Hemitrygon Akajei

Total Page:16

File Type:pdf, Size:1020Kb

Hemitrygon Akajei 環境毒性学会誌 (Jpn. J. Environ. Toxicol.), 24, 12–25, 2021 Research Articles Effect of ontogenetic changes of feeding habits on total mercury level in red stingray, Hemitrygon akajei Teerapong DUANGDEE1, *, Wachirah JAINGAM2, Jun KOBAYASHI3 and Hiroaki TSUTSUMI3 1 Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto/3–1–100 Tsukide, Higashi-ku, Kumamoto 862–8502, Japan 2 Faculty of Fisheries, Kasetsart University/50 Ngam Wong Wan Rd, Lad Yao, Chatuchak, Bangkok, 10900, Thailand 3 Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto/3–1–100 Tsukide, Higashi-ku, Kumamoto 862–8502, Japan ABSTRACT In Isahaya Bay, Kyushu, Japan, one of the edible ray species, red stingray, Hemitrygon akajei tends to acceleratedly accumulate total mercury (THg) that was released from Mt. Unzen beside the bay as it grows. In this study, we collected 20 individuals of the female ray with wide variety of body sizes (16 to 65 cm in disc size, 140 to 9,540 gww in body wet weight), and aimed to clarify its mechanism. The stomach content anal- ysis revealed ontogenetic changes of feeding habits among the immature females, females in transitional maturity, and mature females in its long life of 10 to 15 years or more. Immature females favor to preying on epifaunal macro-benthic animals such as shrimps, which are classied as “Low THg content group” of the secondary consum- ers, while mature ones mainly feed on short-neck clam, Ruditapes philippinarum, and polychaete, Nectoneanthes ijimai, which are “High THg content group” of the primary consumers. Therefore, mature females with larger bodies tend to acceleratedly accu- mulate THg and reached a max. 1,370 ng g−1 dw, although the stable isotope analysis of carbon and nitrogen of the muscles of the mature females indicates the descent of the trophic position to the immature ones in the food web system. Key words: biomagnication, feeding habits, Hemitrygon akajei, mercury, ontogenetic changes, red stingray, Ruditapes phillipinarum 1. INTRODUCTION and has brought serious negative impacts on Bioaccumulation of hazardous substances the health of not only the wildlife located at the such as heavy metals, polychlorinated bi- higher trophic positions in the food chain3, 10), phenyls, dioxin, etc. has been reported from but also humans through dietary intake11, 12). various aquatic ecosystems in lakes1–3), coastal Among these harmful substances, our research waters4–7) and oceans8, 9) throughout the world, has focused on the bioaccumulation process- *Corresponding author, Email: [email protected]; Tel: 096–321–6715; Fax: 096–384–6765 Received: 28 July 2020; Accepted: 28 December 2020 — 12 — Teerapong Duangdee et al. es of mercury to the animals occurring in the in the sediment in several times higher levels coastal water, since 7,400 tons of mercury to the organic particles derived from the dead per year is still being emitted into the envi- bodies of phytoplankton, since the organic ronment throughout the world not only from particles deposited on the sea oor tends to anthropogenic sources but also natural ones be decomposed by bacteria, but the mercury including volcanos13), which are among the contained in the particles is apt to remain in basic geographical components in the Japa- the sediment. The THg concentrated in the nese Archipelago. In Japan, the majority of the sediment is transferred to infaunal macro-ben- mercury emitted to the environment is nally thic animals such as clams and deposit-feed- discharged to the coastal waters, where over ing polychaetes that burrow in the sediment 1,879,000 tons of sh and shellsh has been through their feeding activities directly or caught to obtain seafood14). Careful intake of indirectly, while epifaunal macro-benthic ani- naturally contaminated mercury in seafoods mals such as amphipods and mussel occurring is, therefore, needed for the people living in on the surface of the sediment are apt to be Japan because of its negative impact on human much less exposed to the mercury accumulat- health. ed in the sediment. Consequently, although In the aquatic ecosystem, the mercury con- they were located at the same trophic position taminated in water tends to be absorbed by in the food web system in the bay as primary phytoplankton or aquatic animals such as sh consumers, the former infaunal consumers (through their respiratory activities), which contained 101±23 ng g−1 of THg, which were is referred to as “bioconcentration”. It is apt referred to as “High THg content group”, while to be further biologically concentrated on the the THg contents of the latter epifaunal ones body tissues of animals in higher trophic lev- were about one fourth of “High THg content els linked together with a