaf abscises.
    [Show full text]
  • Article Download (75)
    wjpls, 2020, Vol. 6, Issue 3, 21-24 Research Article ISSN 2454-2229 Abdel et al. World Journal of Pharmaceutical World Journaland Life of Pharmaceutical Sciences and Life Science WJPLS www.wjpls.org SJIF Impact Factor: 6.129 CHEMICAL CONSTITUENTS AND ANTIMICROBIAL ACTIVITY OF SUDANESE VANGUERIA MADAGASCARINSIS (RUBIACEAE) OIL Abdel Karim M.1*, Amna D.1, Amira A. E. Satti1,2 and Al-Hafez M.3 1Sudan University of Science and Technology, Facuty of Science (Sudan). 2Qurayat-Jouf University, Faculty of Science and Arts, Dept. of Chemistry (Saudi Arabia). 3King Khalid University, Faculty of Science and Arts, Dept. of Chemistry(Saudi Arabia). *Corresponding Author: Dr. Abdel Karim M. Sudan University of Science and Technology, Facuty of Science (Sudan). Article Received on 30/12/2019 Article Revised on 20/01/2020 Article Accepted on 10/02/2020 ABSTRACT This study was designed to investigate the constituents of Vangueria madagascarinsis seed oil and to assess its antimicrobial activity. GC-MS analysis of Vangueria madagascariensis oil was performed. Nineteen constituents were detected. Main constituents are: 9,12-octadecadienoic acid-z,z- methyl ester (53.68%), hexadecanoic acid methyl ester (15.43%), 9-octadecenoic acid methyl ester(12.89%) and methyl stearate(10.23%). The antimicrobial activity of the oil was assessed against five standard human pathogens: Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonasa aeruginosa and the fungal species Candida albicans. Vangueria madagascarinsis oil showed significant activity against Pseudomonas aeruginosa and moderate activity against Escherichia coli and the yeast Candida albicans. The oil also exhibited weak activity against Staphylococcus aureus. However, it was inactive against Bacillus subtilis.
    [Show full text]
  • University of California Santa Cruz Responding to An
    UNIVERSITY OF CALIFORNIA SANTA CRUZ RESPONDING TO AN EMERGENT PLANT PEST-PATHOGEN COMPLEX ACROSS SOCIAL-ECOLOGICAL SCALES A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in ENVIRONMENTAL STUDIES with an emphasis in ECOLOGY AND EVOLUTIONARY BIOLOGY by Shannon Colleen Lynch December 2020 The Dissertation of Shannon Colleen Lynch is approved: Professor Gregory S. Gilbert, chair Professor Stacy M. Philpott Professor Andrew Szasz Professor Ingrid M. Parker Quentin Williams Acting Vice Provost and Dean of Graduate Studies Copyright © by Shannon Colleen Lynch 2020 TABLE OF CONTENTS List of Tables iv List of Figures vii Abstract x Dedication xiii Acknowledgements xiv Chapter 1 – Introduction 1 References 10 Chapter 2 – Host Evolutionary Relationships Explain 12 Tree Mortality Caused by a Generalist Pest– Pathogen Complex References 38 Chapter 3 – Microbiome Variation Across a 66 Phylogeographic Range of Tree Hosts Affected by an Emergent Pest–Pathogen Complex References 110 Chapter 4 – On Collaborative Governance: Building Consensus on 180 Priorities to Manage Invasive Species Through Collective Action References 243 iii LIST OF TABLES Chapter 2 Table I Insect vectors and corresponding fungal pathogens causing 47 Fusarium dieback on tree hosts in California, Israel, and South Africa. Table II Phylogenetic signal for each host type measured by D statistic. 48 Table SI Native range and infested distribution of tree and shrub FD- 49 ISHB host species. Chapter 3 Table I Study site attributes. 124 Table II Mean and median richness of microbiota in wood samples 128 collected from FD-ISHB host trees. Table III Fungal endophyte-Fusarium in vitro interaction outcomes.
