Chinese Plum Yew Or Fortune's Plum

Total Page:16

File Type:pdf, Size:1020Kb

Chinese Plum Yew Or Fortune's Plum A Wollemi Pine imposter? Cephalotaxus fortunei 三尖杉 Chinese Plum Yew or Fortune’s Plum Yew When the Wollemi Pine was first discovered, such was its similarity to an evergreen conifer from the forests of central and south-western China, that it was thought to be a garden Cephalotaxus fortunei escapee, the Chinese Plum Yew (Cephalotaxus Chinese Plum Yew fortunei). However, the Wollemi Pine is a magnificent tall tree; the imposter, the Chinese Plum Yew, grows as a shrub, or at most a small tree, 4 – 5 metres tall. The name, Plum Yew, refers to leaves that are not unlike those of Yew trees (Taxus spp.) and the fleshy arils on female plants resemble small plums1. The Plum Yew was introduced to Britain in 1848 by the Wollemi Pine Scottish plant collector, Robert Fortune, who infamously orchestrated the illegal shipment of tea plants (Camellia sinensis) from China to India for the British East India Company2. And of course, Cephalotaxus fortunei was named after Fortune. It is widely planted in cool, temperate parks and gardens of the world. There are ~ 11 species in the genus Cephalotaxus, all from eastern Asia, from the Himalayas, through China to Japan and south to the Malay Peninsula. There is also fossil evidence that the genus was once more widely distributed throughout the Northern Hemisphere1. Look for the Chinese Plum Yew in the eastern extension of the Biological Sciences Courtyard Garden. 1http://en.wikipedia.org/wiki/Cephalotaxus_fortunei 2http://en.wikipedia.org/wiki/Robert_Fortune Map: modified from Encyclopedia of Life: http://eol.org/pages/1059913/maps Kevin Downing, Brian Atwell & Alison Downing, Department of Biological Sciences, August 2013 Natural distribution of Cephalotaxus fortunei, the Chinese Plum Yew, in central and south-western China. .
Recommended publications
  • Cephalotaxus
    Reprinted from the Winter 1970 issue of t'he THE AMERICA HORTICULTURAL \t{AGAZIl\'E Copyright 1970 by The American Horticultural Society, Inc. Cephalotaxus­ Source of Harringtonine, A Promising New Anti..Cancer Alkaloid ROBERT E. PERDUE, JR.,l LLOYD A. SPETZMAN,l and RICHARD G. POWELL2 The plumyews (Cephalotaxus) are yew-like evergreen trees and shrubs. The genus includes seven species native to southeastern Asia from Japan and Korea to Taiwan and Hainan, and west through China to northeastern India. Two species are in cultivation in the United States, C. harringtoniaJ (Fig. 1 & 2) of which there are several varieties (one often listed as C. drupacea) , and C. fortunii (Fig. 3). The cultivars are shrubs up to about 20 feet in height; most have broad crowns. The linear and pointed leaves are spirally arranged or in two opposite ranks. The upper sur­ Fig. 1. Japanese plumyew (Cephalo­ face is dark shiny green with a conspicu­ taxus harringtonia var. drupacea), an ous mid-rib; the lower surface has a evergreen shrub about 6 ft. high, at broad silvery band on either side of the the USDA Plant Introduction Station, mid-rib. These bands are made up of Glenn Dale, Maryland. This photo­ conspicuous white stomata arranged in graph was made in 1955. The plant is numerous distinct lines. Leaf length is now about 7 ft. high, but the lower variable, from about one inch in varie­ branches have been severely pruned ties of C. harringtonia to three or four to provide material for chemical re­ inches in C. fortunii. The leaves are search.