food chain by their group”, 25.2±8.5 ng g−1, which were referred to predation, which is referred to as “biomag- as “Low THg content group”16). In the benthic nication”15). In the previous studies on the ecosystem, these two dierent levels of THg bioaccumulation, a process in which a mercury contained in the muscles of primary consumers is absorbed in an organism by all routes of are transferred to the secondary consumers in exposure as occurs in the aquatic ecosystem, the prey and predator relationship. Therefore, which includes its bioconcentration process by “High” and “Low” THg content groups were phytoplankton and biomagnication by preda- also found among carnivorous benthic animals. tory animals, most have described the discon- THg contents of crabs and sea stars which prey tinuous increase of mercury in the body tissues on infaunal macro-benthic animals were sever- of the organisms linked together with a food al times higher than those of carnivorous poly- chain in the pelagic water2, 5, 6, 8). chaete and shrimp which depended on diets to Jaingam et al.16) found another characteristic the epifaunal ones. bioaccumulation process of mercury through Jaingam et al.17) found a further curious bio- the benthic ecosystem in the eld surveys in a magnication process of THg between the mac- bay, Isahaya Bay, located beside an active vol- ro-benthic animals and carnivorous bentho- cano, Mt. Unzen, in Kyushu, Japan. The dead pelagic sh, red stingray (Hemitrygon akajei), bodies of phytoplankton that absorbed mercury in Isahaya Bay. The results of stable isotope from the surrounding water easily deposits on analysis of carbon and nitrogen of the muscles the sea oor of the shallow water of less than of red stingray indicate that its juvenile was 10 m in depth, and the mercury accumulates classied as one of the intermediate consumers — 13 — Eect of feeding habits on total mercury level in red stingray (very close to the tertiary one), but its trophic position in the benthic food web system de- scended to the level of an almost secondary consumer as it grew to an adult. Nevertheless, the THg contents of the adult increased to ex- tremely high levels, 670 to 3,700 ng g−1, which far exceeded the THg contents of the tertiary consumers of shes (about 250 to 270 ng g−1) oc- curring in the pelagic system of the same bay. Fig. 1. Study area, Isahaya Bay located in the Our study has focused on this biomagni- inner parts of Ariake Bay, Kyushu, western cation process of THg to the muscles of H. Japan. akajei. It is an endemic species of stingray that is distributed in a wide area of Pacic Ocean and an average depth of 10 m (Fig. 1). An ac- between northwestern part, Japan, Russia, tive volcano, Mt. Unzen, is located in the center China, Thailand, Malaysia, and Indonesia18, 19). of Shimabara Peninsula, it is one of the major In Japan, it has been used as a popular sea natural sources of discharging mercury into the food item for a long time, and 113 tons of its bay21, 22), since this peninsula is located beside catch as sea food was recorded in 2006 accord- the southern side of Isahaya Bay. According to ing the catch statistics in Ariake Bay20). We the most recent record of volcanic eruptions, need to know the detailed mechanisms of how Mt. Unzen erupted for 1928 days between 1990 this species accumulates to such extremely and 1995, and emitted 2.95 metric tons of mer- high levels of THg in its muscles, although it cury into the surrounding environment22, 23). is located at the trophic level close to the sec- ondary consumer in the food web system of the 2.2 Red stingray collection bay. In total, 22 red stingray individuals were In this study, we caught 22 red stingray in- captured from Isahaya Bay with a longline dividuals with a wide variety of body size in eet on 27 April 2019 and a gill net on 15 Isahaya. We examined the stomach contents of May 2019. The specimens were weighed with these specimens to identify its main food items, a digital balance, and their disc widths were determined their stable isotope ratios of carbon measured with a measuring tape. The gender and nitrogen to describe their trophic positions was determined by the presence or absence in the food web system, and determined the of claspers. According to Furumitsu et al.20), THg content in the muscle of the stingray. We the individuals whose disc widths were larger clarify the mechanisms of the magnication of than 56 cm in females and 35 cm in males were extremely high levels of THg in the muscles of regarded as sexually mature ones, the females the adult, and discuss the characteristics of the with the disc width between 45 and 55 cm were bioaccumulation process of THg in the benthic treated as ones in transitional maturity, and system in the coastal shallow water.