    [Show full text]
  • Noctuoidea: Erebidae: Others
    Staude et al. / Metamorphosis 27: S165–S188 S165 ____________________________________________________________________________________________________________________________ Noctuoidea: Erebidae: Others Reference/ Lepidoptera Host plant Locality rearing no. Taxon Subfamily Family Taxon Family M1148 Anoba angulilinea Anobinae Erebidae Dalbergia Fabaceae Tshukudu Game melanoxylon Reserve, Hoedspruit M998 Anoba atripuncta Anobinae Erebidae Ormocarpum Fabaceae Tshukudu Game trichocarpum Reserve, Hoedspruit Gv71 Baniana arvorum Anobinae Erebidae Elephantorrhiza Fabaceae Steenkoppies, farm, elephantina Magaliesburg 14HSS52 Baniana arvorum Anobinae Erebidae Elephantorrhiza Fabaceae Steenkoppies, farm, elephantina Magaliesburg 13HSS84 Plecoptera arctinotata Anobinae Erebidae Senegalia caffra Fabaceae Steenkoppies, farm, Magaliesburg M1020a Plecoptera flaviceps Anobinae Erebidae Dalbergia Fabaceae Casketts, farm, melanoxylon Hoedspruit M317 Bareia incidens Calpinae Erebidae Ficus lutea Moraceae Casketts, farm, (unplaced as to Hoedspruit tribe) 14HSS87 Egnasia vicaria Calpinae Erebidae Afrocanthium Rubiaceae Dlinsa Forest, (unplaced as to mundianum Eshowe tribe) 12HSS163 Exophyla multistriata Calpinae Erebidae Celtis africana Cannabaceae Golden Valley, (unplaced as to Magaliesburg tribe) M416 Exophyla multistriata Calpinae Erebidae Trema orientalis Cannabaceae Sekororo, Tzaneen (unplaced as to (Fed on Celtis tribe) africana) M743 Lacera alope Calpinae Erebidae Pterolobium Fabaceae Moholoholo Rehab (unplaced as to stellatum Centre, Hoedspruit tribe)
    [Show full text]
  • Carbon Based Secondary Metabolites in African Savanna Woody Species in Relation to Ant-Herbivore Defense
    Carbon based secondary metabolites in African savanna woody species in relation to anti-herbivore defense Dawood Hattas February 2014 Thesis Presented for the Degree of DOCTOR OF PHILOSOPHY in the Department of Biological Sciences UniveristyUNIVERSITY ofOF CAPE Cape TOWN Town Supervisors: JJ Midgley, PF Scogings and R Julkunen-Tiitto The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration I Dawood Hattas, hereby declare that the work on which this thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I authorize the University to reproduce for the purpose of research either the whole or a portion of the content in any manner whatsoever. This thesis includes two publications that were published in collaboration with research colleagues. Thus I am using the format for a thesis by publication. My collaborators have testified that I made substantial contributions to the conceptualization and design of the papers; that I independently ran experiments and wrote the manuscripts, with their support in the form of comments and suggestions (see Appendix). Published papers Hattas, D., Hjältén, J., Julkunen-Tiitto, R., Scogings, P.F., Rooke, T., 2011.