    [Show full text]
  • Torreya Taxifolia
    photograph © Abraham Rammeloo Torreya taxifolia produces seeds in 40 Kalmthout Arboretum ABRAHAM RAMMELOO, Curator of the Kalmthout Arboretum, writes about this rare conifer that recently produced seed for the first time. Torreya is a genus of conifers that comprises four to six species that are native to North America and Asia. It is closely related to Taxus and Cephalotaxus and is easily confused with the latter. However, it is relatively easy to distinguish them apart by their leaves. Torreya has needles with, on the underside, two small edges with stomas giving it a green appearance; Cephalotaxus has different rows of stomas, and for this reason the underside is more of a white colour. It is very rare to find Torreya taxifolia in the wild; it is native to a small area in Florida and Georgia. It grows in steep limestone cliffs along the Apalachicola River. These trees come from a warm and humid climate where the temperature in winter occasionally falls below freezing. They grow mainly on north-facing slopes between Fagus grandifolia, Liriodendron tulipifera, Acer barbatum, Liquidambar styraciflua and Quercus alba. They can grow up to 15 to 20 m high. The needles are sharp and pointed and grow in a whorled pattern along the branches. They are 25 to 35 mm long and stay on the tree for three to four years. If you crush them, they give off a strong, sharp odour. The health and reproduction of the adult population of this species suffered INTERNATIONAL DENDROLOGY SOCIETY TREES Opposite Torreya taxifolia ‘Argentea’ growing at Kalmthout Arboretum in Belgium.
    [Show full text]
  • Characterization of 15 Polymorphic Microsatellite Loci for Cephalotaxus Oliveri (Cephalotaxaceae), a Conifer of Medicinal Importance
    Int. J. Mol. Sci. 2012, 13, 11165-11172; doi:10.3390/ijms130911165 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Short Note Characterization of 15 Polymorphic Microsatellite Loci for Cephalotaxus oliveri (Cephalotaxaceae), a Conifer of Medicinal Importance Yingchun Miao 1,2, Xuedong Lang 2, Shuaifeng Li 2, Jianrong Su 2,* and Yuehua Wang 1,* 1 Department of Botany, School of Life Sciences, Yunnan University, Kunming 650091, China; E-Mail: [email protected] 2 Research Institute of Resource Insects, Chinese Academy of Forest (CAF), Kunming 650224, China; E-Mails: [email protected] (X.L.); [email protected] (S.L.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (J.S.); [email protected] (Y.W.); Tel.: +86-871-3860017; Fax: +86-871-3860017. Received: 7 August 2012; in revised form: 28 August 2012 / Accepted: 2 September 2012 / Published: 7 September 2012 Abstract: Cephalotaxus oliveri is a scarce medicinal conifer endemic to the south central region of China and Vietnam. A small fragmented population presently exists due to anthropogenic disturbance. C. oliveri has been used for its alkaloids harringtonine and homoharringtonine, which are effective against leucocythemia and lymphadenosarcoma. Monoecious plants have been detected in nature, although they were understood to be dioecious. In order to study the mating system, population genetics and the genetic effects of habitat fragmentation on C. oliveri, 15 polymorphic and 12 monomorphic microsatellite loci were developed for C. oliveri by using the Fast Isolation by AFLP of Sequences Containing repeats (FIASCO) protocol. The polymorphisms were assessed in 96 individuals from three natural populations (32 individuals per population).
    [Show full text]
  • Gymnosperms on the EDGE Félix Forest1, Justin Moat 1,2, Elisabeth Baloch1, Neil A
    www.nature.com/scientificreports OPEN Gymnosperms on the EDGE Félix Forest1, Justin Moat 1,2, Elisabeth Baloch1, Neil A. Brummitt3, Steve P. Bachman 1,2, Stef Ickert-Bond 4, Peter M. Hollingsworth5, Aaron Liston6, Damon P. Little7, Sarah Mathews8,9, Hardeep Rai10, Catarina Rydin11, Dennis W. Stevenson7, Philip Thomas5 & Sven Buerki3,12 Driven by limited resources and a sense of urgency, the prioritization of species for conservation has Received: 12 May 2017 been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species Accepted: 28 March 2018 at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). Published: xx xx xxxx This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The efect of diferent extinction probability transformations and the handling of IUCN data defcient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g.