Recommended publications
  • Leveled Reading Research Activities Presentation Leveled Reading
    Leveled Reading Research Activities Presentation ATI RE VE C K R A A A A L L L L E C C C C C N S C I E Editable Presentation hosted on Google Slides. Click to Download. Description Habitat & Range ● ● ● ● ● Stingray ● Unique Characteristics Reproduction Diet ● ● ● ● ● ● ● Predators, Threats & Status Conservation Organizations Extended Video ● ● ● ● red Stingray - Species Profile - Description A red stingray is a cartilaginous fish in the ray family. This means it does not have bones, but instead has cartilage. It is one of over 600 recognized ray species. The red stingray can grow to 6 feet long and is known to weight up to 24 pounds. It has a pectoral fin disc that is diamond-shaped and is wider rather than longer. It gets its name from the coloration on its dorsal and ventral surfaces. Habitat & Range The red stingray is native to the northwestern Pacific Ocean and is found throughout coastal waters throughout Japan. They are commonly seen in sandy areas but also inhabit coral reefs and muddy flats. Unique Characteristics Their venomous tail spine is considered toxic to humans, but not fatal. Some ancient Japanese cultures have used the dried tail spine as a weapon because of its toxicity. Additionally, ancient dentists have used stingray venom to numb patients. Reproduction wild Facts Scientific The litter size of the red stingray is only between 1 and 10. Dasyatis akajei Name During courtship, males will follow females and bite at their pectoral fin disc using their pointed teeth. Then, once they gain a Weight 15 – 24 lbs solid grip they begin to mate.
    [Show full text]
  • Bibliography Database of Living/Fossil Sharks, Rays and Chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the Year 2016
    www.shark-references.com Version 13.01.2017 Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali) Papers of the year 2016 published by Jürgen Pollerspöck, Benediktinerring 34, 94569 Stephansposching, Germany and Nicolas Straube, Munich, Germany ISSN: 2195-6499 copyright by the authors 1 please inform us about missing papers: [email protected] www.shark-references.com Version 13.01.2017 Abstract: This paper contains a collection of 803 citations (no conference abstracts) on topics related to extant and extinct Chondrichthyes (sharks, rays, and chimaeras) as well as a list of Chondrichthyan species and hosted parasites newly described in 2016. The list is the result of regular queries in numerous journals, books and online publications. It provides a complete list of publication citations as well as a database report containing rearranged subsets of the list sorted by the keyword statistics, extant and extinct genera and species descriptions from the years 2000 to 2016, list of descriptions of extinct and extant species from 2016, parasitology, reproduction, distribution, diet, conservation, and taxonomy. The paper is intended to be consulted for information. In addition, we provide information on the geographic and depth distribution of newly described species, i.e. the type specimens from the year 1990- 2016 in a hot spot analysis. Please note that the content of this paper has been compiled to the best of our abilities based on current knowledge and practice, however,
    [Show full text]
  • Shark Cartilage, Cancer and the Growing Threat of Pseudoscience
    [CANCER RESEARCH 64, 8485–8491, December 1, 2004] Review Shark Cartilage, Cancer and the Growing Threat of Pseudoscience Gary K. Ostrander,1 Keith C. Cheng,2 Jeffrey C. Wolf,3 and Marilyn J. Wolfe3 1Department of Biology and Department of Comparative Medicine, Johns Hopkins University, Baltimore, Maryland; 2Jake Gittlen Cancer Research Institute, Penn State College of Medicine, Hershey, Pennsylvania; and 3Registry of Tumors in Lower Animals, Experimental Pathology Laboratories, Inc., Sterling, Virginia Abstract primary justification for using crude shark cartilage extracts to treat cancer is based on the misconception that sharks do not, or infre- The promotion of crude shark cartilage extracts as a cure for cancer quently, develop cancer. Other justifications represent overextensions has contributed to at least two significant negative outcomes: a dramatic of experimental observations: concentrated extracts of cartilage can decline in shark populations and a diversion of patients from effective cancer treatments. An alleged lack of cancer in sharks constitutes a key inhibit tumor vessel formation and tumor invasions (e.g., refs. 2–5). justification for its use. Herein, both malignant and benign neoplasms of No available data or arguments support the medicinal use of crude sharks and their relatives are described, including previously unreported shark extracts to treat cancer (6). cases from the Registry of Tumors in Lower Animals, and two sharks with The claims that sharks do not, or rarely, get cancer was originally two cancers each. Additional justifications for using shark cartilage are argued by I. William Lane in a book entitled “Sharks Don’t Get illogical extensions of the finding of antiangiogenic and anti-invasive Cancer” in 1992 (7), publicized in “60 Minutes” television segments substances in cartilage.