    [Show full text]
  • An Evaluation of the Endophytic Colonies Present in Pathogenic and Non-Pathogenic Vanguerieae Using Electron Microscopy
    1 An evaluation of the endophytic colonies present in pathogenic and non-pathogenic Vanguerieae using electron microscopy a a,⁎ b S.L. Stanton , J.J.M. Meyer , C.F. Van der Merwe a Department of Plant Science, University of Pretoria, Pretoria 0002, South Africa b Laboratory for Microscopy and Microanalysis, University of Pretoria, Pretoria 0002, South Africa abstract Fadogia homblei, Pavetta harborii, Pavetta schumanniana, Vangueria pygmaea (=Pachystigma pygmaeum), Vangueria latifolia (=Pachystigma latifolium) and Vangueria thamnus (=Pachystigma thamnus) all induce one of the most important cardiotoxicoses of domestic ruminants in southern Africa, causing the sickness gousiekte. All the plants which cause gousiekte have previously been shown to contain bacterial endophytes. However, in this study other plants within the Vanguerieae tribe that have not been reported to cause gousiekte; namely Vangueria infausta, Vangueria macrocalyx and Vangueria madagascariensis, have now been shown to also contain endophytes within the inter-cellular spaces of the leaves. The disease gousiekte Keywords: is difficult to characterise due to fluctuations in plant toxicity. The majority of reported cases of gousiekte Pavetta poisoning are at the beginning of the growing season; and thus the plants are thought to be more toxic at Pachystigma this time. By using both transmission and scanning electron microscopy the endophytes within these Vangueria Vanguerieae plants were compared visually. Using the plant reported most often for gousiekte poisoning, Gousiekte V. pygmaea, a basic seasonal comparison of the presence of endophytes was done. It was found that the Endophyte bacterial endophyte colonies were most abundant during the spring season. 1. Introduction domestic ruminants, mainly cattle and sheep and is a plant induced cardiomyopathy (Botha and Penrith, 2008; Ellis et al., 2010a).
    [Show full text]
  • Review on Combretaceae Family
    Int. J. Pharm. Sci. Rev. Res., 58(2), September - October 2019; Article No. 04, Pages: 22-29 ISSN 0976 – 044X Review Article Review on Combretaceae Family Soniya Rahate*, Atul Hemke, Milind Umekar Department of Quality Assurance, Shrimati Kishoritai Bhoyar College of Pharmacy, Kamptee, Dist-Nagpur 441002, India. *Corresponding author’s E-mail: [email protected] Received: 06-08-2019; Revised: 22-09-2019; Accepted: 28-09-2019. ABSTRACT Combretaceae, the family of flowering plants consisting of 20 genus and 600 important species in respective genus. The two largest genera of the family are Combretum and Terminalia which contains the more no. of species. The members of the family are widely distributed in tropical and subtropical regions of the world. Most members of the trees, shrubs or lianas of the combretaceae family are widely used medicinally. The members of this family contain the different phytoconstituents of medicinal value e.g tannins, flavonoids, terpenoids and alkaloids. Most of the species of this family are used as antimicrobial, antioxidant and antifungal. The biological activities of the some members of this family yet not found. Apart from the medicinal value many members of the Combretaceae are of culinary and ornamental value. Keywords: Combretaceae, Tannins, Flavonoid, Terminalia, Combretum. INTRODUCTION species of Combretum have edible kernels whereas Buchenavia species have edible succulent endocarps. he family combretaceae is a major group of Chemical constituents like tannins are also found in fruits, flowering plants (Angiosperms) included in the bark, leaves, roots and timber in buchenavia and order of Myrtales. Robert Brown established it in T terminalia genera. Many of the species are reputed to 1810 and its inclusion to the order is not in dispute.
    [Show full text]
  • Large Tree Mortality in Kruger National Park
    Tough times for large trees: Relative impacts of elephant and fire on large trees in Kruger National Park Graeme Shannon1, Maria Thaker1 Abi Tamim Vanak1, Bruce Page1, Rina Grant2, Rob Slotow1 1University of KwaZulu-Natal, 2Scientific Services, SANParks Shannon G., Thaker M, et al. 2011. Ecosystems 14: 1372-1381 Large trees in savanna ecosystems • Key role in ecosystem functioning – Keystone components – Nutrient pumps – Habitat heterogeneity – Increase biodiversity Damage to large trees: Role of elephant • Foliage utilisation • Breaking of large branches • Debarking • Pushing over Damage to large trees: Role of fire • Removal of lower crown biomass • Damage to tissues • Topkill Effect of elephant