    [Show full text]
  • Cephalotaxus Harringtonia (D. Don) C.H.E. Koch Japanese Plum Yew (Cephalotaxus Drupacea, Cephalotaxus Nana, Cephalotaxus Pedunculata, Cephalotaxus Sinensis)
    Cephalotaxus harringtonia (D. Don) C.H.E. Koch Japanese Plum Yew (Cephalotaxus drupacea, Cephalotaxus nana, Cephalotaxus pedunculata, Cephalotaxus sinensis) Other Common Names: Cow’s Tail Pine, Harrington Plum Yew. Family: Cephalotaxaceae. Cold Hardiness: Useful in USDA zones 6 through 9 with the proper cultivar selection. Foliage: Evergreen; simple; alternate; narrowly linear; ¾O to 1½O (2 O) long; strongly two-ranked, arching upward then out and down; dark glossy green to blackish green with two bands of stomata underneath; tips acute to mucronate; leaves stiff, almost plastic-like in texture. Flower: Dioecious or rarely polygamo-dioecious; small pendant ovoid male cones are axillary, while the more conical females are stalked with two ovules per bract of which only one matures; pollen is shed in early spring. Fruit: Elongated ovoid olive-like drupes on female plants; green turning red-brown to brown at maturity; 1O to 1¼O long; not ornamental; fruit and foliage are reportedly poisonous. Stem / Bark: Stems — thick and stiff; glabrous; ridged and furrowed; green to yellow-green, may develop a reddish cast in winter; Buds — ovoid male and conical female cones developing from stalked buds; Bark — exfoliating in gray-brown to red-brown strips on older specimens. Habit: Plants are of variable shapes and sizes; most cultivars in our regional landscapes have been selected for a distinctively spreading or strongly erect habit, whereas the species varies between these extremes; in favorable locations plants may mature to the stature of small trees, 15N to 20N(30N) tall, but most specimens in our regional landscapes are medium shrubs 5N to 10N tall; overall plants are medium in texture.
    [Show full text]
  • Discrimination and Genetic Diversity of Cephalotaxus Accessions Using AFLP Markers
    J. AMER. SOC. HORT. SCI. 125(4):404–412. 2000. Discrimination and Genetic Diversity of Cephalotaxus Accessions Using AFLP Markers Donglin Zhang Landscape Horticulture Program, Department of Biosystems Science and Engineering, University of Maine, Orono, ME 04469-5722 Michael A. Dirr and Robert A. Price1 Department of Horticulture, University of Georgia, Athens, GA 30602 ADDITIONAL INDEX WORDS. DNA, markers, taxonomy, PCR, phenogram, cultivar ABSTRACT. Cephalotaxus Sieb. and Zucc. (plum yew) species and cultivars have become popular because of their sun and shade tolerance, resistance to deer browsing, disease and insect tolerance, and cold and heat adaptability. Unfortunately, the nomenclature and classification in the literature and nursery trade are confusing due to their extreme similarity in morphology. In this study, amplified fragment-length polymorphism (AFLP) markers were used to discriminate taxa and evaluate genetic differences among 90 Cephalotaxus accessions. A total of 403 useful markers between 75 and 500 base pairs (bps) was generated from three primer-pair combinations. Cluster analysis showed that the 90 accessions can be classified as four species, C. oliveri Mast., C. fortunei Hooker, C. harringtonia (Forbes) Koch., and C. ×sinensis (a hybrid species); four varieties, C. fortunei var. alpina Li, C. harringtonia var. koreana (Nakai) Rehd., C. harringtonia var. nana (Nakai) Hornibr., and C. harringtonia var. wilsoniana (Hayata) Kitamura; and eight cultivars. Suggested names are provided for mislabeled or misidentified taxa. The Cephalotaxus AFLP data serve as a guide to researchers and growers for identification and genetic differences of a taxon, and a model to establish a cultivar library against which later introductions or problematic collections can be cross-referenced.