    [Show full text]
  • Species Bathytoshia Brevicaudata (Hutton, 1875)
    FAMILY Dasyatidae Jordan & Gilbert, 1879 - stingrays SUBFAMILY Dasyatinae Jordan & Gilbert, 1879 - stingrays [=Trygonini, Dasybatidae, Dasybatidae G, Brachiopteridae] GENUS Bathytoshia Whitley, 1933 - stingrays Species Bathytoshia brevicaudata (Hutton, 1875) - shorttail stingray, smooth stingray Species Bathytoshia centroura (Mitchill, 1815) - roughtail stingray Species Bathytoshia lata (Garman, 1880) - brown stingray Species Bathytoshia multispinosa (Tokarev, in Linbergh & Legheza, 1959) - Japanese bathytoshia ray GENUS Dasyatis Rafinesque, 1810 - stingrays Species Dasyatis chrysonota (Smith, 1828) - blue stingray Species Dasyatis hastata (DeKay, 1842) - roughtail stingray Species Dasyatis hypostigma Santos & Carvalho, 2004 - groovebelly stingray Species Dasyatis marmorata (Steindachner, 1892) - marbled stingray Species Dasyatis pastinaca (Linnaeus, 1758) - common stingray Species Dasyatis tortonesei Capapé, 1975 - Tortonese's stingray GENUS Hemitrygon Muller & Henle, 1838 - stingrays Species Hemitrygon akajei (Muller & Henle, 1841) - red stingray Species Hemitrygon bennettii (Muller & Henle, 1841) - Bennett's stingray Species Hemitrygon fluviorum (Ogilby, 1908) - estuary stingray Species Hemitrygon izuensis (Nishida & Nakaya, 1988) - Izu stingray Species Hemitrygon laevigata (Chu, 1960) - Yantai stingray Species Hemitrygon laosensis (Roberts & Karnasuta, 1987) - Mekong freshwater stingray Species Hemitrygon longicauda (Last & White, 2013) - Merauke stingray Species Hemitrygon navarrae (Steindachner, 1892) - blackish stingray Species
    [Show full text]
  • Elasmobranch Diversity with Preliminary Description of Four Species from Territorial Waters of Bangladesh
    Bangladesh J. Zool. 46(2): 185-195, 2018 ISSN: 0304-9027 (print) 2408-8455 (online) ELASMOBRANCH DIVERSITY WITH PRELIMINARY DESCRIPTION OF FOUR SPECIES FROM TERRITORIAL WATERS OF BANGLADESH A.B.M. Zafaria, Shamsunnahar, Sanjay Chakraborty, Md. Muzammel Hossain1, Md. Masud Rana and Mohammad Abdul Baki* Department of Zoology, Jagannath University, Dhaka-1100, Bangladesh Abstract: There is a significant lack of data regarding the biodiversity of elasmobranchs in the territorial waters of Bangladesh, since that sharks and rays are not targeted by commercial fishing industry, but rather encountered as a by- catch. This paper updated the diversity of elasmobranchs in the territorial waters of Bangladesh. The study was carried out to identify two coastal areas of Patharghata, Barguna and Cox's Bazar between October, 2015 and September, 2016. Using fish landing station survey techniques, total 20 species of elasmobranch were encountered, including eight species of sharks and 12 species of batoids, under 14 genera, ten families. This is the most expended field based records of elasmobranch fishes of Bangladesh. Key words: Elasmobranch, assessment, diversity, shark, skate, ray INTRODUCTION Elasmobranchs have been evolving independently for at least 450 million years and, by the Carboniferous period, they seem to have developed a life- history pattern similar to that seen today. From a practical point of view the life- history pattern of elasmobranchs make this group of animals extremely susceptible to over fishing (Harold et al. 1990). The marine fisheries sector of Bangladesh plays a significant role in the county’s economic growth through provision of employment in coastal area and providing source of protein for the population but shark fisheries (sharks and rays) are artisanal fisheries in Bangladesh.