and fire: are they additive? • Elephant damage to trees makes them more susceptible to fire • Opening up of canopy increases fuel load – Higher intensity fires Understanding the patterns of damage • Determine impact of elephant, fire (main ecological drivers) and disease on large trees over a 30-month period subsequent to initial description • Particular focus on the independent and combined effects of previous impact on subsequent levels of impact and mortality Surveys of large trees • Transects: 2.5 years apart (Apr 2006, Nov 2008) • 22 Transects (67 km total) • Southern Kruger • N = 2522 trees (> 5 m height) 1st survey of large trees • location of individual trees (≥ 5 m height) • species, dimensions • use/impact by elephant (proportion tree volume removed) • fire damage (proportion tree volume removed) • disease (presence of wood borer,
    [Show full text]
  • Olympus AH Eco Assessment
    FAUNAL AND FLORAL ECOLOGICAL ASSESSMENT AS PART OF THE ENVIRONMENTAL IMPACT ASSESSMENT PROCESS FOR THE PROPOSED ERASMUS PARK PHASE 2 TOWNSHIP DEVELOPMENT, ERASMUSRAND, GAUTENG. Prepared for Nali Sustainability Solutions February 2019 Section C: Faunal Assessment Prepared by: Scientific Terrestrial Services Report author: C. Hooton Report reviewer: K. Marais (Pr. Sci. Nat) Report Reference: STS 180084 Date: February 2019 Scientific Terrestrial Services CC CC Reg No 2005/122329/23 PO Box 751779 Gardenview 2047 Tel: 011 616 7893 Fax: 086 724 3132 E-mail: [email protected] STS 180084 February 2019 EXECUTIVE SUMMARY From the faunal assessment it can be concluded that there are four habitat units encompassed within the study area, namely Senegalia caffra – Vachellia karroo Woodland, Rocky Grassland, Degraded Hyparrhenia Grassland and Freshwater Habitat. These habitat range from moderately-low to moderately high sensitivities Based on the impact assessment, the impacts on faunal habitat, diversity and SCC within the different habitat units varies from low to high significance during the construction and the operational phase of the project prior to mitigation taking place. With effective mitigation implemented, all impacts may be reduced to very-low to medium-low levels. It is the opinion of the ecologists that this study provides the relevant information required in order to implement an Integrated Environmental Management (IEM) plan and to ensure that the best long-term use of the ecological resources in the study area will be made in support of the principle of sustainable development. Scientific Terrestrial Services (STS) was appointed to conduct a faunal and floral ecological assessment for the proposed Erasmus Park development on the remaining extent of the farm Waterkloof 378 JR, Erasmusrand, Gauteng Province (hereafter referred to as the ‘study area’).
    [Show full text]
  • Elephant Damage to Sclerocarya Birrea on Different Landscapes
    Vol. 9(4), pp. 97-106, April 2017 DOI: 10.5897/IJBC2015.0912 Article Number: A99E04563330 International Journal of Biodiversity and ISSN 2141-243X Copyright © 2017 Conservation Author(s) retain the copyright of this article http://www.academicjournals.org/IJBC Full Length Research Paper Elephant damage to Sclerocarya birrea on different landscapes M. Q. Seloana1*, J. W. Kruger2, M. J. Potgieter1 and J. J. Jordaan1 1Department of Biodiversity, University of Limpopo, P. O. Box 1106, Sovenga, 0727, South Africa. 2Department of Economic Development, Environment and Tourism, Private Bag X 9484, Polokwane, 0700, Pretoria, South Africa. Received 21 November, 2016; Accepted 28 February, 2017 The African elephant (Loxodonta africana Blumenbach) is a keystone species and ecosystem engineer. Elephants can cause serious damage to important trees, with only certain species being targeted such as Marula (Sclerocarya birrea A. Rich. Hoscht). High levels of elephant utilization may to some extent, compromise the viability of some woody plant populations leading to vegetation changes coupled with a possible loss of species diversity and/or structural diversity. In order to quantify their effect a study was initiated in 2014 to investigate their effect on tree height, degree of branch damage, the extent of debarking, and degree of stem damage. This was done within elephant’s frequently and non–frequently used sites, and a neighbouring enclosure (control site). One hundred and fifty (50 per site) mature S. birrea trees were randomly selected within each site. Tree height was recorded using clinometers, degree of branch damage, extent of debarking (circumference debarked using different percentages of intensity) and degree of stem damage were assessed using different categories.
    [Show full text]