    [Show full text]
  • Supplementary Table S2 Details of 455 Conifer Species Used in the Phylogene�C and Physiological Niche Modelling to Es�Mate Drivers of Diversifica�On
    Supplementary Table S2 Details of 455 conifer species used in the phylogene�c and physiological niche modelling to es�mate drivers of diversifica�on. Shown are: the clade calcifica�on (10 and 42 clade); number of cleaned georeferenced presence records; the confusion matrix which describes the model fit in terms of true posi�ves, true nega�ves, false posi�ves and false nega�ves; and the es�mated niche area in quarter degree grid squares for the globe (projected) and for version of the globe where all environmental zones are equally common (resampled), see main text for further details. Clade classifica�on Confusion matrix niche area (# grid cells) 42 (68*) Number of True True False False Species 10 clades clades records posi�ves nega�ves posi�ves nega�ves Projected Resampled Abies alba 10 65 119 117 111 4 2 6658 7622 Abies amabilis 10 65 80 79 74 2 0 11783 13701 Abies bracteata 10 65 4 4 15 0 0 1610 1846 Abies concolor 10 65 98 90 86 8 8 13825 15410 Abies fabri 10 65 4 4 17 0 0 2559 2641 Abies fargesii 10 65 13 13 18 0 0 14450 15305 Abies firma 10 65 163 161 163 1 0 2270 2436 Abies fraseri 10 65 15 15 16 0 0 1914 2075 Abies grandis 10 65 77 75 70 2 2 11654 13629 Abies holophylla 10 65 12 12 16 1 0 23899 24592 Abies homolepis 10 65 31 31 34 0 0 791 851 Abies kawakamii 10 65 17 17 26 0 0 700 1164 Abies koreana 10 65 10 10 18 0 0 985 1048 Abies lasiocarpa 10 65 105 100 95 6 5 11422 12454 Abies magnifica 10 65 47 47 58 2 0 11882 14353 Abies mariesii 10 65 16 16 17 0 0 3833 4114 Abies nebrodensis 10 65 1 1 17 0 0 1094 973 Abies nephrolepis 10 65
    [Show full text]
  • The Reproductive Ecology of the Pacific Yew (Taxus Brevifolia Nutt.) Under a Range of Overstory Conditions in Western Oregon
    AN ABSTRACT OF THE THESIS OF Stephen P. DiFazio for the degree of Master of Science in Botany and Plant Pathology presented on May 5, 1995. Title: The Reproductive Ecology of Pacific Yew (Taxus brevifolia Nutt.) Under a Range of Overstory Conditions in Western Oregon Abstract approved:Redacted for Privacy The influence of overstory openness on the reproductive ecology of Pacific yew (Taxus brevifolia Nutt.) was investigated on 4 sites in western Oregon over 2 years. The breeding system of T. brevifolia was found to deviate from pure dioecy under a broad range of canopy and site conditions. Production of female strobili was observed on 17 of 58 predominantly male trees, while no male strobili were observed on 57 female trees. Genet sex ratios were significantly biased in only 1 population, where male genets outnumbered female genets by almost 2 to 1. Mean floral sex ratios were significantly male-biased in all populations and ranged from 5 to 12. Pollen-ovule ratios were in excess of 1,000,000 for all populations. In contrast, reproductive effort based on masses of mature strobili were female-biased by a factor of 1.1 to 5 for all sites. Seed masses also varied inversely with elevation. Pollination phenology varied with elevation and overstory openness. Pollen first began shedding at the lowest sites, and earlier in trees under open conditions than in trees with overstory canopy cover. The duration of pollen shedding varied from 3 to 20 days, and tended to be more protracted at lower sites and under open canopy conditions. Most of the variation in reproductive potential, as indexed by strobilus production, occurred within sites and within trees.