    [Show full text]
  • Stingray Bay: Media Kit
    STINGRAY BAY: MEDIA KIT Stingray Bay has been the talk of the town! What is it? Columbus Zoo and Aquarium guests and members will now have the opportunity to see stingrays up close and to touch these majestic creatures! The Stingray Bay experience will encourage visitors to interact with the Zoo’s brand new school of stingrays by watching these beautiful animals “fly” through the water and dipping their hands in the water to come in contact with them. Where is located? Located in Jungle Jack’s Landing near Zoombezi Bay, Stingray Bay will feature an 18,000-gallon saltwater pool for stingrays to call home. Staff and volunteers will monitor the pool, inform guests about the best ways to touch the animals and answer questions when the exhibit opens daily at 10 a.m. What types of stingrays call Stingray Bay home? Dozens of cownose and southern stingrays will glide though the waters of Stingray Bay. Educational interpreters will explain the role of these stingrays in the environment. Stingrays are typically bottom feeders with molar-like teeth used to crush the shells of their prey such as crustaceans, mollusks, and other invertebrates. I’m excited to touch the stingrays, but is it safe? Absolutely! The rays barbs have been carefully trimmed off their whip-like tails. The painless procedure is similar to cutting human fingernails. Safe for all ages, the landscaped pool features a waterfall and a wide ledge for toddlers to lean against when touching the rays. This sounds cool! How much does it cost? Admission to Stingray Bay is free for Columbus Zoo and Aquarium Gold Members and discounted for Members.
    [Show full text]
  • Malaysia National Plan of Action for the Conservation and Management of Shark (Plan2)
    MALAYSIA NATIONAL PLAN OF ACTION FOR THE CONSERVATION AND MANAGEMENT OF SHARK (PLAN2) DEPARTMENT OF FISHERIES MINISTRY OF AGRICULTURE AND AGRO-BASED INDUSTRY MALAYSIA 2014 First Printing, 2014 Copyright Department of Fisheries Malaysia, 2014 All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic, mechanical, including photocopy, recording, or any information storage and retrieval system, without prior permission in writing from the Department of Fisheries Malaysia. Published in Malaysia by Department of Fisheries Malaysia Ministry of Agriculture and Agro-based Industry Malaysia, Level 1-6, Wisma Tani Lot 4G2, Precinct 4, 62628 Putrajaya Malaysia Telephone No. : 603 88704000 Fax No. : 603 88891233 E-mail : [email protected] Website : http://dof.gov.my Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN 978-983-9819-99-1 This publication should be cited as follows: Department of Fisheries Malaysia, 2014. Malaysia National Plan of Action for the Conservation and Management of Shark (Plan 2), Ministry of Agriculture and Agro- based Industry Malaysia, Putrajaya, Malaysia. 50pp SUMMARY Malaysia has been very supportive of the International Plan of Action for Sharks (IPOA-SHARKS) developed by FAO that is to be implemented voluntarily by countries concerned. This led to the development of Malaysia’s own National Plan of Action for the Conservation and Management of Shark or NPOA-Shark (Plan 1) in 2006. The successful development of Malaysia’s second National Plan of Action for the Conservation and Management of Shark (Plan 2) is a manifestation of her renewed commitment to the continuous improvement of shark conservation and management measures in Malaysia.