    [Show full text]
  • Evolutionary Implications of Seed-Cone Teratologies in Pseudotaxus Chienii
    Erschienen in: Annals of Botany ; 123 (2019), 1. - S. 133-143 https://dx.doi.org/10.1093/aob/mcy150 Origin of the Taxaceae aril: evolutionary implications of seed-cone teratologies in Pseudotaxus chienii Veit MartinDörken 1,*, HubertusNimsch2 and Paula J.Rudall3 1University of Konstanz, Department of Biology, M 613, Universitätsstr. 10, 78457 Konstanz, Germany, 2Forestry Arboretum Freiburg-Günterstal, St Ulrich 31, 79283 Bollschweil, Germany and 3Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK *For correspondence. E-mail [email protected] • Background and Aims Fleshy structures that promote biotic dispersal by ingestion have evolved many times in seed plants. Within the yew family Taxaceae sensu lato (six genera, including Cephalotaxus), it remains controver- sial whether the characteristic fleshy structure surrounding the seed is interpreted as a novel outgrowth of the base of the ovule (i.e. an aril) or a fleshy seed coat that is entirely derived from the integument (i.e. a sarcotesta). This paper presents a detailed study of both wild-type and teratological seed cones of Pseudotaxus chienii , including morphology, anatomy and ontogeny. • Methods Wild-type and teratological seed cones were investigated with the classical paraffin technique and subsequent astrablue/safranin staining and scanning electron microscopy. • Key Results The wild-type seed cone of Pseudotaxus possesses a fleshy white aril that is cup-like and not entirely fused to the seed. In the teratological seed cones investigated, the aril was bilobed and consisted of two free halves. In both wild-type and teratological cones, the aril was initiated as two lateral primordia in a transverse plane, but in wild-type cones the two primordia became extended into a ring primordium, which grew apically, leading to the cup-like shape.
    [Show full text]
  • Cephalotaxus Harringtonia1
    Fact Sheet FPS-118 October, 1999 Cephalotaxus harringtonia1 Edward F. Gilman2 Introduction Looking like a dwarf form of the Common Podocarpus, the Plum-Yew is a useful shrub for the same purpose as boxwood - a slow-growing, low, formal, evergreen clipped hedge or border (Fig. 1). It can be kept at a height as low as 12 inches. The dark green foliage contrasts well with many other landscape plants. General Information Scientific name: Cephalotaxus harringtonia Pronunciation: seff-uh-loe-TACKS-sus hair-ring-TOE-nee-uh Common name(s): Japanese Plum-Yew Family: Cephalotaxaceae Plant type: shrub USDA hardiness zones: 6 through 9 (Fig. 2) Planting month for zone 7: year round Planting month for zone 8: year round Planting month for zone 9: year round Origin: native to Florida Uses: hedge; container or above-ground planter; specimen; Figure 1. Japanese Plum-Yew. border Availablity: grown in small quantities by a small number of Growth rate: slow nurseries Texture: fine Description Foliage Height: 5 to 10 feet Spread: 5 to 10 feet Leaf arrangement: alternate Plant habit: upright Leaf type: simple Plant density: dense Leaf margin: entire 1.This document is Fact Sheet FPS-118, one of a series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Publication date: October 1999. Please visit the EDIS web site at http://edis.ifas.ufl.edu. 2.Edward F. Gilman, professor, Environmental Horticulture Department, Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611. The Institute of Food and Agricultural Sciences is an equal opportunity/affirmative action employer authorized to provide research, educational information and other services only to individuals and institutions that function without regard to race, color, sex, age, handicap, or national origin.