    [Show full text]
  • Age and Growth of the Endemic Xingu River Stingray Potamotrygon Leopoldi Validated Using Fluorescent Dyes
    Journal of Fish Biology (2018) 92, 1985–1999 doi:10.1111/jfb.13635, available online at wileyonlinelibrary.com Age and growth of the endemic Xingu River stingray Potamotrygon leopoldi validated using fluorescent dyes P. Charvet*, F. M. Santana†,K.L.DeLima‡ and R. Lessa‡§ *Departamento de Ecologia e Sistemática (CCEN), Universidade Federal da Paraíba (UFPB), Cidade Universitária, João Pessoa, PB, CEP 58051-090, Brazil, †Unidade Acadêmica de Serra Talhada (UAST), Universidade Federal Rural de Pernambuco (UFRPE), Serra Talhada, PE, CEP 56903-970, Brazil and ‡Departamento de Pesca e Aqüicultura (DEPAq), Universidade Federal Rural de Pernambuco (UFRPE), Dois Irmãos, Recife, PE, CEP 52171-900, Brazil (Received 22 December 2017, Accepted 5 April 2018) Between 2003 and 2005, vertebrae of 151 Xingu River Potamotrygon leopoldi (Potamotrygonidae) (75 males and 76 females) were analysed to derive a growth curve for this species. The disc width (WD) was significantly different between sexes, with females measuring 149–700 mm WD and males 109–500 mm WD. The average percentage error for vertebrae readings of the whole sample was 2·7%. The marginal increment ratio (RMI) showed an increasing trend with the highest value in November, decreasing from December on. The majority of vertebrae displaying RMI zero, occurred in September, but the annual periodicity of ring deposition throughout the year was not conclusive. Tetracycline (TCN) injected specimens were held in captivity for 13 months and displayed a fluorescent mark in vertebrae confirming a yearly periodicity of band pair formation with the translucent ring deposited in September–October. The Akaike information criterion (AIC) showed that, among the seven models considered, the best fit was obtained for the von Bertalanffy modified with W0 (where W0 = WD at birth) for both sexes.
    [Show full text]
  • Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
    The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation.
    [Show full text]
  • Ichthyological Exploration of Freshwaters an International Journal for Field-Orientated Ichthyology
    Ichthyological Exploration of Freshwaters An international journal for field-orientated ichthyology This pdf file may be used for research, teaching and private purposes. Exchange with other researchers is allowed on request only. Any substantial or systematic reproduction, re-distribution, re-selling in any form to anyone, in particular deposition in a library, institutional or private website, or ftp-site for public access, is expressly forbidden. Verlag Dr. Friedrich Pfeil • München 1 Ichthyological Exploration of Freshwaters/IEF-1089/pp. 1-6 Published 16 February 2019 LSID: http://zoobank.org/urn:lsid:zoobank.org:pub:DFACCD8F-33A9-414C-A2EC-A6DA8FDE6BEF DOI: http://doi.org/10.23788/IEF-1089 Contemporary distribution records of the giant freshwater stingray Urogymnus polylepis in Borneo (Chondrichthyes: Dasyatidae) Yuanita Windusari*, Muhammad Iqbal**, Laila Hanum*, Hilda Zulkifli* and Indra Yustian* Stingrays (Dasyatidae) are found in marine (con- species entering, or occurring in freshwater. For tinental, insular shelves and uppermost slopes, example, Fluvitrygon oxyrhynchus and F. signifer one oceanic species), brackish and freshwater, and were only known from five or fewer major riverine are distributed across tropical to warm temperate systems (Compagno, 2016a-b; Last et al., 2016a), waters of the Atlantic, Indian and Pacific oceans though recent surveys yielded a single record of (Nelson et al., 2016). Only a small proportion of F. oxyrhynchus and ten records of F. signifier in the dasyatid rays occur in freshwater, and include Musi drainage, South Sumatra, indicating that obligate freshwater species (those found only in both species are more widely distributed than freshwater) and euryhaline species (those that previously expected (Iqbal et al., 2017, 2018).
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome Juan C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Jay F. Storz Publications Papers in the Biological Sciences 2015 Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome Juan C. Opazo Universidad Austral de Chile, [email protected] Alison P. Lee Institute of Molecular and Cell Biology Federico G. Hoffmann University of Nebraska-Lincoln, [email protected] Jessica Toloza-Villalobos Universidad Austral de Chile Thorsten Burmester University of Hamburg, [email protected] See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/bioscistorz Opazo, Juan C.; Lee, Alison P.; Hoffmann, Federico G.; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; and Storz, Jay F., "Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome" (2015). Jay F. Storz Publications. 72. http://digitalcommons.unl.edu/bioscistorz/72 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Jay F. Storz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Juan C. Opazo, Alison P. Lee, Federico G. Hoffmann, Jessica Toloza-Villalobos, Thorsten Burmester, Byrappa Venkatesh, and Jay F. Storz This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/bioscistorz/72 Molecular Biology and Evolution Mol Biol Evol.
    [Show full text]