    [Show full text]
  • CEPHALOTAXACEAE 1. CEPHALOTAXUS Siebold
    Flora of China 4: 85–88. 1999. CEPHALOTAXACEAE 三尖杉科 san jian shan ke Fu Liguo (傅立国 Fu Li-kuo)1, Li Nan (李楠)2; Robert R. Mill3 Trees or shrubs evergreen, dioecious (occasionally monoecious); bud scales persistent. Leaves 2-ranked, pectinately arranged and leafy branchlets elliptic to obdeltoid in outline, decussate or ± opposite, sessile or subsessile, basally somewhat twisted; blade linear, linear-lanceolate, or occasionally lanceolate, midvein green abaxially, elevated on both surfaces, stomatal bands 2, abaxial, each comprising 11–24 rows of stomata, usually appearing white because of powdery covering, as wide as or usually wider than midvein, marginal bands green, as wide as or narrower than midvein, resin canal abaxial. Pollen cones borne on branches of preceding year, aggregated into capitula of 6–8; capitula axillary, solitary, pedunculate or subsessile; peduncle usually with several spirally arranged scales, rarely naked; cones subtended by 1 ovate or triangular-ovate bract; microsporophylls 4–16, each with (2 or)3(or 4) pollen sacs; pollen nonsaccate. Seed cones borne from axils of terminal bud scales, 1–6(–8) per bud, long pedunculate; floral axis with several pairs of decussate bracts each bearing 2 erect, axillary ovules. Seeds ripening in 2nd year, drupelike, completely enclosed by succulent aril, ovoid, ellipsoid, or globose, apex mucronate. Cotyledons 2. Germination epigeal. One genus and eight to eleven species: China, India, Japan, Korea, Laos, Myanmar, Thailand, Vietnam; six species (three endemic) in China. There is currently debate about whether the Cephalotaxaceae should continue to be recognized as separate from the Taxaceae. Cephalotaxus appears to form a distinct lineage related to Taxaceae; however, it differs from that family in its seed cones, which have several 2-ovulate bracts, instead of a single fertile, 1-ovulate bract.
    [Show full text]
  • Morphology and Anatomy of Male Cones of Pseudotaxus Chienii (W.C. Cheng) W.C
    Erschienen in: Flora : Morphology, Distribution, Functional Ecology of Plants ; 206 (2011), 5. - S. 444-450 https://dx.doi.org/10.1016/j.flora.2010.08.006 Morphology and anatomy of male cones of Pseudotaxus chienii (W.C. Cheng) W.C. Cheng (Taxaceae) Veit M. Dörken a, Zhixiang Zhang b, Iris B. Mundry a, Thomas Stützel a,∗ a Institute for Biodiversity and Evolution of Plants, Ruhr­University Bochum, Germany b Department of Botany Beijing Forestry University, China abstract Results of the present study indicate that male cones of Pseudotaxus chienii are representing inflorescences with strongly reduced flowers. The results fit quite well with investigations showing that sporangio• phores of Taxus and also of Pseudotaxus comply with reduced flowers. The only difference between male cones in Taxus and Pseudotaxus is the absence of pherophylls in Taxus. Furthermore our results com• Keywords: plete a transition series beginning with Cephalotaxus going on to Pseudotaxus and ending with Taxus and Cephalotaxus Torreya. In this progression Pseudotaxus can be regarded as an intermediate link between the inflores• Torreya cences of Cephalotaxus and the simple, unbranched cones of Taxus. The entire transition series shows that Gymnosperms Evolution sporophyll•like sporangiophores can be derived by reduction of lateral cones. There is however no sign Sporangiophore that a similar process has occurred in other conifer groups. Introduction Farjon, 1998, 2001, 2010; Keng, 1969; Mundry, 1999; Mundry and Mundry, 2001; Restemeyer, 1999; Stützel et al., 1999 ). In general male cones of gymnosperms are uniaxial systems Today the genera of Cephalotaxaceae are placed in the Taxaceae with limited growth. Each cone bears several sporangiophores.
    [Show full text]